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Abstract
The metabolism of sulfur (S) compounds concurs to the maintain of cell homeostasis and tissue integrity in the 

human body. Sulfur chemical species act in all cells as anti-oxidant/scavenging agents or regulators of membrane 
stability/excitability. At the same time, they also exert tissue-dependent functions behaving as protective molecules of 
the liver and cardiovascular system, as modulators of the immune response, gut activity and CNS neurotransmitter 
signaling. The involvement of S compounds in human complex, chronic, disabling diseases at multifaceted pathogenesis 
is actually under investigation: altered levels of S metabolites could be in fact bio-indicators of impaired oxidation state in 
the body and their unbalance could be risk factors for disease onset. By the present review, we will discuss data from the 
literature which unearth an altered S biochemistry in human complex illnesses, taking as an example highly invalidating 
neuropsychiatry and pain perception diseases as autism spectrum disorders (ASD), schizophrenia and fibromyalgia. 
As well, we will depict herein the utility at applying to this area of the clinical research high resolving -omics strategies 
in combination with methodological tools which specifically explore S metabolism in patients. The perspectives of these 
kind of analyses would be the adoption of more valuable, personalized therapeutics protocols and, possibly, an improved 
bio-monitoring of patients, also including their response to treatments. 
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Introduction
As shown in the first part of this review dedicated to sulfur (S) 

metabolism in humans, the regulation of the molecular networks 
involving this element and the metabolic fluxes of S-containing amino 
acids (Met, Cys, HCys, and Tau) are overall orchestrated by diet, 
hormones, specific substrates as well as energy metabolism, on the 
basis of cell/tissue demands, aging and gender-linked factors. Since 
each S and S-AA biotransformation in humans takes part to numerous, 
fundamental functions at the interplay between environmental changes 
and chemical homeostasis, variations of one of the genes coding for 
enzymes of these paths, in relation to the type of genetic variant, 
can affect different tissues and anatomical districts or contribute to 
the pathogenesis of different possible pathological conditions. For 
instance, the autosomal recessive inherited disorder of transsulfuration 
characterized by homocystinuria, hyperhomocytinemia and 
hypermethioninemia due to a genetic defect of cystathionine-β-
synthase (CBS), can provoke severe disturbances at the level of the 
Central Nervous System (CNS), the eye function and vision and/or the 
musculoskeletal and cardiovascular systems [1]. The second section of 
this review dedicated to S metabolism in human health deals instead 
with the possible contribution of unbalanced S biotransformations to 
human complex disorders, at multi-factorial, in most cases unclear, 
etiology and pathogenesis. Among complex human diseases, we can 
find, for instance, type II diabetes, obesity, a variety of cancer types, 
cardiovascular, neurodegenerative and neuropsychiatry disorders, 
epilepsy, pain perception, musculoskeletal and autoimmune disorders, 
as well as the often overlapping irritable bowel and chronic fatigue 
syndromes. These disorders can rise prenatally or during the early 
development or being typical diseases of a particular lifespan period, as 
adolescence or middle age, for instance menopause for women. Thus, 
it is usually accepted that human complex disorders derive from the 
interaction of genetic variance and environmental, lifestyle and lifespan 
factors. The genetic architecture of complex disorders is characterized 

by the involvement of multiple genes and/or proteins, differently from 
single-gene inherited disturbances. Common gene polymorphisms 
or allelic variants (single nucleotide polymorphisms, SNPs) of more 
than one gene have been found to concur, as vulnerability factors, to 
the development of a human complex disease [2,3]. In this last case, 
it is also possible that allelic variants of a same pleiotropic gene are 
linked to a number of different, but overlying, disorders, syndromes 
and altered responses [3,4]. Each gene variant and vulnerability factor 
involved can subtly and differentially shape phenotypes and traits in 
complex diseases [2,3]. Beside genetic variance, changed gene/protein 
expression patterns, epigenetic and metabolic variations in patients 
vs. controls can underlie state/trait factors of a complex disease [5]. 
Prevention and treatment of all these chronic and highly invalidating 
disturbances, at high costs for the whole community even in developing 
countries, represent main targets in clinical research. We therefore aim 
at presenting herein the “state-of-the-art” of the actually available data 
on the reported genetic, epigenetic and metabolic variations concerning 
S chemistry in patients affected by some among these complex diseases 
and in particular: the developmental brain autism spectrum disorders 
(ASD), the high invalidating psychiatric disease schizophrenia and the 
chronic pain syndrome fibromyalgia. We discuss these results trying 
to define the possible future perspectives and the methodological 
approaches to follow in the field.
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Autism spectrum disorders

Autism spectrum disorders (ASD), encompassing Autistic 
Disorder, Asperger's Disorder, and Pervasive Developmental Disorder 
Not Otherwise Specified (PDDNOS), are characterized by relevant 
disturbances of the CNS function as impaired social behavior, deficits 
in emotion perception and non-verbal communication, accompanied 
by abnormal memory performance as well as disrupted cognitive and 
learning abilities. Alterations of brain development and CNS function 
in ASD occur prenatally or during the early childhood [6]. Despite the 
remarkable number of investigations on ASD, their etiology remains 
unclear. Genetics plays a major role, as revealed by the high (about 
70%) concordance reported in twin studies and other investigations 
[6-8]. However, accordingly to the high symptoms’ variance, DNA 
investigations have also revealed a strong genetic heterogeneity in 
ASD, a feature which has contributed to consider them as non uniform 
genetic disturbances of brain development [9,10]. If common allelic 
variants have been found prevalent, combination of a rare and common 
variations or exclusively rare cannot be excluded in ASD, suggesting 
that gene variants and different protein functionalities underlie 
clusters of symptoms and dysfunctions. Next to molecular biology 
investigations, epigenetic and environmental factors of ASD are also 
receiving the highest consideration: the most currently accepted 
hypothesis among clinical researchers and neurobiologists is that 
ASD arise at the interface between vulnerability genes, epigenetic and 
environmental factors: changes in DNA/histone methylation patterns 
and altered gene expression are supposed to underlie ASD in the context 
of genetic vulnerabilities and particular lifestyles [11,12]. The study 
of S metabolism is part of this research field. Due to its involvement 
in methylation processes and gene expression, S metabolism has 
been investigated in wide cohorts of ill children and age-matched 
controls. Interestingly, altered transmethylation/transsulfuration 
metabolites together a 50% lower SAM/SAH ratio have been found in 
serum of autistic children vs. controls, suggesting an unbalanced Met 
metabolism accompanied by hypomethylation in ASD [13,14]. These 
studies are also supported by findings of an increased frequency of 
polymorphisms of Met re-methylation genes in ASD children than 
controls, such as the MethylenTetraHydroFolateReductase (MTHFR) 
677C>T one which reduces the activity of this enzyme [15]. Other 
studies have reported lower circulating levels of GSH, Met and Cys, 
together increased levels of GSSG, the oxidized form of glutathione, in 
ill children [16-19], suggesting an impaired oxidative stress in autism 
disorders. The reduced ratio GSH:GSSG in ASD patients is a finding 
replicated in many studies, in blood or post-mortem brain using 
different technologies as HPLC, gas chromatography and others [16,20]. 
Moreover, impaired methylation capacity and altered circulating levels 
of HCys have been observed in autistic children and in their parents 
[21]. Either higher or lower HCys levels have been found in ASD or a 
different involvement of folate metabolism genes, implying the need to 
further investigate Met metabolism in these disorders and the possible 
presence of family clusters [15,21-24]. The immunological unbalance 
as well as dysbiosis and gut malfunction observed in autism [25,26] 
can derive from the reported changes in Met pathways. Mytochondrial 
defects have been also observed in ASD, further sustaining the role of 
oxidative metabolism in their pathogenetic mechanisms, accompanied 
by an impairment of pro-oxidant/anti-oxidant activities [27]. In 
addition, an impaired sulfotransferase (ST) detoxification capacity has 
been reported in ASD and genetic variants of ST Isoforms, the SULT1a, 
have been associated with autism [28]. Impaired sulfoconjugation and, 
as a consequence, an altered catecholamine catabolism, including 
cathecol-O-methyl-transferase (COMT) variants with altered 

activity, can affect noradrenergic and 5-HT cross-talks. It is worth 
noting that 5-HT levels have been found consistently increased in 
platelets of about 40% children with ASD, another among the most 
replicated biochemical features in biological studies concerning these 
disorders [29]. Hyperserotoninemia in autism can be explained 
by a polymorphism in the promoter region of the gene of the 5-HT 
transporter, at least in family clusters [30], but concurrent events are 
not avoided. Altered sulfation in autism can be even enhanced by 
the increased SO4

2- excretion observed in children with a diagnosis of 
autism, a finding related to the increased oxidative stress or to genetics 
features [31]. Sulfation seems in fact to play a main role during fetal 
development [32]. As well, some plasma AAs have been found altered 
in children with ASD [33,34]. 

The ASD neurochemistry is thus defined by heterogeneous 
genetic and epigenetic vulnerabilities: these can result in platelet 
hyperserotoninemia, impaired Met and folate metabolism, DNA 
hypomethylation and, possibly, gene expression up-regulation, 
increased oxidative stress and altered AA plasma profile; these 
dysfunctions can be present at different degrees, defining clusters of 
symptoms and phenotypes and the severity of the illness.

Schizophrenia and psychosis 

Schizophrenia, a devastating behavioral disease, is characterized 
by delusions, thought disorder, hallucinations, psychosis and cognitive 
deficits. Schizophrenia affects the most basic human processes of 
perception, emotion and judgment at different degrees of severity 
[35]. As for autism, genetics studies of schizophrenia have shown 
heterogeneous and complex profiles, suggesting that the disease could 
originate from common and rare variants, but also from epigenetics 
alterations [36]. Beside the dopaminergic/serotonin hypothesis, other 
biochemical substrates are supposed to underlie schizophrenia and 
psychosis. As regards the topic of this review, an old story relates S-AAs, 
Met biochemistry and schizophrenia: in the early ‘60s, some authors 
observed that administration of Met together monoaminooxydase 
inhibitors (MAOI) worsened symptoms in schizophrenic patients 
[37,38]. Since that time, after a long period of disregard, a renovated 
interest is now emerging on Met pathways in neuropsychiatric 
disorders, depression, delusion and negative symptoms of psychotic-
related disorders and schizophrenia. First, genetic studies have 
involved genes of S biochemistry as vulnerability factors of the disease 
and a genetic hypothesis underlying psychosis and altered HCys 
metabolism has been also formulated [39]. Differently from autism, 
schizophrenic and bipolar psychotic patients characterized by Met 
metabolism dysfunction, consistently show elevated HCys plasma 
levels [40,41]. Moreover, as a risk factor to develop the disease, changes 
and variants of the 1 C cycle enzymes have been reported: in particular, 
as for ASD, the HCys remethylation enzyme MTHFR 677C>T has 
been linked to psychotic behavior [42-44]. Other S-related genes have 
been implicated in schizophrenia, as DNA variation of SULT4a1, a 
sulfotransferase isoform expressed in the brain only which specifically 
promotes sulfation of catecholamine [45], or Met sulfone reductase 
[46]. Plasma levels studies have linked variation of plasma S-AAs as 
Met and Cys to different phases of this invalidating mental illness: for 
instance, Met was found lower in psychotic patients unresponsive to 
atypical antipsychotic drugs, whereas high Met was reported in drug-
free patients with schizophrenia. Others have shown low S-AAs levels 
in psychosis. Finally, some authors have reported that an altered plasma 
Tau/Met-Ser ratio can be a powerful biomarker of acute psychosis [47]. 
Investigations on platelet STs in patients with mood disorders have 
shown an increased enzyme activity in bipolar disorder [48]. These 
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data, albeit in part discordant, suggest an imbalance of S metabolism in 
psychosis and schizophrenia. As aforementioned, a number of studies 
have reported increased circulating levels of HCys in schizophrenic 
and bipolar patients [49,50]. High HCys in schizophrenia has been 
related to the above reported genetic variations, but several new 
findings are also in support of epigenetic causes. The amount of HCys 
in tissues and blood depends from Met metabolism balance and, in 
particular, from the relative activities of Met transmethylation and 
remethylation enzymes, regulated by the intake of folic acid and B 
group vitamins. High circulating levels of HCys have been related not 
only to neuropsychiatric disorders but also to cardiovascular diseases, 
diabetes and neurodegenerative diseases, indicating that its metabolism 
exert pleiotropic effects in the body. An interesting finding has shown 
the significant reduction of transthyretin, a protein transporter of 
the circulating thyroid hormone T4 and retinol, in psychosis [51]. 
Since HCys reduces the active form of transthyretin [52], cognitive 
impairment in psychosis and schizophrenia could be linked to high 
HCys levels and low transthyretin. The hypothesis formulated by 
Costa and coauthors starts instead from the early Met studies on 
schizophrenia and relates these findings to an hypermethylation of 
specific genes, provoking their down-regulation, in schizophrenic 
patients [53,54]. The susceptibility seems linked to gender variables 
[54]. Interestingly, Met metabolism and dopamine transmission 
have been found interlaced in schizophrenia, a finding needing 
replication [55]. Thus, schizophrenia and psychosis are characterized 
by heterogeneous genetics and, at a different degree, by dopamine/
monoamine imbalance, altered sulfation, S metabolism changes 
and, possibly, hypermethylation, gene expression down-regulation 
patterns and transthyretin deficit. Mytochondrial dysfunctions are also 
emerging [56].

Fibromyalgia

The metabolism of S, Met and other S-AAs has been extensively 
investigated in rheumatic diseases and osteoarthritis. Herein, we will call 
rather attention on unspecified muscle pain disorders as fibromyalgia. 
This syndrome is characterized by a constellation of pain symptoms 
and overlap with neuropsychiatric and gastrointestinal diseases 
[57]. Despite being one of the most frequent diagnoses in clinical 
rheumatology practice, fibromyalgia etiology and pathogenesis remain 
elusive. Fibromyalgia syndrome has been related to disturbances of the 
hypothalamic–pituitary axis and neurotransmission defects, involving 
excitatory amino acids, catecholamines, substance P and 5-HT [58-
60]: patient's symptoms may derive from poor stressor modulation, 
sensitization of specific nociceptor neurons and pain threshold 
diminution in response to multiple environmental factors, such as 
mechanical or emotional trauma, chronic stress or even infections. In 
substance, all patients with fibromyalgia, in high prevalence women, 
report a diminished pain perception threshold together a greater 
vulnerability to diverse stressors. Concerning the role of S metabolism, 
its indirect involvement in this syndrome is supported by the clinical 
efficacy of oral administrations of SAM (Samyr) reported in patients 
with fibromyalgia [61]. This has been mainly ascribed to the fact that 
SAM is a methyl donor in epinephrine or melatonin formation, two 
molecules involved in sleep-arousal regulation and mood/anxiety 
tonus [62], frequently altered in patients with fibromyalgia. Despite 
treatment with SAM is effective in fibromyalgia, relatively few studies 
have been conducted on S metabolism in this field of medical pathology. 
Significantly lower levels of ATP, a trend toward higher Ca2+ and Mg2+ 
content in platelets as well as markedly reduced plasma levels of S-AAs 
Met and Tau, together low phenylalanine and tyrosine, the precursor of 
catecholamines and thyroid hormones, have been obtained in patients 

with fibromyalgia vs. healthy control subjects [63-65]. Intestine 
malabsorption could be a cause of the observed reduction of plasma 
AAs in patients, this accompanied by gut microbiome alteration 
and disbiosis [66]. Epigenetic alteration and changes in methylation 
patterns are also emerging in fibromyalgia [67]. 

These results, albeit preliminary, are in support of an imbalance 
of S, catecholamine and purinergic metabolism in patients with 
fibromyalgia. These results can be ascribed to a concomitant increased 
oxidative stress in patients with fibromyalgia, as supported by some 
authors: in fact, in other studies,lower serum levels of catalase and GSH 
have been found in serum of fibromyalgic subjects [68]. 

Sulfur, diet and human complex diseases

Nutritional aspects cannot be underestimated when investigating S 
metabolism in ASD, schizophrenia and fibromyalgia, where a genetic 
and epigenetic impact has been reported. Diet and biological research 
on these three complex diseases are the two faces of a same medal: 
on one side, the nutritional profile of patients should be monitored 
since diet can alter results on the search of metabolic disturbances in 
patients, especially those regarding plasma/cell levels of S-compounds 
or oxidative stress biomarkers in patients. On the other side, the 
appraise of patients’ nutritional state is part of the disease itself, since 
stressors or other triggering factors can influence feeding behavior in 
vulnerable subjects, provoking nutritional and metabolic deficits. In 
some individuals, vulnerable genes are even directly implicated in the 
metabolic processes altered by an unbalanced diet, enhancing therefore 
some symptom features rather than others. 

A normal, equilibrated diet, along with a good supply of 
proteins, gives the required amount of S. However, the complexity 
of S metabolism and its regulation makes difficult to define its real 
requirement for health care in different lifespan stages and pathological 
conditions [69]. Moreover, Met metabolism is dependent of vitamins 
and essential cofactors: thus, it is evident that diet can strongly influence 
S-compounds’ metabolism in the body [70,71]. Stressors, low stress 
coping, low-quality lifestyle, drug abuse, alcoholism and stress-related 
pathologies potentially lead to incorrect alimentary choices/habits and 
even taste changes [72]. Unbalanced diet can affect methylation patterns 
and epigenomics [73,74]. The recommended daily allowance (RDA) 
suggests to ingest at least 13 mg Kg-1 body weight per day of S, but other 
sources contrast these values and recommend daily doses ≥ 20 mg Kg-1 
body weight. Some authors have reported that the different stages of 
the life span require variable S assumption from diet [75]. On the other 
side, some authors have reported that Met diet restriction increases 
GSH intra-cell levels and lifespan in mouse strains through feed-back 
adaptation mechanisms [76]. Therefore, additional investigation would 
provide an improved understanding of factors determining S and 
S-AAs bioavailability in healthy subjects and patients. 

Sulfur metabolism and –Omics techniques in ASDs, 
schizophrenia and fibromyalgia

 The study of S-AA metabolism is carried out through specific 
isotope tracers taken by S compounds [77]. Furthermore, the 
development of high-resolving techniques as HPLC coupled to UV or 
electrochemical and fluorescence detection has improved the study of S 
metabolites in body fluids or cells [78]. A valuable, specific and sensitive 
measurement of S-AAs, GSH/GSSG ratio, SAM/SAH ratio can in fact 
provide useful information on cell redox state, DNA methylation and 
Met metabolism. On the other side, a multi-factorial approach is  thus 
the most suitable, implying the identification of clusters and groups of 
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patients within a pathological condition, presumably showing distinct 
biochemistry patterns, symptoms or responses to treatment. Database 
can be evaluated through suitable multivariate statistical analysis, 
including cluster and principal component analysis. Recognizing the 
existence of biochemical clusters within schizophrenia and fibromyalgia 
could further support the notion that these disorders are not “single”, 
“fixed” pathological entities but rather spectrum disorders. 

The new emerging -omics technologies are, by now, the best 
approach to investigate biological correlates of complex, chronic 
and invalidating disorders as ASDs, schizophrenia and fibromyalgia, 
permitting to monitor the numerous disease’s variables. These 
techniques offers a “full screen” vision of patients’ biology, consisting 
in DNA array genomic/transcriptomic/methylomic analyses, in the 
proteomic evaluation of all expressed proteins as well as the measure of 
metabolites, substrates (metabolomics) and drug levels in cells, tissues 
or body fluids of patients during the different phases of the disease and 
pharmacological therapy. Proteomics and metabolomics apply LC/MS-
MS techniques which enable the measurement of numerous proteins 
and substrates. Hyphenated HP-LC techniques are also improving 
resolution in the field [79].

If a main obstacle to these investigations consists in the high-
costs, this can be circumvented by the participation into multicenter 
laboratory studies. The-omics tool permits to simultaneously 
investigate multiple, potentially involved molecular mechanisms and 

systems in cells and tissues, from DNA to metabolic substrates. As an 
example, Figure 1 is a schematic representation of those molecular 
substrates and factors potentially underlying ASD, schizophrenia and 
fibromyalgia together the presumed triggering genetic, epigenetic and 
environmental variables.

For -omics investigations, the analysis of body fluids as blood, 
serum, plasma, saliva or peripheral cell models as circulating 
lymphomonocytes, platelets or erythrocytes and tissue autopsy, can 
be integrated with the traditional protein specific assays and/or post-
mortem/animal studies which apply to the search of a single or few 
specific biomarkers. In the case of S metabolism, specific evaluation 
consists, as indicated before, in the search of changes of Met metabolites 
as HCys in body fluids. Applying -omics techniques would permit 
to characterize specific S metabolic profiles also targeting disease’s 
genetic/epigenetic, redox unbalance in human disorders as well as 
pharmacological treatment by drug metabolism evaluation and patient 
response to treatments. This approach endows with a robust, powerful 
tool of investigation of complex disorders as ASD, schizophrenia and 
fibromyalgia. New relationships between metabolic paths and systems 
could be found, providing signatures, maps and pathophysiological 
networks. In autism research, proteomics and metabolomics are 
leading towards new diagnostic and therapeutic perspectives [80-
82]. The same is occurring for schizophrenia [83,84] or fibromyalgia 
[85,86]. Application of –omics strategies in these diseases have also 

Figure 1: The bio-monitoring of human complex disorders ASD, schizophrenia and fibromyalgia: potential genetic, epigenetic, environmental determining factors 
and the various molecular targets and dysfunctions. 
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involved the therapeutic monitoring of pharmacological response [87], 
nutritional aspects and microbioma evaluation [88].

Conclusion
The targeting of S biology represents a main issue in human 

pathology which could be better defined through a multidisciplinary 
approach, encompassing molecular biology, biochemical, 
pharmacological, nutritional and statistical evaluations. The -omics 
tool can be a winning strategy to monitor impaired metabolic redox 
states, networks and patterns in complex, chronic and invalidating 
human diseases as ASD, schizophrenia and fibromyalgia, even coupled 
to specific S metabolism evaluations. This would permit to know more 
about their pathogenesis, possibly permitting to apply personalized 
therapies. The understanding of redox/ROS modulation mechanisms 
in cells and tissues and their manipulation would represent a main 
goal in molecular pathology and treatment of a variety of human 
diseases. The role of transsulfuration enzymes, their regulation and H2S 
formation should be further evaluated as well as metallothioneins and 
mitochondrial proteins. This approach could help to understand the 
almost unclear etiology of these diseases, as well as to detect clusters 
of symptoms and biochemical changes in these disorders, improving 
pharmacological investigations. 
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