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As the number and variety of known exoplanets approaches a 
thousand, the number and condition of the Cinderella planets (those 
possibly capable of supporting life) also grown.  As it is generally agreed 
that a necessary condition for support of life is the presence of liquid 
water, one of the conditions necessary for a planet to be a Cinderella 
planet is that the surface temperature be appropriate.

The warming of a planetary atmosphere is exceedingly complicated 
due to both the variety of energetic particles interacting with, and 
depositing energy into, it, and the complicated chemical and physical 
composition of a planetary atmosphere [1]. Here, we wish to consider 
the theoretical description of one type of interaction, namely that of a 
fast, charged auroral particle, for instance a proton, alpha particle, or a 
pick-up ion, with those species relevant to planetary atmospheres [1]. 
The question to be addressed is thus “What is the energy deposition 
profile created by auroral particles traversing a planetary atmosphere?”

To simplify the problem, several assumptions should be made:

• The planet is non-magnetic, and thus the effect of the
magnetosphere is ignored.

• The particles of type j enter the atmosphere with a velocity
distribution in both speed and angle given by αj.

• Each atomic, molecular, or ionic species i in the atmosphere
has a density distribution measured radially outward from the
center of mass of the planet, ni (h).  The density of species i is the
fractional density of scatterers at height h.

• Assume straight line trajectories, which is certainly not the case
for e.g. protons colliding with heavy atoms.

The energy deposition per unit path length for a particle in a 
uniform distribution of scatterers, or the stopping power of the system 
is normally described by the projectile energy loss per unit path length, 
or stopping power:

( ) ( )dE v
nS v

dx
− =   (1)

Where n is the density of scatterers, and ( )S v  is the stopping cross 
section for a projectile with velocity v [2]. For a projectile of velocity v, 
then, in an atmosphere of mixed species of scatterers, each with a local 
density of ( )in h  and stopping cross section ( )iS v , the total energy loss
per unit path length at a particular distance h from the planet’s center 
of mass will be:

( ) ( ) ( ),
i i
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The amount of energy lost along the path is an integral of dE/dx 
along the path. However, the velocity changes as the particle loses 
energy. One normally accounts for this by invoking the continuous 
slowing down approximation (CSDA). The range calculated in the 
CSDA is a very close approximation to the average path length traveled 
by a charged particle as it slows down to rest. Calculated in this 
approximation, the rate of energy loss at every point along the track 
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is assumed to be equal to the same as the total stopping power at that 
point. Energy-loss fluctuations are neglected. The CSDA range is then 
obtained by integrating the reciprocal of the total stopping power with 
respect to energy. Thus, the energy lost by a particle moving a distance 

y∆  through an atmosphere is

2
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dx
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so the energy deposited by the projectile along that path length is:
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We note that the pathway of the ion through the atmosphere is not 
necessarily normal to the planet’s surface, and thus something must 
be known about the distribution of trajectories of the incoming ions.

It is then necessary to determine the stopping cross section for a 
particular ion/target pair, which is generally expressed as a function of 
the particle velocity, as in Bethe-like theories [3], as:

( ) ( )
4 2

1 2
2
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mv

π
= 				              (5)

where Z1 and Z2 are the projectile charge and target electron number. 
The stopping number, ( )L v , is normally written:

2
0 1 1 1 2( )L v L Z L Z L= + +   (6)

which, using the Bethe [4], Lindhard [5,6], and Bloch [7] forms for L0, 
L1, and L2, respectively, yields
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for the stopping number. Here the projectile velocity is given in units 
of the Bohr velocity.

The critical quantity here is the mean excitation energy of the 
target, I0, which is defined [1] as the first energy weighted moment of 
the target dipole oscillator strength distribution (DODS):
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The mean excitation energy is characteristic of the target only, and 
has no dependence on the properties of the projectile ion. I0, 

describes
how easily a target molecule can absorb kinetic energy from the 
projectile, primarily as electronic (including ionization) and vibrational 
(including fragmentation) excitation. (One should note parenthetically 
that if the target is in an excited electronic state before the collision, the 
projectile might absorb energy from the target [8]).

The energy deposited by these particles in the column of atmosphere 
is thus
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Such a calculation of energy deposition would need to be carried 
out for each combination of auroral particle and target atmospheric 
molecule pair.

It is thus suggested that one aspect of energy deposition in 
planetary atmospheres, namely that of energy deposition by fast ions, 
could be investigated by using extant stopping power formulations.  
The usefulness of this approach is predicated on a detailed knowledge 
of the composition and distribution of the planetary atmosphere, and 
of the form and distribution of the impacting auroral particles.
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