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Abstract
Gene Expression Programming (GEP) is a novel genetic algorithm, a highly effective, stable random searching method. We take 

GEP to make models of Quantitative Structure-Retention Relationship (QSRR) for a series of oxygen-containing organic compounds 
of GC retention index, and compare the predictive results with Artificial Neural Network (ANN) and Multiple Linear Regression (MLR). 
The correlation coefficient on OV-1 column is 0.9919, 0.9891 and 0.9911 for GEP, ANN and MLR respectively, on SE-54 column is 
0.9955, 0.9892, and 0.9917. It is shown that the predicted results by GEP are in good agreement with experimental ones, better than 
those of ANN and MLR.

Keywords: Gene Expression Programming (GEP); Oxygen-
containing organic compounds; Artificial Neural Network (ANN); 
Quantitative Structure-Retention Relationship (QSRR)

Introduction
Chromatography in itself is not an accurate analytical 

technique, but rather a separation one. The identification of oxygen-
containing organic compounds can be made with the method of gas 
chromatographic peak in comparison with that of a standard sample of 
each compound. Because samples of pure compounds are not always 
available, it is important to develop QSRR that can efficiently predict 
retention parameters by using theoretical descriptors computed from 
chemical structure.

Quantitative Structure-Retention Relationships (QSRR) [1] 
establish the relationship between a chemical structure and its 
chromatographic retention value, which has been demonstrated to be 
a powerful tool for the investigation of chromatographic parameters. 
The main advantage of QSRR is the ability to distinguish in quantitative 
theoretical terms, packing materials of different chemical nature of the 
organic ligand and/or organic or inorganic support [2], Furthermore, 
it can be of valuable assistance in the prognosis of the behavior of new 
molecules, even before they are actually synthesized [3].

An important property that has been extensively studied in QSRR is 
the chromatographic retention index. The retention index is a generally 
accepted type of data used for the identification of chemical compounds 
by gas chromatography. A retention index is a continuous quantitative 
variable that relates the retention of a solute to the retention of a set 
of standard compounds. Retention indices are much less dependent 
on experimental factors (e.g., Temperature, flow, column, length etc.) 
than retention times. While Kovats retention indice [4] have linear 
collerations with column temuprature. And they were obtained by the 
logarithmic interpolation method.

QSRR on the Kovats retention indices have been reported for 
different types of organic compounds. The Kovats retention index is 
the most popular dependent variable in QSRR studies because of its 
reproducibility and accuracy. In many cases, the precision and accuracy 
of the QSRR models are not sufficient for identification purposes; still 
the models are useful to elucidate retention mechanisms, to optimize 
the separation of complex mixtures or to prepare experimental designs.

Topological descriptors computed on the basis of molecular graph 

are easy to be calculated with present computing facilities. Due to the 
simplicity and efficiency of graph-theoretical approaches, we take novel 
polarizability effect index (PEI), odd-even index (OEI), the sum eight 
values X1CH of every C-H bond adjacency matrix Sx1CH.

An interesting and increasing application of QSRR is to test various 
chemometric methods from multiple linear regression (MLR) methods 
to Artifical neural network (ANN) methods. Multiple linear regression 
(MLR) is without doubt the most frequently applied technique in 
building QSRR models.

Gene Expression Programming (GEP) is a new evolutionary 
algorithm that evolves from computer programs (they can take many 
forms: mathematical expressions, neural networks, decision trees, 
polynomial constructs, logical expressions, and so on). The computer 
programs of GEP, irrespective of their complexity, are all encoded 
in liner chromosomes. Then the liner chromosomes are expressed 
or translated into expression trees (the branched structures). Thus, 
in GEP, the genotype (the liner chromosomes) and the phenotype 
(the expression trees) are different entities (both structurally and 
functionally), and because of this apparently trivial fact, this new 
evolutionary system can finally make a difference, successfully assisting 
researchers in the design of robust and accurate computer models [5].

The aim of the present research is to develop a general model 
capable of predicting the gas chromatographic retention index of 
oxygen-containing organic compounds based on GEP, compared with 
the result predicted by traditional linear MLR and another powerful 
non-linear ANN method.
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For instance, for h=15 and t=16, the length of the gene is 10+11=21. 
One such gene is shown below (the tail is shown in bold):

0123456789012345678901234567890

 *b+a-aQab+//+b+babbabbbababbaaa                                            (2)

It codes for the following ET:
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+ 
 
 
 
 
 
 
 
 
 

 

 － 

a Q 

a 

b

a

A K-expression can be mapped into an expression tree (ET) 
following a first-order procedure. A branch of the ET stops growing 
when the last node in this branch is a terminal. For example, the ET 
shown above corresponds to chromosome (2). In this case, the open 
reading frames end at position 7, whereas the gene ends at position 30.

Chromosomes in GEP are usually composed of more than one 
gene of equal length. For each problem or run, the number of genes, as 
well as the length of the head, is chosen. Each gene codes for a sub-ET 
and the sub-ETs can be linked by pre-defined rules forming a more 
complex multi-subunit ET.

Selection method and genetic operators: References [3] suggests 
there is no difference between different selection methods. It is strongly 
advised to use a simple elitism in any GEP implementation. The elitism 
means copying the best (or few best) individual to the offspring 
population without modifying them. GEP uses the well-known 
roulette-wheel method for selecting individuals.

In GEP, individuals were selected according to fitness by roulette 
wheel sampling coupled with the cloning of the best individual. The fitter 
the individual is, the higher the probability of leaving more offspring. 
Thus, during replication the genomes of the selected individuals are 
copied as many times as the outcome of the roulette. The roulette is 
spun as many times as there are individuals in the population, always 
maintaining the same population size.

GEP uses simple elitism of the best individual of a generation, 
preserving it for the next one. Replication is an operation that aims to 
preserve several good individuals of the current generation for the next 
one. In fact, this is a do-nothing probabilistic operation that takes place 
during selection (using the roulette-wheel method), and replicated 
individuals will be subjected to the action of the genetic operators. The 
mutation operator aims to introduce random modifications into a given 
chromosome. A particularity of this operator is that some integrity 
rules must be obeyed so as to avoid syntactically invalid individuals. In 
the head of a gene, both terminals and functions are permitted (except 

Materials and Methods
Data set 

The Kovats retention index of 91 molecules (include esters, ketones, 
and alcohols) taken from reference [6] were presented in Table 1. 
Kovat’s retention index of all compounds was obtained under the same 
conditions on two stationary phases: OV-1 (dimethylpolysiloxane) 
and SE-54(5% phenyl -95% dimethylpolysiloxane) 74 molecules were 
used as training set for model generation and 17 molecules were used 
as test set for model prediction. The corresponding experimental and 
predicted values of the RI for all the molecules studied in this work are 
shown in Table 1.

GEP theory

Gene Expression Programming (GEP) was first proposed formally 
by Candida Ferreira in 2001. It was an elegant and efficient solution 
to expression-mutation problems. GEP, which is an extraordinarily 
powerful tool, is a subset of Genetic Algorithms, except it uses genomes 
whose strings of numbers represent symbols. GEP-an evolutionary 
algorithm inherits both the evolutionary simplicity of Genetic 
Algorithms (GA) and the expressional power in Genetic Programming 
(GP) by utilizing a genotype/phenotype representation system. The 
string of symbols can further represent equations, grammars, or logical 
mappings.

Ferreira [5] proposes the use of a set of genetic operators: 
Replication, Mutation, IS Transposition, RIS Transposition, Gene 
Transposition, 1-Point Recombination, 2-Point Recombination, Gene 
Recombination. As Ferreira comments, the advantages of a Genetic 
Representation like the one in GEP are simple entities: linear, compact, 
relatively small, easy to manipulate genetically. The genetic operators 
applied to them are less restricted than those used in GP [5].

Fortunately for us, in GEP, thanks to the simple rules that determine 
the structure of expression trees and their interactions, it is possible to 
infer immediately the phenotype given the sequence of a gene. It is easy 
for a computer program to follow these three rules while performing 
mutations, and it never has to check whether the resulting expression 
has valid syntax. By allowing a broad range of mutations, the process 
can efficiently explore a high dimensional space, and the expressions 
can change in size as functions are replaced by terminals and terminals 
by functions.

GEP are evolutionary tools inspired in the Darwinian principle 
of natural selection and survival of the fittest individual and uses 
populations of candidate solutions to a given problem in order to 
evolve new ones. These methods use an initial random population and 
apply genetic operators to this population until the algorithm finds 
an individual that satisfies some termination criteria. The evolving 
populations undergo selective pressure and their individuals are 
submitted to genetic operators.

Gene representation: GEP genes are composed of a head and a 
tail. The head contains symbols that represent both functions (elements 
from the function set F) and terminals (elements from the terminal set 
T), whereas the tail contains only terminals. Therefore, two different 
alphabets occur at different regions within a gene. For each problem, 
the length of the head h is chosen, whereas the length of the tail t is a 
function of h and the number of arguments of the function with the 
most arguments n, and is evaluated by the equation:

 t=h (n-1) + 1 (1)

Consider a gene composed of {Q, *, /, -, +, a, b}. In this case n=2. 
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No. Compounds RIov-1exp RIse-54exp RIov-1pre RIse-54pre RIov-1pre RIse-54pre RIov-1pre RIse-54pre

MLR ANN GEP
Training 

1 
2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74

Test set
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

3,3-Dimethyl-1-butanol
3-Methyl-3-hexanol 

2,2,4-Trimethyl-3-pentanol 
4-Methyl-1-pentanol 

2-Pentanone
Isopropyl acetate 

Propyl formate
Isobutyl formate

4-Ethyl-3-hexanol
Butyl formate

2,4-Dimethyl-2-pentanol 
2-Hexanone 
1-Heptanol 

Isobutyl propionate
2-Ethyl hexanal 

2,2,4,4-Tetramethyl-3-pentanone  
3,3-Dimethyl-2-butanone 

Butyl butyrate
2-Methyl-3-hexanone  

2,2-Dimethyl-1-propanol 
2-Methyl-2-heptanol 
Methyl propionate 
Methyl isobutyrate 

3,6-Dimethyl-3-heptanol 
3-Methyl-2-butanone
3-Methyl-1-butanol 

2,2-Dimethyl-3-pentanol 
2-Ethylbutyl acetate
Isobutyl isobutyrate 
Methyl hexanoate

6-Methyl-2-heptanol 
3-Heptanone 

2-Methyl pentanal 
3-Pentanone

Butyl isobutyrate
Ethyl hexanate 

2-Methyl-2-pentanol 
Pentyl acetate1

2-Ethyl-1-butanol 
Propyl butyrate 

2-Octanone 
2,4-Dimethyl-3-pentanone 

Ethyl isovalerate

Butyl acetate 
Methyl butyrate 

2-Methyl butanal
5-Methyl-3-heptanol 

2-Pentanol
4-Heptanol

3-Methyl-2-butanol 
3-Methyl-2-pentanone

4-Heptanone
2-Methyl-2-hexanol 
2-Methyl-2-butanol

Ethyl butyrate 
2-Ethyl-4-methyl-1-pentanol

3-Hexanone 
2,2,4-Trimethyl-1-pentanol

Isobutyl acetate 
1-Hexanol 

3-Ethyl-3-pentanol 
2,2-Dimethyl-pentanol 
4-Methyl-2-pentanol 
Methyl isovalerate 
5-Methyl-3-hexanol

2,2-Dimethyl-3-heptanone
2,3-Dimethyl-3-pentanol

2-Methyl-1-pentanol 
Isobutyl alcohol 

2,4-Dimethyl-3-heptanol 
1-Butanol

5-Methyl-2-hexanone 
5-Methyl-3-hexanone 

2-Heptanol 

Propyl acetate 
Ethyl propionate 
Butyl propionate

4-Methyl-2-pentanone 
2-Heptanone
3-Pentanol

3-Methyl-1-pentanol
4-Octanol 

Propyl propionate 
1-Pentanol 

Isobutyl butyrate
2-Methyl-3-pentanone 7

2,6-Dimethyl-4-heptanone 
2,3-Dimethyl-2-butanol 

3-Hexanol 
3,5-Dimethyl-3-hexanol 

3-Octanol   

778.77
826.62
881.49
821.19
666.34
646.54
605.79
673.40
953.25
707.64
775.91
767.93
955.05
852.83
934.65
900.00
693.05
979.36
819.95
657.34
916.43
615.21
670.97
986.60
640.92
719.03
805.63
956.99
900.00
907.01
951.10
865.79
742.38
676.41
938.55
982.90
717.57
896.36
825.94
881.53
968.77
779.01
838.35

796.18
705.61
636.32
943.58
682.66
875.42
666.02
734.76
853.35
817.33
626.20
784.04
972.00
764.84
930.00
757.65
852.96
843.09
867.57
744.14
761.30
838.15
964.66
823.66
818.35
611.31
821.18
646.48
836.53
816.74
885.57

693.34
694.19
891.40
721.24
868.70
684.21
828.82
975.50
792.58
750.40
940.26
733.02
954.66
715.26
780.36
883.13
981.97

763.63
841.11
894.00
836.97
687.79
661.78
623.60
689.84
967.63
725.53
789.03
790.03
971.73
869.02
954.71
914.09
711.58
997.07
838.42
670.46
930.38
630.43
686.58

1000.00
661.44
734.39
818.97
974.66
915.56
925.46
965.00
886.89
762.95
700.00
954.26

1000.00
731.39
914.88
841.00
898.88
991.27
795.28
854.28

814.16
722.96
657.70
957.88
700.00
890.00
680.26
754.92
873.44
831.38
640.33
784.04
972.00
764.84
930.00
757.65
852.96
843.09
867.57
744.14
761.30
838.15
964.66
823.66
818.35
626.00
821.18
646.48
836.53
816.74
885.57

713.63
711.16
909.12
741.61
891.01
700.00
845.00
990.22
809.79
766.59
956.57
752.40
970.95
729.44
795.07
896.48
996.71

776.89
814.26
847.18
809.72
671.52
660.33
618.75
699.24
944.88
711.12
783.98
769.55
932.05
855.00
936.68
873.03
698.23
974.40
830.93
643.91
915.41
590.22
671.39
991.41
648.96
719.66
792.82
976.12
938.84
895.42
956.36
853.08
782.17
663.17
937.89
982.29
717.23
884.62
818.16
874.68
966.20
789.16
854.48

785.22
690.13
623.15
950.68
687.43
860.20
665.02
752.44
849.97
820.98
632.83
779.76
988.87
757.80
929.19
757.87
871.65
814.63
852.42
756.88
775.82
843.71
981.29
803.38
802.63
722.87
809.41
644.18
847.63
832.51
879.65

683.42
684.77
875.79
742.54
866.39
676.76
831.83
956.58
764.89
736.52
935.85
730.85
987.70
714.70
776.55
881.05
962.43

788.80
836.41
861.53
823.22
690.74
679.07
632.11
712.76
962.88
725.78
803.39
788.32
945.08
872.73
953.13
882.66
715.29
991.25
849.58
656.76
933.85
608.00
690.34

1008.20
668.02
734.47
809.97
991.47
954.97
912.68
970.21
871.55
796.35
683.25
954.15
998.68
739.35
901.68
834.20
893.58
980.92
806.77
872.20

803.81
709.13
643.91
967.13
707.18
879.34
684.60
771.85
868.78
841.95
655.60
799.69
999.82
777.76
937.52
775.33
887.15
838.50
864.52
774.96
793.62
861.74
993.86
826.32
817.40
745.99
827.53
659.18
863.78
850.18
897.16

702.30
704.71
894.30
760.17
883.51
697.32
846.72
973.54
784.53
752.01
951.45
750.29
999.46
737.64
797.04
900.30
978.90

782.22
831.95
885.53
822.74
673.76
667.98
615.20
681.99
947.61
699.74
794.79
761.54
953.74
847.41
942.20
903.85
682.14
971.71
821.44
661.46
926.28
614.74
666.38
973.88
652.44
711.24
796.39
970.80
915.96
901.95
956.90
853.70
748.25
668.70
938.62
973.80
695.81
901.11
814.70
883.32
970.00
779.97
847.38

796.99
702.13
632.64
952.21
680.20
866.68
656.48
745.13
850.96
831.84
616.68
790.90
967.29
757.62
928.37
757.92
856.71
832.49
859.41
753.54
758.72
848.59
958.27
813.98
805.03
674.91
811.85
640.48
835.65
824.34
888.20

617.44
618.47
886.56
647.07
820.26
625.59
769.50
960.82
713.60
656.55
942.12
642.27
983.67
635.23
711.05
890.45
962.95

801.60
835.48
899.84
844.74
678.33
673.74
626.31
690.37
963.90
724.78
805.14
781.05
967.40
863.52
942.37
909.81
702.27
987.65
832.20
673.92
939.32
627.78
682.36
995.18
665.53
732.08
806.42
987.58
919.04
917.79

967.592
867.21
768.33
674.72
946.85
989.91
696.02
912.56
831.34
892.54
983.02
788.80
863.18

823.92
721.05
659.32
966.46
702.12
878.27
687.14
755.42
861.75
838.71
658.45
802.39
979.45
773.78
942.34
771.30
869.69
846.81
882.94
757.67
766.78
862.99
980.05
837.36
823.58
682.21
821.81
663.39
868.52
842.85
902.17

637.53
639.56
899.39
678.29
869.43
636.85
787.37
979.67
724.93
668.02
962.02
675.20
991.68
672.76
732.12
910.45
981.74

760.36
815.86
835.29
804.57
677.08
661.57
625.90
707.24
944.37
724.97
776.97
774.87
948.86
851.15
944.85
859.99
690.34
972.98
832.23
614.17
912.96
594.77
665.89
977.26
649.82
703.23
776.29
979.65
928.49
895.05
963.69
862.98
784.17
670.08
937.12
980.57
711.67
890.22
806.85
873.51
982.88
787.96
850.94

787.28
692.14
633.06
952.35
680.42
862.49
653.13
754.10
859.57
816.22
629.46
777.71
996.57
763.51
925.75
755.04
854.25
814.02
840.44
746.66
762.58
841.32
966.94
798.54
791.29
710.77
794.67
619.70
854.67
838.03
882.22

689.44
685.73
876.32
742.86
877.86
672.45
823.22
962.16
771.67
726.71
940.19
729.12
990.96
706.62
769.10
880.08
968.49

761.76
836.80
853.68
811.72
703.33
682.94
634.54
711.61
947.38
736.01
813.11
806.38
955.97
865.93
952.54
882.02
714.12
988.62
853.74
619.31
926.32
616.39
686.90
988.84
671.46
711.51
803.69
969.91
932.01
914.34
964.78
887.18
793.87
698.03
950.04
994.26
741.92
910.48
828.43
898.84
997.12
819.42
865.74

813.77
714.29
659.06
960.19
707.20
886.06
674.30
786.74
884.48
843.30
657.68
807.41
978.56
797.35
909.71
769.79
870.01
847.98
846.05
767.60
776.21
861.91
984.12
823.59
801.34
742.57
826.13
635.72
870.33
857.75
901.90

711.89
710.38
900.71
762.88
899.02
700.92
841.33
980.55
802.09
744.17
951.73
753.16
981.93
734.66
803.06
893.57
985.66

Table 1: Data set and corresponding experimental (exp.) and predicted (cal.) values of RI.
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for the first position, where only functions are allowed). However, in 
the tail of a gene only terminal is allowed.

Mutation, Inversion, Transposition and Recombination

Mutation: Mutations can occur anywhere in the chromosome. 
Simple mutation just replaces symbols in genes with replacement 
symbols. However, the structural organization of chromosomes 
must remain intact. Symbols in the heads of genes can be replaced by 
functions or terminals (variables and constants). Symbols in the tail 
sections can be replaced only by terminals. Randomly change symbols 
in a chromosome. Symbols in the tail of a gene may not operate on any 
arguments. Typically two-point mutation per chromosome is used. It 
is worth noticing that in GEP there are no constraints neither in the 
kind of mutation nor the number of mutations in a chromosome: in all 
cases the newly created individuals are syntactically correct programs.

Inversion: Inversion reverses the order of symbols in a section of a 
gene. A portion of a chromosome is chosen to be inserted in the head 
of a gene. The tail of the gene is unchanged. Thus symbols are removed 
from the end of the head to make room for the inserted string. Typically 
a probability of 0.1 of insertion is used.

Transposition: Transposition selects a group of symbols and 
moves the symbols to a different position within the same gene. Gene 
transposition moves entire genes around in the chromosome. One 
gene in a chromosome is randomly chosen to be the first gene. All other 
genes in the chromosome are shifted downwards in the chromosome 
to make place for the first gene.

An IS element is a variable-size sequence of elements extracted 
from a random starting point within the genome (even if the genome 
was composed of several chromosomes). Another position within the 
genome is chosen as the insertion point.

This target site must be within the head part of a gene and cannot 
be the first element (gene root). The IS element is sequentially inserted 
in the target site, shifting all elements from this point onwards and 
a sequence with the same number of elements is deleted from the 
end of the head, so that the structural organization is maintained. 
This operator simulates the transposition found in the evolution of 
biological genomes. RIS is similar to the IS transposition, except that 
the insertion sequence must have a function as the first element and the 
target point must be also the first element of a gene (root).

The transposable elements of GEP are fragments of the genome 
that can be activated and jump to another place in the chromosome: 
(1) Short fragments with a function or terminal in the first position that 
transpose to the head of genes, except to the root (insertion sequence 
elements or IS elements); (2) Short fragments with a function in the 
first position that transpose to the root of genes (root IS elements or 
RIS elements); (3) Entire genes that transpose to the beginning of 
chromosomes.

Recombination: During recombination, two chromosomes are 
randomly selected, and genetic material is exchanged between them to 
produce two new chromosomes.

The cross over operation this can be one point (the chromosomes 
are split in two and corresponding sections are swapped), two point 
(chromosomes are split in three and the middle portion is swapped) 
or gene (one entire gene is swapped between chromosomes) 
recombination. Typically the sum of the probabilities of recombination 
is 0.7.

In GEP there are three kinds of recombination: one-point, two-

point, and gene recombination. (1) One-point: During one-point 
recombination, the chromosomes crossover a randomly chosen 
point to form two daughter chromosomes; (2) Two-point: In two-
point recombination the chromosomes are paired and the two 
points of recombination are randomly chosen. The material between 
the recombination points is afterwards exchanged between the two 
chromosomes, forming two new daughter chromosomes; (3) Gene 
recombination: recombines entire genes. This operator randomly 
chooses genes in the same position in two parent chromosomes to form 
two new off springs. In gene recombination an entire gene is exchanged 
during crossover. The exchanged genes are randomly chosen and 
occupy the same position in the parent chromosomes. It is worth 
noting that this operator is unable to create new genes: the individuals 
created are different arrangements of existing genes.

Fitness function: A fitness function is the most important part of 
any EA application. Fitness function given with above equations allows 
for fulfilling all of the set conditions. In GEP, fitness is based on how 
well an individual model the data. If the target variable has continuous 
values, the fitness can be based on the difference between predicted 
values and actual values. Evolution stops when the fitness of the best 
individual in the population reaches some limit that is specified for the 
analysis or when a specified number of generations have been created 
or a maximum execution time limit is reached. 

All of the fitness functions produce fitness scores in the range 0.0 
to 1.0 with 1.0 being ideal fitness – that is, the individual exactly fits the 
data. If a function is unviable – for example, it takes the square root of a 
negative number or divides by zero – then its fitness score is 0.0.

GEP evolution process: The GEP evolution begins with the 
random generation of linear fixed-length chromosomes for individuals 
of the initial population. The chromosomes are translated into ETs and 
subsequently into mathematical expressions, and the fitness of each 
individual is evaluated based on a pre-defined fitness function. The 
individuals are then selected by fitness to reproduce with modification. 
The individuals of this new generation are, in their run, subject to 
the same developmental process. The selection and reproduction 
is accomplished by roulette-wheel sampling with elitism, which 
guarantees the survival and cloning of the best individual to the next 
generation. Variation in the population is introduced by applying 
one or more genetic operators to selected chromosomes, including 
crossover, mutation and insertion.

Models

GEP model: The GEP program was coded by the combination of 
MATLAB and VC++. The MATLAB software has the advantage of 
computing matrix conveniently and programming efficiently, but its 
operating efficiency is relatively low. So VC++ was combined for its 
powerful function and the characteristics of higher operating efficiency 
with MATLAB. In this paper, MATLAB engine was used to achieve the 
combination with VC++ programming. There are two steps: (1) Add 
MATLAB engine library header files and library functions of the path. 
(2) Add libmx.lib libeng.lib libmex.lib to complete the import of the 
corresponding MATLAB engine static link library.

From the data in Table 1, GEP method was used that 6 topological 
index as input, output for its retention index. During the run, parameter 
values were needed to adjust constantly in order to achieve the optimal 
results. The set of optimal parameter values were listed in Table 2 and 
the predicting results of test set on OV-1 and SE-54 were listed in 
Figures 1 and 2. It can be seen from the figures that the predictive values 
of gas chromatography retention index of oxygen-organic compounds 
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applications of ANN have been adequately described elsewhere [7-
10]. Extensive use of ANN, which has inherent ability to incorporate 
nonlinear and cross-product terms into the model and does not require 
prior knowledge of the mathematical function as well, largely rests 
on its flexibility and less sensitivity to collinearity among variables. 
The theory behind ANN and their use in chromatography have been 
reported elsewhere [11-13].

Multi-layer feed forward networks, with good self-learing ability 
and adaptability is widely used in the field of QSRR modeling [14]. 
Commonly, they consist of three layers: one input layer formed by 
a number of neurons that equal to the number of descriptors, one 
out neuron (providing the model response) and a number of hidden 
neurons fully connected to both input and out neurons. Among the 
available learning algorithms, back-propagation of errors is one of the 
most widely used [8,15].

Usually, there are four steps involved in ANN modeling: (1) 
assembling the training data of input (independent variables) and 
output (dependent variables), (2) deciding the network architecture, 
(3) training the network, and (4) simulating the network response to 
new inputs. The training process is simply an optimization process 
which aims at finding the set of weight and biases associated with each 
layer that will minimize the error objective function related to the 
deviations of the network predictions from the true response output 
data of the training set.

Before data set was used for the training of ANN, it was normalized 
separately. Its minimum value was set to zero and maximum to one. 
The proper number of nodes in the hidden layer was determined by 
training the network with different number of nodes in the hidden 
layer. The root-mean-square error (RMSE) value measures how good 
the outputs are in comparison with the target values. In this paper, 
following a troubleshooting study to investigate the effects of the 
number of hidden layers and the number of neurons involved in these 
hidden layers, a 2-3-1 network, with tansig-logsig transfer functions, 
was found to be the most optimum in terms of the root mean squared 
errors (RMSE) obtained.

ANN with basic back-propagation of errors learning algorithm 
was used in this study to predict oxygen-containing retention index. A 
three-layer network with a sigmoid transfer function was designed for 
ANN. The ANN program was coded in MATLAB 7 for windows [15].

The MLR: For regression analysis, data set was randomly divided 
into two groups: training and test sets. The training set, composed of 74 
molecules, was used for the model generation. The test set, composed of 
17 molecules, was used to evaluate the generated model. The program 
used for MLR analysis was compiled in Statistical Product and Service 
Solutions (SPSS version 19.0 IBM) software. In MLR analysis, in order 
to minimize the information overlap in descriptors and to reduce the 
number of descriptors required in regression equation, the concept of 
non-redundant descriptors was used in this study. The best equation 
was selected on the basis of the highest multiple correlation coefficients 
(R) and the lowest root mean squared error (RMS). The linear equation 
between these descriptors and the retention parameters of fluid 
catalytic cracking (FCC) gasoline was:

 pp xbxbxbby ++++= ....22110                                  (1)

Where b0 is the intercept and bj is the regression coefficient for 
descriptor j. The statistical results obtained by using the two molecular 
descriptors based on MLR are listed in Table 3 and plotted against the 
experimental values in Figures 3 and 4.

were in good agreement with the experimental data.

ANN model: Non-linear statistical treatment of QSRR data is 
expected to provide models with better predictive quality as compared 
with related MLR models. In this perspective, functioning and 

Parameters Values 
Generation 2000

Population Size 100
Function Set “+” “-“ “*” “/” “sin” “cos” “sqrt” “exp” “ln” 
Head Size 8

Number Of Genes 3
Linking Function +
Mutation Rate 0.044

1-Point recombination rate 0.3
Gene recombination 0.3

Gene 0.1
IS transposition rate 0.1

RIS transposition rate 0.1
Gene transposition rate 0.1

Selection range 100

Table 2: Parameters of GEP models.

Figure 1: Plot of the predicted RI against the experimental values on OV-1 
column for test set based on GEP.

Figure 2: Plot of the predicted RI against the experimental values on SE-54 
column for test set based on GEP. 
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It is common to consider four statistical parameters for regression 
equation. These parameters are the number of descriptors, correlation 
coefficient (R) for training and test sets, root mean squared error (RMS) 
for training and test sets, and F statistic. A reliable MLR model is one 
that has high R and F values, low RMS and least number of descriptors. 
In addition to these, the model should have a high predictive ability. 
Consequently, among different models, the best model was chosen, 
whose specifications are presented in Table 3. Here the corresponding 
descriptors used in MLR were applied as inputs for ANN in order to 
compare the performance of the two models.

Results 
The main aim of the present work was developing a QSRR model to 

predict the retention parameter (RI) of oxygen-containing compounds 
appeared in Table 1. A linear model of MLR was developed, whose 
specifications are given in Table 3. All statistic tests were performed at 
a significance level of 5%. MLR model performance was measured by 
three metrics: (1) R, which gives the fraction explained variance for the 
analyzed set, was used to measure the model’s fit performance. (2) Root 
Mean Squared error (RMS), which can give the bias in the prediction, 
was used to evaluate the model’s predictive precision: the lower the 
RMS, the better the prediction precision. It can be calculated as below: 

 ( )

n

od
RMS

n

i
ii∑

=

−
= 1

2
                                                                    (3)

where di is the target value, oi is the experimental value and n is 
the number of compounds in analyzed set. (3) The variance ratio of 
calculated and observed activities F.

After the linear model was gained, non-linear characteristics of 
the retention parameter were also performed using ANN. Here a feed-
forward neural network with basic error back-propagation algorithm 
was constructed to model the nonlinear QSRR models. Therefore, a 
2-3-1 BP-ANN, with tansig-logsig transfer functions, was developed. 
Figure 5 demonstrates the plot of the ANN predicted versus the 
experimental values of the RI for the data set. A correlation coefficient 
of this plot indicates the reliability of the model. As can been seen 
in Table 4, the correlation coefficient R on OV-1 and SE-54 for the 
ANN models are larger than that of MLR models respectively, which 
indicates that the ANN models are slightly improved to MLR models. 
The residuals of calculated values of RI by ANN are plotted against the 
experimental values in Figure 6. The propagation of the residuals on 
both sides of zero line indicates that no symmetric error exists in the 
development of ANN model.

Figure 3: Plot of the predicted RI against the experimental values on OV-1 
column for test set based on MLR.

Figure 4: Plot of the predicted RI against the experimental values on SE-54 
column for test set based on MLR.

Figure 5: Plot of the predicted RI against the experimental values on OV-1 
column for test set based on ANN.                    

Descriptors OV-1 
coefficient

Std. 
Error

SE-54 
coefficient

Std. 
Error

OV-1 
test 

values

SE-54 
test 

value

Constant 1951.898 450.621 2028.14 345.24 4.332 5.875

OEI 48.089 4.351 50.562 3.333 11.053 15.169

SX1CH -43.038 151.408 3.36 116 -0.284 0.029

N2/3 3.331 51.507 26.672 39.462 0.065 0.676

χeq × PEI -459.326 162.605 -504.236 124.579 -2.825 -4.048

χeq -173.948 12.183 -159.685 9.334 -14.278 -17.108

MPEIm × 
IMPEIm 5.589 1.039 5.694 0.796 5.382 7.156

Table 3: Model parameters value and coefficients for MLR model.
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