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Abstract

Despite the increase of the atmospheric CO2, cork oak (Quercus suber L.) forests don’t stop degenerating.
Deficits in water balance and in nutritional elements might be the main raisons. Standing as a potential regulator of
the ecosystem nutrient dynamics, leguminous plants (Fabaceae, Leguminosae) are a good test case for individual
species effects on Tunisian forests. They are the most diverse and widespread group of plants with the capacity of
N2 fixation, and are particularly abundant in Kroumiri forests. The use of natural legume species in Kroumirie, as soil
fertility and grassland productivity enhancer, could be very interesting in the assessment of a new national land
exploitation strategy aiming to increase carbon sequestration and climate change mitigation. Understanding the
impact of these legume species on cork oak, using air nitrogen-fixation technique computation, would be crucial for
future land management and policy decisions. A morphological and eco-physiological study of the Cytisus triflorus
plant associated with Cork oak was carried out in Tabbouba, at Nefza region. Three sites were selected: CM1
(Cytisus triflorus alone), CM2 (Cork oak associated with Cytisus triflorus) and CM3 (Cork oak only). Morphological
(height, diameter, density), physiological (stomatal conductance, water potential, transpiration, photosynthesis) and
hydric parameters were measured for the two species. The morphological study results showed no significant
difference sites for each species except for density parameter. On the other hand, physiological parameters
measured for oaks trees clearly manifested significant differences in photosynthesis, transpiration and hydric
conductance between CM2 and CM3 sites. The cork oak in association with the Cytisus are in better growth and
productivity conditions than when they are alone.
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Introduction
The atmospheric CO2 continue to increase by 2100 between

730-1200 μmol mol-1 [1,2]. As a result and under adequate nutrients
and water supplies, plant growth and biomass accumulation through
CO2 direct stimulation of photosynthesis are considerably enhanced
[3-6]. The average enhancement of trees’ photosynthesis due to higher
CO2 has been about 60% [7]. However, the responses vary
considerably from one species to another [8]. This variation is tightly
related to the position of the specie in the crown [9], nitrogen fertility
level, season and co-occurring pollutant concentrations [10]. Nitrogen
level decreases in the foliage of trees growing under elevated
atmospheric CO2 [11-13]. It is also decreased in the litter [14].
Unlikely, the quantity of litter increases 20-30% under elevated
atmospheric CO2 [15]. Whether or not nutrient mineralization rates
will change because of soils high levels of CO2 has been an unanswered
question [16]. It is also uncertain whether decomposition rates will be
significantly affected by elevated CO2, although the bulk of literature in
this area suggests that the decrease in leaf litter N, coupled with an
increase in lignin concentration, results in a slower decomposition rate
[14].

The cork oak is the native hardwood forest species and is the most
abundant in the Tunisian territory. It grows in the northwestern
provinces starting from the Mediterranean coast and extending

southwards over the Kroumirie Mountains to the Mejerda Plain
located about 50 km inland [17]. Climate scenarios for the 21st century
show a tendency to decrease in summer rainfall and higher
temperatures (IPCC 2001) suggesting that the forest could be affected
in terms of productivity and mortality. The current climate changes
aggravate the decline of Cork oak species. This situation has become
worse because of the lack of natural regeneration and the technical
operations such as protection and renewal.

Despite the increase of CO2 atmospheric, cork oak forests keep
degenerating and deficits in water balance and in nutritional elements
are certainly behind this tendency. Elevated atmospheric CO2 can
substantially alter plant chemistry and leaf surface properties. Thus, it
can alter host/pest interactions. For instance, levels of foliar N decline
for trees growing under increased atmospheric CO2 [18-20].
Leguminous plants, which are abundant in Kroumirie, could be a
critical regulator of soil nutrient dynamics because of their high foliar
nitrogen (N) and potential for symbiotic N fixation.

Legumes (Fabaceae, Leguminosae) are a good test case for
individual species effects on Tunisian forest as they are potential
regulators of ecosystem nutrient dynamics [5,21,22]. Legumes are the
most diverse and widespread group of plants with the capacity of N2
fixation [23,24] and are particularly abundant in Kroumirie forests
[25-27]. Despite a general understanding of legumes as drivers of N
dynamics, the impact magnitude of this plant group on our forest soils
is poorly quantified. Studying the effects legumes have on soils and on

Journal 
of

 F
un

da
m

en
tal

s o
f Renewable Energy and Applications

ISSN: 2090-4541

Journal of Fundamentals of
Renewable Energy and Applications

Amel et al., J Fundam Renewable Energy Appl
2018, 8:4

DOI: 10.4172/2090-4541.1000263

Research Article Open Access

J Fundam Renewable Energy Appl, an open access journal
ISSN: 2090-4541

Volume 8 • Issue 4 • 1000263

mailto:aennajah@yahoo.fr


trees is crucial for understanding how community composition and
functional group assemblages influence N dynamics.

Likewise, the natural legume species in Kroumirie are also highly
altered; the soils are severely compacted and generally depleted in
organic matter, nutrients and microbial life. A vast research program of
introduction and selection of herbaceous and woody legume species
has been developed in order to select the appropriate species to be used
to rehabilitate the degraded cork oak forests. Part of this research is
based on the speculation that selecting and increasing the appropriate
legume species associated with the cork oak ecosystem should be
crucial to increase soil fertility and primary productivity. This work
aims to demonstrate the effect of legume species on Cork oak in terms
of: water balance, gas-exchange and growth.

Materials and Methods

Associated legume
This study was focused in associating Cytisus triflorus with cork

oak. Cytisus is one of the most characteristic genera of the
Mediterranean flora. This species, native of lands surrounding the
Mediterranean Sea, are present in scrubland and garigue on siliceous
ground and often on acid soil. This legume is very peculiar. Actually, it

has shown a potential strength to resist summer drought and frequent
disturbance events, such as fire and grazing. Furthermore, it can form
both ectomycorrhizal and arbuscular mycorrhiza [28].

Study area
Three different populations: CM1 (Cytisus triflorus alone), CM2

(cork oak associated with Cytisus triflorus), and CM3 (cork oak only)
located in Tabouba (region of Nefza) were selected (Table 1).

They belong to the same bioclimatic stage of the Mediterranean wet
floor with warm winter variant (sub-floor below) [29]. The sites chosen
are circular and have a surface area of 500 m² (12.6 m radius). The
circular form makes it possible to cut down the number of limit trees.
Also, circular plots on the ground are easy and quick to materialize.

Parameters measured
Morphological parameters: The sampling was carried out for all the

individuals of sites. These parameters correspond to the density
(number of individuals per unit area), total height of each species and
diameter growth at breast height (dbh) for Cork oaks and at the base
for Cytisus.

Forest Sector Soil type Bioclimatic floor Indicatif Altitude (m)

Geographic coordinates

Width Length

Tabouba Nefza Flysch sandstone
Wet floor with warm winter
variant

CM1 288 N36°54.261° E009°06.175°

CM2 280 N36°53.725 E009°03.927°

CM3 280 N36°53.725° E009°03.927°

Table 1: Main characteristics of sites studied.

Functional and hydric parameters: Measurements were made on 9
individuals per station except CM3 since it had only 4 cork oak
individuals. For each individual, two samples of branches were taken.
In the laboratory, branches were kept under ventilations and three
water stress levels were applied. The first level corresponded to the
initial state measured after sampling. The second one corresponded to
a moderate water stress level of Ψb=-1.50 ± 0.50 MPa. The third and
last one corresponded to several water stress levels of Ψb=-4.5 ± 1.50
MPa applied and measured after two to three days. For each stress
level, leaf water potential was measured each time for three sheets
belonging to the same sample using Scholander's chamber [30].
Functional parameters were measured too.

Gas exchanges were measured using a Li-Cor Li-6400XT Portable
Photosynthesis System (Li-Cor, Lincoln, NE, USA) based on the IRGA
principle (Infra RedGas Analysis). The leaf stomatal conductance (g, in
mol H2O m-2s-1), net carbon assimilation (A, in μmol CO2 m-2 s-1),
and transpiration (T, in mmol H2O m-2s-1), were measured on the
expended leaves of cork oak.. More than eight branches were taken
from each site. Under appropriate conditions, they were cut and
transported to the laboratory. The bases were kept merged in water in
tubes. The experiments were led at a leaf temperature of 25°C and
humidity of 50-60%. Leaves were placed under the clamp of the
chamber assimilation (6 cm²) and acclimatized for 35 minutes. A
program was then developed to vary the CO2 concentration. For each

concentration applied, the stomatal conductance and the transpiration
were measured.

Measurements of conductance were realized using HPFM methods
(high pressure flow meter) using a Sperry conductimeter. The
technique consisted in infusing degassed water at a positive pressure+P
into the freshly cut branch and then measuring the flow at the entrance
of this sample. The measured flow values (Ki and Kmax, mmol s-1) were
automatically recorded in a computer connected to the machine. For
each sample, Ki and Kmax were measured and the PLC was calculated:
PLC=100*(1-Ki /Kmax).

Statistical analysis
Mesurements were the object of a variance analyse to two factors

(population and water stress). Significance levels were established at
P<0.05. It was completed by a multiple comparison by Newman Keuls
test (at 5%) according Dagnelie (1986).

Results and Discussion
The results showed 140 plants /500 m2 of Cytisus triflorus in CM1

and 30 plants/ 500 m2 in CM3; 17 cork oak trees in CM1 and only 7 in
CM3. Morphological parameters of all individuals located inside
stations showed no significant differences between individuals of each
species (Figure 1).
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These results suggest that the Cytisus is beneficial for the oak
growth. In fact, the root system of the oak is pivotal while that of
Cytisus is superficial. Indeed, the two species are not in competition for
water or nutriments. A deep and dense root development allows the
tree to permanently balance water losses due to transpiration [31].

Figure 1: Mean (±SE) stand-level estimates of diameters at breast
height (dbh) and height of cork oak and Cytisus triflorus in sites.

Measurements of leaf water potential show significant differences
between sites and species (Cork oak and Cytisus triflorus) under severe
water stress conditions (Figure 2).

For both species, the first level taken measurements varied between
-5.31 and -8.28 bar. The second ones, under moderate stress
conditions, varied from -15.9 to -19.61 bar. However, the last and third
taken measurements revealed that the legume reached a maximum of

-32.30 bar (± 0.57) at CM2 whereas the oak were able to withstand up
to - 53 bar (± 4.67) at CM3.

Concerning the eco-physiological parameters, results show
significant differences in photosynthesis and transpiration between
sites under different stress level conditions (Figure 3).

The cork oak behaves better in the presence of legume. With Cytisus
triflorus, the photosynthesis and transpiration values of oaks in CM2
were higher than those found alone in CM3 for the three levels of
potential. More the leaf water potential decreases, more the
photosynthesis and the perspiration decreases. Under stress
conditions, the reduction in photosynthetic activity occurs due to CO2
availability decline caused by the restriction of CO2 diffusion [32] and
inhibition of ribulose-1,5-bisphosphate (RuBP) synthesis [33,34]. Even
a small decrease in the water potential of a plant causes its stomata to
close and, eventually, the intensity of photosynthetic assimilation of
CO2 to decrease. This decrease is less with legume (Figure 3).

Cytisus triflorus is a legume that presents intermediate
characteristics between Sclerophyllous spp. It is considered as stress-
tolerating, and summer deciduous species [35]. In fact, this species
supplies the oak with required nitrogen to enhance its tolerance to
water stress. Nitrogen treatment affects gas exchange and the
photosynthetic capacity of the cork oak plants. Nitrogen fertilizer
treatments could promote photosynthetic performance of Quercus
suber by stimulating morphological and physiological responses [36]

Foliar and soil nitrogen content of cork in CM2 is higher than CM3.
Legumes such as Cytisus are able to help cork oak reduce its
vulnerability to stress and then fix foliar nitrogen. The association is
beneficial to the soil fertility and therefore to the cork oak growth [37].

Figure 2: Leaf water potential ψb of Cytisus triflorus and cork oak under different stress levels.

Differences in xylem vulnerability were observed through the
vulnerability curves for cork oak trees in the two sites. The water
potential that induces 50 PLC (ψ50) is a useful measurement of relative
vulnerability of cork oak with and without legume. ψ50 can range
between -11 bar in CM3 and -26 bars in CM2 (Figure 4).

These results show that oaks in CM3 are more vulnerable than those
in CM2 where they are associated with Cytisus. Vulnerability to
cavitation and stomatal physiology may co-evolve in cork oaks [38].
This is confirmed in CM3 where the cork oaks have the lowest
photosynthesis and transpiration values at lowest density. They also
have the highest leaf mass per area (LMA) values and the lowest foliar
and soil nitrogen contents [37].

The association between species makes it possible to better valorize
the environmental resources and exploit the complementarities
between functional groups (species that can facilitate access to a
resource by another species). Legumes produce almost all of the
mineral nitrogen available for the associated plants. Though, the
functioning of the association results in the facilitation and
competition effects between species [39,40].

Nitrogen supplied by legumes is an essential plant macronutrient
that influences plant growth, consequently biomass production and
ontogenetic development, thus having a huge impact on plant
performance, plant physiology and resource allocation constraints
[41-43]. Nitrogen deficiency induces changes in many morphological
and physiological parameters such as limitation of growth, leaf number
and leaf area [44,45]. In various species, a significant decrease in CO2
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assimilation and stomatal conductance has been reported [46,47].
Symbiotic nitrogen fixation by Cytisus triflorus is a major source of
nitrogen in CM2 site. All these results suggest that the maintenance of
cork oak species is improved by the association with legumes. Nitrogen
(N) is an essential element for all living organisms as it is a component
of vital molecules like proteins and nucleic acids [48,49]. N limits the
productivity of terrestrial ecosystems in large areas in the world
[50,51].

Figure 3: Net photosynthesis (A, μmol m-2s-1), Transpiration rate
(E, mol m-2s-1) and Stomatal conductance (gs, mol m-2s-1 of cork
oak under different water stress levels in sites. Mean values ±
standard errors. Vertical line indicates statistical difference, while ns
stands for not significant according to LSD (p ≤ 0.05).

Figure 4: Vulnerability curves for Cork oak trees in the two sites.

Nitrogen is not present in most soil parent materials, but N2 is the
major component of the atmosphere. Though, only a relatively small
number of species like Cytisus triflorus have the ability to use
atmospheric N2 for their own metabolism [52,53]. Associating cork
oaks forest with legumes species will strongly affect the forest
productivity and soil N content.

Conclusion
This work shows that cork oaks associated with leguminous species

exhibit a better eco-physiological behavior. Cork oak is one of the main
species of Mediterranean ecosystem woodland and has high
socioeconomic and environmental values. These last years, cork oak
mortality rates increased. Also, a lack of natural regeneration has been
perceived. For a future management of cork oak forests, we believe that
fertilized trees with associated fixing N2 species will better resist to
climate changes. Hence, Cytisus triflorus can help the cork oak reduce
its vulnerability to stress. Though, additional studies should be carried
out on proline, sugar analysis and composite organic volatile. The
results elaborated in this work were very promising and could be
further improved.
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