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Introduction 
Glaucoma is a neurodegenerative disease that is defined by the 

progressive loss of retinal ganglion cells (RGCs) and their axons, which 
comprise the optic nerve [1,2]. It is currently the second leading cause 
of irreversible blindness in the world and it is projected that over 56 
million people will develop the disease by 2020 [3]. Two major risk 
factors associated with glaucoma are age and increased sensitivity to 
intraocular pressure (IOP), with the latter being the only modifiable 
risk factor [4].

Previous research indicates that inflammatory responses in the 
retina, including glial cell activation and production of inflammatory 
cytokines [5-18], play a role in glaucomatous degeneration of 
RGCs. These inflammatory responses can be either detrimental or 
neuroprotective for RGCs challenged by glaucomatous stressors. 
We and others have shown that the pro-inflammatory cytokine 
interleukin-6 (IL-6) is produced by retinal microglia in response to 
elevated IOP and may serve to protect RGCs from pressure-induced 
apoptosis [12,15,16]. Furthermore, IL-6 signaling varies spatially 
across the glaucomatous retina, suggesting a high degree of cellular 
regulation [19].

IL-6 is part of a group of cytokines known as the IL-6 family of 
cytokines and they are involved in the regulation of downstream 

transcription of pro- and anti- apoptotic factors. The IL-6 family of 
cytokines includes: IL-6, interleukin-11 (IL-11), ciliary neurotrophic 
factor (CNTF), leukemia inhibitory factor (LIF), oncostatin M (OSM), 
cardiotrophin-1 (CTF-1), cardiotropin-2 (CTF-2) and cardiotrophin-
like cytokine factor-1 (CLCF1). To mediate gene transcription, IL-6 
family members bind to their own specific receptor (e.g. IL-6 binds 
to IL-6Rα). This ligand/receptor complex then recruits glycoprotein 
130 (gp130), a signal transduction receptor that is utilized by all IL-6 
family members [20-22]. Once the entire signal complex is formed, 
gp130 is activated and initiates a variety of signal cascades that mediate 
transcription of pro- and anti- inflammatory factors [23-25]. Previously, 
our group has shown that glaucomatous neurodegeneration alters 
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glial reactivity in glaucoma. The purpose of this study was to evaluate glaucoma-related changes in glycoprotein-130 
(gp130), the common signal transducer of the IL-6 family of cytokines, as they relate to RGC health, glial reactivity and 
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astrocytes, Müller cells and RGCs. Layer-specific analysis of gp130 expression revealed increased expression in aging 
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the expression and localization patterns of IL-6 and IL-6Rα in whole 
retina as well as in the ganglion cell and nerve fiber layers, specifically. 
However, little is known how glaucomatous insults affect the dynamics 
of gp130 expression and co-localization and how these changes related 
to RGC health, glial reactivity and expression of the IL-6 family of 
cytokines. In the current study, we assessed expression and localization 
gp130 and correlated changes in expression/localization with RGC 
function, glial reactivity and expression of IL-6 family members in 
response to glaucomatous neurodegeneration, as well as in the presence 
of two glaucoma-related stressors: aging and genetic predisposition for 
glaucoma. We found that normal aging increased whole retina gp130 
gene expression in response to glaucomatous stressors. However, only 
normal aging induced detectable increases in whole retina levels of 
gp130 protein. In healthy retina, gp130 localized primarily to the inner 
retina, where it was expressed by astrocytes, Müller cells and RGCs 
and was expressed in an eccentricity-dependent manner. Increased 
gp130 expression in the ganglion cell and nerve fiber layers was at least 
partially responsible for changes in whole retina expression. Analysis 
of gp130 in whole-mounted retina demonstrated that changes in 
gp130 expression induced by glaucomatous stressors are accompanied 
by changes in GFAP and glutamine synthetase expression as well as 
uptake and axonal transport capacity of RGCs. Finally, stressor-
dependent changes in gp130 were likewise, accompanied by overall 
elevated expression of IL-6 family cytokines that was also stressor-
dependent in nature.

Materials and Methods
Animal and IOP data 

This study was conducted in accordance to regulations set forth 
in the ARVO Statement for the Use of Animals in Ophthalmic and 
Vision Research. The Institutional Animal Care and Use Committee 
of Vanderbilt University Medical Center approved animal protocols. 
Male DBA2/J and C57BL/6 mice were obtained at 2 months and 6 
months of age from Charles River Laboratories (Wilmington, MA). 
In DBA/2J mice, IOP was measured monthly (5-10 measurements per 
eye) using a tonometer (ICare Tonolab; Franconia, NH or Tono-Pen; 
Reichert, Depew, NY). Mice were sacrificed for experiments at either 4 
months or 8 months of age.

Tissue harvest and preparation 

For analysis using paraffin-embedded and whole mount retinas, 
C57BL/6 and DBA/2J mice were perfused with 4% paraformaldehyde 
(PFA; Electron Microscopy Sciences, Hatfield, PA). Whole eyes were 
enucleated and post-fixed for at least an hour in 4% PFA and then 
stored at 4 degrees celsius in 1X PBS and 0.02% sodium azide (Sigma 
Aldrich, St. Louis, MO) until use. 48 hours before sacrifice, mice 
designated for whole mount retina analysis were given a 2ul intravitreal 
injection of CTB conjugated to Alexa Fluor-594 (Life Technologies, 
Grand Island, NY) in each eye. For whole mount analysis, the retina 
was dissected from the eye cup, stained with toluene blue for vitreous 
removal and left in 1x PBS with 0.02% sodium azide until use. For 
paraffin retina sections, eyes were subjecting to paraffin embedding as 
previously described [26] and 6 μm serial sections of the entire eye were 
obtained. To obtain fresh retinal tissue, mice were sacrificed by cervical 
dislocation and whole eyes were enucleated and flash frozen on dry ice. 
Samples were stored at -80oC until protein or RNA isolation.

gp130 protein quantification using Luminex MAP technology 

To quantify total gp130 protein concentration in young and aged 
DBA/2J and their C57 controls, n=5 within each experimental group 

were pooled and n=8 pools were analyzed per group. Transmembrane 
and cytosolic protein fractions were isolated using ProteoExtract 
Transmembrane Protein Extraction Kit (Cat. # 71772-3, EMD Millipore, 
Billerica, MD). Protein fractions were submitted to the Vanderbilt 
University Medical Center Core Laboratory for Cardiovascular and 
Clinical Research to determine gp130 protein concentration using 
the MilliPlex MAP cytokine/chemokine immunoassay kit (Cat # 
MSCRMAG-42K, EMD Millipore632), per manufacturer’s instruction.

Quantitative Real-time polymerase chain reaction 

Total RNA was isolated from young C57 (n=4), young DBA/2 
(n=3), aged C57 (n=3) and aged DBA/2 (n=3), retinas using Trizol 
(Life Technologies), as previously described [16]. Total RNA was 
submitted to the Vanderbilt University Medical Center Genome 
Sciences Resource Microarray Core where QC/QA (quality control/
quantity assessment) analysis was performed in order to ensure RNA 
integrity. Briefly, 1-2μl of RNA was used to measure concentration 
by spectrophotometry (NanoDrop 2000, Wilmington, DE) and its 
integrity was determined using an Agilent Bioanalyzer 2100 (Agilent 
Technologies, Inc., Santa Clara, CA). To pass the QC/QA analysis 
and be used for quantitative real-time PCR (qPCR), samples required 
28S:18S ratios >0.9 and RNA integrity values >7. After quality 
assurance, reverse transcription of 10ng of RNA was done to generate 
cDNA using SuperScript II Reverse Transcriptase (Life Technologies) 
and Stratagene 100 mM dNTP Mix (Agilent). To assure cDNA quality, 
a cDNA clean-up was completed after synthesis using Agencourt 
Ampure XP PCR Purification kit, according to manufacturer’s 
instructions (Beckman Coulter, Indianapolis, IN). Probe efficiency and 
levels of specific mRNA transcripts were assessed using Taqman Gene 
Expression Master Mix (Applied Biosystems, Forest City, CA) and 1 
μM of TaqMan probes specific for: gp130 (Catalog# Mm00439665_
m1); IL-11 (Mm00434162_m1); CNTF (Catalog# Mm00446373_m1); 
LIF (Catalog# Mm00434762_g1); OSM (Catalog# Mm01193966_m1); 
Clcf1 (Catalog# Mm01236492_m1); Ctf1 (Catalog# Mm00432772_m1), 
Ctf2 (Catalog# Mm01701681_m1) and glyceraldehyde 3-phosphate 
dehydrogenase (Gapdh; Catalog# Mm99999915_g1) on a 7900HT Fast 
Real-time PCR System in triplicate (Applied Biosystems). As indicated 
by probe efficiencies, the ΔCt method was used to determine expression 
in each group (SDS software; Applied Biosystems). To calculate ΔCt, 
the threshold of cycle (Ct) values for each gene (gp130, IL-11, CNTF, 
LIF, CLCF1, OSM, Ctf1 & Ctf2) were substracted by the Ct values for 
the control gene GAPDH in each sample. Changes in gene expression, 
as compared to 4-month C57 retina, were calculated using the ΔΔCt 
method.

Immunohistochemistry 

Paraffin whole eye sections: To evaluate the expression of gp130 
against cell type markers glial fibrillary acidic protein (GFAP; astrocytes) 
and glutamine synthetase (GS; Müller glia), immunohistochemistry 
(IHC) was done on longitudinal paraffin-embedded retina sections 
from 4 month DBA2/J (n=6), 8 month DBA2/J (n=6) and their age 
matched controls (C57B6/J) (n=6 each). Sections were deparaffinized 
at 60°C for 1 hour followed by xylene and rehydrating ethanol series. 
To quench autofluorescence, sections were treated with 0.1% sodium 
borohydride (Fisher Scientific) for 30 minutes at room temperature. 
Following PBS washes, sections were incubated in a solution 
containing 5% normal horse serum (NHS; Life Technologies) and 0.1% 
Triton X-100 (Fisher Scientific) in PBS with 0.02% sodium azide for 
2 hours at room temperature. Sections were incubated overnight at 
4°C in a solution containing primary antibody(s), 3% NHS, and 0.1% 
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Triton X-100 in 1X PBS with 0.02% sodium azide. Primary antibodies 
used include rat anti-gp130 (1:12.5; Cat.# MAB4681,R&D Systems) 
rabbit anti-GFAP (1:1000; Cat.# Z-0334, DAKO), goat anti-Glutamine 
Synthetase (1:250; Cat.# sc-6640, Santa Cruz) and rabbit anti-β-
Tubulin III (1:200; Cat.# MRB-435P, Covance). Following PBS washes, 
sections were then incubated for 2 hours at room temperature with 
the appropriate secondary antibody solution containing 1% NHS, 0.1% 
Triton X-100 and secondary antibody at a 1:200 concentration in 1X 
PBS with 0.02% sodium azide. The following secondary antibodies were 
used: 488-donkey anti-rat (gp130), 647-donkey anti-goat (glutamine 
synthetase), and Rd-Red-donkey anti-rabbit (GFAP or β-Tubulin III) 
(JacksonImmuno, West Grove, PA). Sections were counterstained with 
DAPI (1:100; Invitrogen) and coverslipped with aqueous mounting 
media (Southern Biotech; Birmingham, AL).

Quantification of Layer-specific immunolabeling from paraffin 
sections: To evaluate gp130, GFAP, Glutamine Synthesis and 
β-Tubulin III layer specific expression, 40x images were taken using a 
Roper Scientific black and white camera (Photometrics, Tucson, AZ) 
mounted to a Nikon Ti microscope (Nikon Instruments, Melville, NY). 
Regions of interest were outlined around ganglion cell and nerve fiber 
layers (GCL/NFL) using NIS Elements Software (Nikon) and from 
those regions of interest, mean intensity per area (Arbitrary Units/
mm2) was measured.

Whole mount retina: For whole mount retina analyses, retinas 
from young C57 (n=3), aged C57 (n =3), young DBA/2 (n=3) and 
aged DBA/2 (n=3) from each experimental group were bisected and 
subjected to IHC as previously described [12,27]. One half of each retina 
was incubated in a solution containing primary antibodies specific 
for rat anti-gp130 (1:12.5; Cat.# MAB4681,R&D Systems) and goat 
anti-Glutamine Synthetase (1:250; Cat.# sc-6640, Santa Cruz) or anti-
gp130 and rabbit anti-GFAP (1:1000; Cat.# Z-0334, DAKO). Following 
washes, retina were incubated in a secondary antibody solution 
containing either 488-donkey anti-rat (gp130; 1:200) and 647-donkey 
anti-goat (glutamine synthetase; 1:200) or 488-donkey anti-rat (gp130; 
1:200) and Rd-Red-donkey anti-rabbit (GFAP; 1:2000). Retinas were 
then mounted on slides and coverslipped with aqueous mounting 
media (Southern Biotech).

Quantification of whole retina immunolabeling: Whole mount 
retina were visualized using fluorescent confocal microscopy (Olympus, 
Center Valley, PA) at the Vanderbilt University Cell Imaging Core. 
Three dimensional z-series images of the retina were acquired using a 
digital camera and image analysis software (FV-10 ASW; Olympus). For 
each retinal hemisphere, 5 pseudorandom images through the ganglion 
cell and nerve fiber layers of mid-peripheral to mid-central retina were 
obtained at 60x magnification. For each of the 5 pseudorandom retinal 
images the ganglion cell- and nerve fiber- layers were collapsed into 
two dimensional images. Intensity of CTB tracing and gp130, GFAP 
and glutamine synthetase immunolabeling was calculated as the mean 
pixel intensity across each image in arbitrary units. All measurements 
were performed using imaging analysis software (Image J, National 
Institutes of Health).

Statistical analysis 

All statistical tests were performed with SigmaPlot (Systat Software 
Inc., San Jose, CA). Experimental groups were compared with either 
a one-way ANOVA or ANOVA on ranks with pairwise comparisons 
by Kruskal-Wallace, Student-Newman-Keuls or Dunn’s post-hoc 
analyses. All data is presented as the mean ± standard deviation. For all 
analyses, p ≤ 0.05 was considered statistically significant.

Results 
Gp130 mRNA and protein expression are differentially 
altered by glaucoma and glaucoma-related stressors 

The DBA/2 mouse contains mutations in two genes, gpnmb and 
tyrp1, that cause age-related atrophy and dispersion of pigmented 
cells from the iris [28,29]. This iris pathology leads to age-related 
elevation in IOP via blockade of aqueous outflow channels in the 
anterior segment [30,31]. The inherited and age-related aspects of 
glaucomatous pathology in the DBA/2 mouse are not only relevant to 
human forms of glaucoma, but also present the opportunity to examine 
genetic predisposition to glaucoma in young DBA/2 mice. We used 
this unique feature of the model to establish four experimental groups 
of age-matched C57 and DBA/2 mice: healthy retina (young C57Bl/6), 
aging retina (aged C57Bl/6), retina genetically predisposed to glaucoma 
(young DBA/2) and glaucomatous retina (aged DBA/2). 

We began our assessment of gp130 expression with whole retina 
analysis of gp130 mRNA and protein levels. Using quantitative PCR, 
we found that gp130 expression increased by 45 - 60% relative to young 
C57 retina (p<0.05 for all; Figure 1A). Gene expression of gp130 was 
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Figure 1: Stressor-dependent gene and protein expression of gp130 in 
whole retina. A. Gene expression of gp130 in whole retina from young C57, 
aged C57, young DBA/2 and aged DBA/2 mice, as determined by quantitative 
PCR. Levels of gene expression are determined by the delta CT method, using 
GAPDH as the reference gene. Data is represented as percent change in 
gene expression relative to expression in young C57 retina. Asterisks denote 
statistical significance (p < 0.05), as compared to expression in young C57 
retina. B. Protein concentration of gp130 (pg/ml/µg protein) in membrane 
fractions of whole retina lysates from young C57, aged C57, young DBA/2 
and aged DBA/2 mice, as determined by ELISA. Asterisks denote statistical 
significance (p < 0.05). 
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similar for aged C57, young DBA/2 and aged DBA/2 retina (p > 0.05; 
Figure 1A). For protein expression, we measured the concentration of 
gp130 in protein lysates, using a multi-plex ELISA assay. Since gp130 
exists in both soluble and membrane-associated forms [32,33], we 
separated protein lysates into soluble and membrane fractions prior 
to ELISA analysis. In membrane fractions, gp130 protein levels were 
the highest in aged C57 retina (Figure 1B). The greatest disparity in 
gp130 protein expression was noted between aged C57 and aged 
DBA/2 retina, where gp130 expression was more than 2.5-fold higher 
in aged C57 than in aged DBA/2 retina (p<0.05; Figure 1B). The protein 
concentration of gp130 in aged C57 retina was also greater than that 
in young C57 and young DBA/2 retina, but only by 32% and 35%, 
respectively (p >0.05; Figure 1B). Although not statistically significant, 
there is also a trend towards decreased gp130 protein expression in aged 
DBA/2 retina, as compared to young C57 retina (p=0.06; Figure 1B). 
In soluble fractions, gp130 was undetectable in all samples. Together, 
these data suggest that both glaucoma and glaucoma-related stressors 
reduce de novo synthesis of gp130 in retina.

RGCs, astrocytes and Müller glia express gp130 in the 
presence and absence of glaucoma-related stressors

Next, we examined the pattern of gp130 localization, using 
immunohistochemistry. In whole eye paraffin sections from young 
C57, aged C57, young DBA/2 and aged DBA/2 retina, we examined 
the overall pattern of localization as well as cell type-specific expression 
in central and peripheral retina. Cell type-specific expression was 
determined by co-immunolabeling with gp130 and cell type-specific 
markers for RGCs (β-tubulin), astrocytes (GFAP) and Müller glia 
(glutamine synthetase). In healthy retina, gp130 immunolabeling was 
primarily observed in the inner retina, where labeling was present in 
the nerve fiber, ganglion cell, inner plexiform and inner nuclear layers 
(Figure 2). Little to no staining was observed in the outer plexiform and 
outer nuclear layers as well as outer segments of the photoreceptors 
(Figure 2). In central retina, co-immunolabeling revealed localization 
of gp130 to β-tubulin + RGCs (Figure 3A), GFAP + astrocytes (Figure 
3B) and glutamine synthetase + Müller glia (Figure 3C), regardless of 
experimental group. This suggests that glaucoma and glaucoma-related 
stressors do not readily alter the pattern of gp130 localization in central 
retina. In peripheral retina, the pattern of gp130 was similar to that in 
central retina (Figure 4 compare to Figure 3) with no observable changes 
in the presence of glaucoma or glaucoma-related stressors (Figure 4). 
However, the intensity of gp130 labeling appeared qualitatively greater 
than that in central retina (Figure 4 compare to Figure 3). Interestingly, 
gp130 labeling in peripheral retina also appeared greater than young 
C57 retina, young DBA/2 retina and aged DBA/2 retina (Figure 4). This 
finding correlates well with the age-related increase in gp130 protein 
concentration noted in our whole retina ELISA analysis. These increases 
in gp130 labeling were coincident with β-tubulin + RGCs (Figure 4A), 
GFAP+ astrocytes (Figure 4B) and glutamine synthetase + Müller glia 
(Figure 4C), suggesting that changes in gp130 expression are due, at 
least in part, to increased expression by these three cell types. Together, 
these data suggest that glaucoma and glaucoma-related stressors do not 
significantly alter the overall pattern of gp130 localization in retina, but 
do appear to alter expression levels, particularly in peripheral retina.

Glaucoma-related changes in gp130 expression are dependent 
on eccentricity

To measure observed changes in gp130 expression specifically in 
the ganglion cell and nerve fiber layers, we quantified the intensity of 
immunolabeling for gp130 in central and peripheral retina from young 

RPE

ONL

INL

NFL

IPL
GCL

OPL

DAPI DAPI + gp130 gp130

40µm

Figure 2: Constitutive expression of gp130 localizes primarily to the inner 
retina in healthy retina. Representative fluorescent micrographs of gp130 
immunolabeling (green) with DAPI counterstain (blue) in paraffin sections of 
whole eye from C57 retina reveals the presence of gp130 in the OPL, INL, 
IPL, GCL and NFL. 

RPE: Retina pigment epithelium; ONL: Outer nuclear layer; OPL: Outer 
plexiform layer; INL: Inner nuclear layer; IPL: Inner plexiform layer; GCL: 
Ganglion cell layer; NFL: Nerve fiber layer

gp130+β-tubulin+DAPI

gp130+β-tubulin+DAPI

gp130+GFAP+DAPI

gp130+GFAP+DAPI

gp130+GS+DAPI

gp130+GS+DAPI

gp130+β-tubulin+DAPI

gp130+β-tubulin+DAPI

gp130+GFAP+DAPI

gp130+GFAP+DAPI

gp130+GS+DAPI

gp130+GS+DAPI

Figure 3: Glaucoma-related stressors do not alter localization of gp130 
to RGCs, astrocytes and Müller glia in central retina. Representative 
fluorescent micrographs of central retina in whole eye paraffin sections from 
young C57 (top row), aged C57 (second row), young DBA/2 (third row) and 
aged DBA/2 (fourth row) mice. Co-immunolabeling with gp130 (green) and cell 
type-specific markers (red) for RGCs (β-tubulin; A), astrocytes (GFAP; B) and 
Müller glia (glutamine synthetase (C) plus DAPI counterstain (blue) reveals co-
localization of gp130 (yellow) with β-tubulin, GFAP and glutamine synthetase 
in the GCL and NFL. Scaling is consistent for all images. 
GS: Glutamine synthetase; ONL: Outer nuclear layer; OPL: Outer plexiform 
layer; INL: Inner nuclear layer, IPL: Inner plexiform layer; GCL: Ganglion cell 
layer; NFL: Nerve fiber layer
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C57, aged C57, young DBA/2 and aged DBA/2 mice. In central retina, 
we found no significant difference in the intensity of gp130 labeling 
in the ganglion cell and nerve fiber layers between groups (p>0.05; 
Figure 5A). This suggests that both glaucoma and glaucoma-related 
stressors do not significantly alter gp130 expression in the ganglion 
cell and nerve fiber layers of central retina. The intensity of gp130 
immunolabeling was greater in peripheral retina than in central retina 
for all groups (p>0.05). As suggested by our qualitative assessment of 
gp130 localization, the labeling intensity for gp130 in the ganglion cell 
and nerve fiber layers was greater in aged C57 retina than in all other 
groups (p<0.05; Figure 5B). This elevated intensity in aged C57 retina 
was 37%, 32% and 26% greater than young C57, young DBA/2 and 
aged DBA/2 retina, respectively (Figure 5B). There was no significant 
difference in labeling intensity of gp130 between young C57, young 
DBA/2 and aged DBA/2 retina (p>0.05; Figure 5B). Together, these 
data suggest that constitutive expression of gp130 expression in 
the ganglion cell and nerve fiber layers increases with increasing 

eccentricity. Interestingly, only normal aging significantly altered 
gp130 expression in the ganglion cell and nerve fiber layers and then, 
only in the peripheral retina, where constitutive gp130 expression was 
highest.

Stressor-dependent changes in gp130 are accompanied by 
alterations in glial reactivity and RGC health 

To determine whether changes in gp130 expression in the ganglion 
cell and nerve fiber layers are related to RGC, astrocyte and Müller cell 
responses to glaucomatous stressors, we quantified the intensity of 
immunolabeling for gp130, GFAP and glutamine synthetase in whole 
mount retina from young and aged C57 mice and young and aged 
DBA/2 mice injected with the axonal tracer, cholera toxin β subunit. 
Previous studies indicate that uptake and anterograde transport of 
CTB by RGCs is an early indicator of RGC decline [34-36]. Similarly, 
expression of GFAP by astrocytes and glutamine synthetase by Müller 
cells is altered in response to retinal damage, including glaucoma [37-
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Figure 4: Glaucoma-related stressors do not alter localization of gp130 
to RGCs, astrocytes and Müller glia in peripheral retina. Representative 
fluorescent micrographs of peripheral retina in whole eye paraffin sections 
from young C57 (top row), aged C57 (second row), young DBA/2 (third row) 
and aged DBA/2 (fourth row) mice. Co-immunolabeling with gp130 (green) 
and cell type-specific markers (red) for RGCs (β-tubulin; A), astrocytes (GFAP; 
B) and Müller glia (glutamine synthetase (C) plus DAPI counterstain (blue) 
reveals co-localization of gp130 (yellow) with β-tubulin, GFAP and glutamine 
synthetase in the GCL and NFL. Scaling is consistent for all images. 
GS: Glutamine synthetase; ONL: Outer nuclear layer; OPL: Outer plexiform 
layer; INL: Inner nuclear layer; IPL: Inner plexiform layer; GCL: Ganglion cell 
layer; NFL: Nerve fiber layer
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Figure 5: Expression of gp130 in the ganglion cell and nerve fiber 
layers is dependent upon eccentricity and increases with normal aging. 
Quantification of immunolabeling in the ganglion cell and nerve fiber layers of 
central (A) and peripheral (B) regions of retina in whole eye paraffin sections 
from young C57, aged C57, young DBA/2 and aged DBA/2 mice. Data is 
plotted as intensity of gp130 immunolabeling in arbitrary units and asterisks 
indicate statistical significance (p < 0.05). Glaucoma-related stressors do not 
alter the intensity of gp130 immunolabeling in central retina (A). The intensity 
of gp130 labeling is greater in peripheral retina than in central retina for all 
groups (B compare to A). In peripheral retina, labeling intensity of gp130 is 
greater in aged C57 retina than that in young C57 and DBA/2 retina (B).
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44]. For our analysis in whole mount retina, we sampled 60x fields in 
the area between mid-central and mid-peripheral retina. We selected 
this region to achieve comparable assessment of CTB labeling in RGC 
soma and axons. 

First, we assessed mean changes in gp130, GFAP, glutamine 
synthetase and CTB intensities. We found that in the mid-central to 
mid-peripheral retina, labeling intensity of gp130 was similar between 
young and aged C57 retina (p >0.05; Figure 6A). This level of gp130 
intensity was 24% (young DBA/2; p=0.05) and 33% (aged DBA/2; 
p=0.01) than in aged C57 retina (Figure 6A). Labeling intensity of 
gp130 was also 28% less in aged DBA/2 retina than in young C57 retina 
(p=0.04; Figure 6A). For axonal transport, we found that aged DBA/2 
retina exhibited 38% (p< 0.01) and 18% (p=0.04) lower intensity of 
CTB labeling than aged C57 and young DBA/2 retina, respectively 
(Figure 6A). Interestingly, aged C57 retina exhibited CTB labeling 
that was 24% greater than young C57 retina (p< 0.01; Figure 6B). 
For GFAP, young C57 and DBA/2 retina (p=0.84) and aged C57 and 
DBA/2 (p=0.53) exhibited similar levels labeling intensity (Figure 6C). 
However, young exhibited labeling intensity that was 34 - 41% higher 
than aged retina, regardless of strain (p<0.01 for all; Figure 6C). For 
glutamine synthetase, young and aged C57 retina exhibited similar 
levels of labeling intensity (p>0.05; Figure 6D). Young and aged DBA/2 
retina also exhibited similar levels of labeling intensity, but these 
levels were on order of 55% less than C57 retina (p<0.05 for all; Figure 
6D). Together, these data suggest that changes in gp130 expression 
induced by glaucomatous stressors are accompanied by changes in 
GFAP expression by astrocytes, glutamine synthetase expression by 
Müller glia endfeet and uptake and axonal transport capacity of RGCs. 
Furthermore, the nature of these changes in RGC, astrocyte and Müller 
glia populations, like gp130 expression, are also stressor-dependent.

Stressor-dependent changes in gp130, glial reactivity and 
RGC health are correlative

To determine whether changes in gp130, glia reactivity and RGC 

health induced by glaucomatous stressors are spatially interrelated, we 
performed polynomial regression analyses of spatially coincident CTB 
labeling and gp130, GFAP and glutamine synthetase immunolabeling 
in whole mount retina, as described above. We found that constitutive 
expression of gp130 in the ganglion cell and nerve fiber layers of 
young C57 mice was highly correlated to intensity of CTB, GFAP and 
glutamine synthetase labeling (Figure 7). Specifically, CTB (r2=0.40, 
p<0.01; Figure 7A), GFAP (r2=0.66, p<0.01; Figure 7B) and glutamine 
synthetase (r2=0.82, p<0.01; Figure 7C) all reliably predicted gp130 
labeling intensity in a first-order, linear relationship, where higher 
levels of CTB, GFAP and glutamine synthetase also exhibited higher 
levels of gp130 labeling. We also found that CTB labeling predicted 
GFAP (r2=0.25, p=0.02; Figure 8A) and glutamine synthetase (r2=0.32, 
p<0.01; Figure 8B) intensities via first-order, linear relationships, 
where areas with higher levels of CTB labeling also exhibited higher 
levels of GFAP and glutamine synthetase labeling (Figure 8). In these 
healthy retina, lower and higher values for CTB, GFAP and glutamine 
synthetase were related to eccentricity, where lower values were 
obtained in images from mid-peripheral regions, which have lower 
RGC density, smaller axon bundles and correspondingly, less dense 
populations of astrocytes and Müller glia than mid-central regions 
(Figures 7 and 8, right panels). These data suggest that expression of 
gp130 reflects the anatomical organization of healthy retina and is 
related to the density of RGCs, astrocytes and Müller glia.
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Figure 6: Glaucoma-related stressors differentially alter RGC axonal 
transport and expression of gp130, GFAP and glutamine synthetase 
in the ganglion cell and nerve fibers of mid retina. Quantification 
of fluorescent intensity for cholera toxin-β (CTB) uptake/transport and 
immunolabeling against gp130 (B), GFAP (C) and glutamine synthetase (D) in 
the ganglion cell and nerve fiber layers of mid-central to mid-peripheral regions 
of wholemounted retina from young C57, aged C57, young DBA/2 and aged 
DBA/2 mice . Data is plotted as intensity of CTB or immunolabeling in arbitrary 
units. Asterisks indicate statistical significance (p < 0.05). 
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Figure 7: Constitutive expression of gp130 correlates with axonal 
transport in RGCs and GFAP and glutamine synthetase expression by 
astrocytes and Muller glia, respectively. Left panels: Regression graphs 
of fluorescent intensity for gp130 immunolabeling and intensity of cholera 
toxin-β (CTB) uptake/transport (A), GFAP immunolabeling (B) and glutamine 
synthetase (GS; C) immunolabeling in the ganglion cell and nerve fiber layers 
of mid-central to mid-peripheral regions of wholemounted retina from young 
C57 mice. Data is plotted as intensity of gp130 (y-axis) versus intensity of 
CTB (A; x-axis), GFAP (B; x-axis) or GS (C; x-axis) in arbitrary units. Solid 
line indicates regression line based on r2 value. Dashed line indicates the 
95% confidence interval. Dotted line indicates predicted values based on r2 
and 95% confidence. Right panels: Representative confocal micrographs 
depicting relationships between gp130 immunolabeling (green) and CTB 
transport (red; A), GFAP (blue; B), and GS (blue; C) labeling. For all, examples 
of low (left) and high (right) intensities are provided. Scaling is consistent for 
all images.
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With the introduction of glaucoma-related stressors, the predictive 
value of gp130, glial reactivity and RGC health relationships was 
significantly reduced. In aged retina, gp130 labeling intensity was 
predicted by only CTB labeling (r2=0.56, p<0.01) and GFAP labeling 
(r2=0.26, p=0.03; Figure 9B). Similar to young C57 retina, these 

relationships were also best described by a first-order, linear regression, 
where areas with higher CTB and GFAP labeling also exhibited higher 
levels of gp130 labeling (Figure 9). However, compared to young C57 
retina, the correlation between CTB intensity and gp130 intensity 
was greater, while the correlation between GFAP intensity and gp130 
intensity was reduced (Figure 9 compare to Figure 7). While aged C57 
retina retained some eccentricity effects regarding GFAP and CTB 
intensities, there were many instances of reduced GFAP and CTB 
intensity in areas of equivalent eccentricity (Figure 9, right panels). 
There were no other significant relationships between CTB, GFAP, 
glutamine synthetase and gp130 labeling by polynominal regression 
analysis (p > 0.05; data not shown). These data suggest that normal 
aging de-couples and/or weakens the spatial relationships between 
gp130, astrocyte and Müller glia reactivity and RGC health. Most 
notably, all correlations with glutamine synthetase expression were 
lost, suggesting that normal aging has a significant impact on Müller 
glia. 

Like aged C57 retina, young DBA/2 retina exhibited a limited 
number of predictive relationships between intensities of CTB, GFAP, 
glutamine synthetase and gp130 labeling. However, unlike aged 
C57 retina, only glial reactivity correlated with gp130 expression. 
Both GFAP (r2=0.38, p<0.01; Figure 10A) and glutamine synthetase 
(r2=0.83, p<0.01; Figure 10B) reliably predicted gp130 labeling 
in first-order, linear relationships, where areas with higher GFAP 
and glutamine synthetase expression also exhibited higher levels of 
gp130 labeling. Interestingly, the strength of the correlation between 
glutamine synthetase and gp130 was similar to young C57 retina, but 
the strength of the correlation between GFAP and gp130 was much 
lower (Figure 10 compare to Figure 7). There were no other significant 
relationships between CTB, GFAP, glutamine synthetase and gp130 
labeling by polynominal regression analysis (p>0.05; data not shown). 
These data suggest that a genetic predisposition to glaucoma alone 
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to glaucoma. Left panels: Regression graphs of fluorescent intensity for 
gp130 immunolabeling and intensities of GFAP (A) and glutamine synthetase 
immunolabeling (GS; B) in the ganglion cell and nerve fiber layers of mid-
central to mid-peripheral regions of whole mounted retina from young DBA/2 
mice. Data is plotted as intensity of gp130 (y-axis) versus intensity of GFAP 
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line based on r2 value. Dashed line indicates the 95% confidence interval. 
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For all, examples of low (left) and high (right) intensities are provided. Scaling 
is consistent for all images.
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of fluorescent intensity for GFAP (A) and glutamine synthetase (GS; B) 
immunolabeling as a function of cholera toxin-β (CTB) uptake/transport in the 
ganglion cell and nerve fiber layers of mid-central to mid-peripheral regions 
of whole mounted retina from young C57 mice. Data is plotted as intensity 
of GFAP (y-axis; A) and glutamine synthetase (y-axis; B) versus intensity 
of CTB (x-axis) in arbitrary units. Solid line indicates regression line based 
on r2 value. Dashed line indicates the 95% confidence interval. Dotted line 
indicates predicted values based on r2 and 95% confidence. Right panels: 
Representative confocal micrographs depicting relationships between CTB 
transport (red) and GFAP (blue; A), and GS (blue; B) immunolabeling. For 
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consistent for all images.
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is sufficient to alter the relationships between gp130 expression and 
glial cell reactivity and RGC health. It is of particular note that young 
DBA/2 retina, lacks spatial correlation between RGC axonal transport 
and gp130, GFAP and glutamine synthestase expression, suggesting 
that relationships between gp130 and glial cell organization are not 
dependent upon the density or transport capacity of RGCs. 

Similar to young DBA/2 retina, GFAP labeling and glutamine 
synthetase labeling both predicted the intensity of gp130 labeling 
(Figures 11A and 11B). As with young DBA/2 retina, the first-order, 
linear relationships between gp130 and GFAP (r2=0.32, p=0.02; Figure 
11A) and gp130 and glutamine synthetase (r2=0.66, p<0.01; Figure 
11B) indicated positive correlations, where areas with higher GFAP 
and glutamine synthetase intensity also exhibited higher levels of gp130 
labeling. The strength of these correlations was similar to that noted in 
young DBA/2 retina (Figure 11 compare to Figure 10). Unlike aged 
C57 and young DBA/2 retina, GFAP labeling was also predicted by the 
intensity of CTB labeling (r2=0.27, p=0.04; Figure 11C). Interestingly, 
this first-order, linear relationship described a negative correlation, 
where areas with lower CTB labeling tended to exhibit lower levels of 
GFAP labeling (Figure 11C). This is in contrast to young C57 retina, 
where a similar strength of correlation between CTB and GFAP 
labeling was noted, but in the positive direction (Figure 11C compare 
to Figure 8A). There were no other significant relationships between 
CTB, GFAP, glutamine synthetase and gp130 labeling by polynominal 
regression analysis (p > 0.05; data not shown). These data suggest 
that, like glaucoma-related stressors, glaucoma itself not only de-
couples and/or weakens the constitutive relationships between gp130 
expression and RGC health and glial reactivity, but can also reverse 
these existing relationships.

Gene expression changes in IL-6 family cytokines are also 
stressor-dependent

Glaucoma-related changes in IL-6 expression and signaling in 
retina and optic nerve have been well-documented [12,15-17,19,45,46]. 
To determine how stressor-dependent changes in gp130 expression 
may relate to signal transduction induced by other members of the 
IL-6 cytokine family, we measured mRNA expression of the IL-6 
family members, IL-11, CNTF, LIF, OSM, CLCF1, CTF1 and CTF2, 
using quantitative PCR. Since we previously reported changes in 
IL-6 signaling in DBA/2 mice and age-matched C57 mice [12,19], 
we omitted IL-6 from this gene expression panel. To control for gene 
transcription levels, the CT for all cytokines were normalized to the CT 
for GAPDH (ΔCT). We found that glaucoma-related stressors tended 
to increase gene expression of IL-6 family members, with the exception 
of CTF 2, which was undetectable in all samples (Figure 12). For CNTF, 
LIF, CLCF1 and CTF1, aged C57, young DBA/2 and aged DBA/2 retina 
exhibited similar levels of gene transcription (p > 0.05 for all). For all 
stressors, gene expression increased by approximately 40% for CNTF 
(p<0.01; Figure 12A), LIF (p<0.01; Figure 12B) and CLCF1 (p<0.01; 
Figure 12C) and by approximately 45% for CTF1 (p<0.01; Figure 12D), 
as compared to young C57 retina. In contrast, both IL-11 and OSM 
exhibited stressor-dependent changes in gene expression. For OSM, 
young DBA/2 retina exhibited the highest level of expression, which 
was almost 2-fold higher than young C57 retina and approximately 
60% greater than aged C57 and DBA/2 retina (p<0.01 for all; Figure 
12E). Aged C57 and aged DBA/2 retina exhibited similar levels of 
expression (p > 0.05) that was approximately 40% greater than that of 
young C57 retina (p<0.01; Figure 12E). In contrast, aged C57 retina 
exhibited the highest level of IL-11 expression, which was 58% greater 
than young C57 retina and approximately 18% greater than young and 

aged DBA/2 retina (p<0.01 for all; Figure 12F). IL-11 expression was 
similar in young and aged DBA/2 retina (p > 0.05; Figure 12F) and 
this level of expression was approximately 30% greater than young C57 
retina (p<0.01; Figure 12F). Together, these data suggest that while 
any glaucoma-related stressor is sufficient to elevate IL-6 cytokine 
family members, IL-11 and OSM, in particular appear to be stressor-
dependent.

Discussion 
Here we described changes in expression and localization of the 

signal transducer gp130 in response to glaucoma-related stressors, 
including normal aging, genetic predisposition to glaucoma and IOP-
induced glaucoma. We then correlated these alterations in gp130 with 
astrocyte and Müller glia reactivity, RGC health and expression of 
cytokines from the IL-6 family. 

In healthy retina, gp130 was constitutively expressed in the 
membrane-bound configuration and primarily localized to the inner 
retina, where it is associated with RGCs, astrocytes and Müller glia. 
This is consistent with previous findings of gp130 localization in 
mouse retina [47]. Interestingly, protein expression of gp130 in the 
ganglion cell and nerve fiber layers, as determined by intensity of 
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Figure 11: IOP-induced glaucoma alters the strength and nature of 
relationships between RGC axonal transport and expression of gp130, 
GFAP and glutamine synthetase. Left panels: Regression graphs of 
fluorescent intensity for gp130 immunolabeling and intensities of GFAP (A) and 
glutamine synthetase immunolabeling (GS; B) as well as fluorescent intensity 
of CTB labeling and GFAP immunolabeling (C) in the ganglion cell and nerve 
fiber layers of mid-central to mid-peripheral regions of wholemounted retina 
from aged DBA/2 mice. A,B. Data is plotted as intensity of gp130 (y-axis) 
versus intensity of GFAP (x-axis; A) and GS (x-axis; B) in arbitrary units. C. 
Data is plotted as intensity of GFAP (y-axis) versus intensity of CTB labeling 
(x-axis). For all, solid lines indicate regression line based on r2 value. Dashed 
lines indicate the 95% confidence interval. Dotted lines indicate predicted 
values based on r2 and 95% confidence. Right panels: Representative 
confocal micrographs depicting relationships between gp130 (green) and 
GFAP immunolabeling (blue; A), gp130 (green) and GS immunolabeling 
(blue; B) and CTB transport (red) and GFAP immunolabeling (blue, C). For 
all, examples of low (left) and high (right) intensities are provided. Scaling is 
consistent for all images.
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Figure 12: Glaucoma-related stressors elevate expression of IL-6 family 
members in a stressor-dependent manner. Gene expression of CNTF (A), 
LIF (B), CLCF1 (C), CTF1 (D), OSM (E) and IL-11 (F) in whole retina from 
young C57, aged C57, young DBA/2 and aged DBA/2 mice, as determined 
by quantitative PCR. Levels of gene expression are determined by the ΔΔCT 
method, using GAPDH as the reference gene. Data are presented as percent 
change in gene expression relative to expression in young C57 retina (ΔΔCT). 
A-D. Asterisks denote statistical significance (p < 0.05), as compared to 
expression in young C57 retina. E,F. Asterisks denote statistical significance 
(p < 0.05), as indicated by brackets.

immunolabeling, was dependent upon eccentricity, where peripheral 
retina exhibited higher levels of gp130 expression than central retina. 
This suggests a potential site-specific role for gp130-mediated signaling 
in peripheral retina. 

In conditions of normal aging, genetic predisposition to glaucoma 
and IOP-induced glaucoma, mRNA levels of gp130 increased. While 
a corresponding increase in membrane-bound gp130 was noted in 
aging retina, levels of membrane-bound gp130 remained unchanged 
and actually trended toward decreased levels in DBA/2 mice. These 
discrepancies between mRNA and protein expression in response 
to glaucoma-specific stressors could be due to either translation or 
protein stability, which are both known to regulate gp130 protein levels 
[48-50]. Furthermore, these findings contrast with gp130 expression 
following acute injury in the retina, where protein expression of gp130 
increases for up 48 hours after excitotoxic insult [51]. This raises the 
possibility that gp130-mediated signaling is induced early following 
acute injury, but is downregulated with chronic insults, such as IOP-
induced glaucoma. 

Layer-specific analysis of gp130 expression in aged C57, young 
DBA/2 and aged DBA/2 retina determined that glaucoma-related 
stressors alter gp130 expression in both stressor- and eccentricity-
dependent manners. For all stressors, gp130 expression in peripheral 
retina was greater than that in central retina, suggesting that the 

constitutive functions performed by gp130-mediated signaling in the 
peripheral retina persist in the presence of glaucoma-related stressors. 
While gp130 expression appeared to be unaltered in the central retina, 
at least in our models and age groups, the peripheral and middle 
retina exhibited stressor-dependent changes in gp130 expression, 
which included increased expression in aging retina and decreased 
expression in retina with predisposition to glaucoma or IOP-induced 
glaucoma. These findings suggest that gp130-mediated signaling is 
highly regulated with the potential for discreet, site-specific functions. 

Given that gp130 was primarily localized to inner retina and 
specifically associated with RGCs, Müller glia and astrocytes, we 
investigated the potential for alterations in gp130 expression to be 
related to both RGC health, which was measured as uptake and 
transport of the neural tracer CTB [34-36], and glial reactivity. As a 
general measure of glial reactivity, we examined immunolabeling 
intensity of the astrocyte marker GFAP and the Müller glia marker 
glutamine synthetase. An increase in the expression of these markers 
is associated with increased reactivity or activation of astrocytes and 
Müller glia in response to a variety of stressors in retina [37-44]. Since 
we evaluated overall labeling intensity, increases in GFAP or glutamine 
synthetase levels can be attributed to either increased expression on 
a per cell basis, which accompanies hypertrophy, or an increase in 
density. Both hypertrophy and changes in cell density are hallmarks 
of glial reactivity and have been described in various retinal diseases, 
including glaucoma [5,52-58]. In all groups, we noted instances of 
changes in expression/cell and, for astrocytes, differences in cell 
density. Our analyses revealed that constitutive expression of gp130 
is highly correlated with RGC axonal transport, GFAP expression 
and glutamine synthetase, which also correlated with another. This is 
consistent with previous literature highlighting a role for gp130 in the 
survival of photoreceptors, maturation of optic nerve head astrocytes, 
and Müller cell activation following optic nerve lesion [59-61]. 
Surprisingly, normal aging, glaucoma predisposition and IOP-induced 
glaucoma all reduced the strength of correlations between gp130, 
RGC health and glia reactivity, suggesting that either gp130-mediated 
signaling and glial reactivity become dysregulated by glaucoma-related 
stressors or more likely, that regulation of these responses by other 
factors increases in response to stress. 

To determine how alterations in gp130 expression may impact 
cytokine signaling, we examined gene expression of cytokines in the 
IL-6 family. Previous work indicates that glaucoma-related stressors 
alters IL-6 signaling, which is related to both glial responses and 
RGC health [12,15-17,19,25,51,62]. Recent work also suggests that 
other members of the IL-6 cytokine family, which all utilize gp130 for 
signal transduction, are also implicated in retinal disease, including 
glaucoma, diabetic retinopathy and retinal trauma [62-66]. We found 
that all examined members of the IL-6 cytokine family were elevated 
with glaucoma-related stressors, as compared to young, healthy retina. 
For most of these cytokines, expression levels were elevated to similar 
levels, suggesting an overall increase in retinal neuroinflammation. 
These results are consistent with previous reports of elevations in IL-
11, CNTF, LIF, CLCF1 and CTF1 following various retinal insults 
[62,63,65-67]. In addition to increases from constitutive levels, OSM 
and IL-11 also exhibited stressor-dependent changes in expression. 
Specifically, OSM expression was greatest in young DBA/2 retina, 
suggesting that it may be induced early, in pre-degenerative states then 
return to lower levels with disease onset. Similarly, IL-11 expression 
was greatest in aged C57 retina, suggesting chronic elevation of this 
cytokine in aging. Interestingly, IOP-induced glaucoma attenuated 
age-related increases in IL-11 to levels consistent with retina in 
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predisposed to glaucoma, suggesting that the functional implications 
of IL-11 in aging and glaucomatous retina may differ. In the context 
of the gp130 data, normal aging induced complimentary increases 
in cytokine and gp130 expression, suggesting that elevated levels of 
IL-6 family cytokines result in increased signaling by these cytokines. 
In contrast, DBA/2 retina exhibited increased cytokine expression, 
but decreased gp130 expression, suggesting that, despite increases 
in cytokine levels, the ability of these cytokines to initiate signaling 
cascades is diminished. The same trend was noted with IL-6 signaling 
in DBA/2 mice, where expression of IL-6 receptor alpha was reduced, 
despite increases in IL-6 expression [19]. 

Overall, these data indicate that glaucoma-related stressors, 
including normal aging, genetic predisposition and IOP-induced 
glaucoma, differentially alter expression of the signal transducer gp130 
and that these alterations have direct implications for astrocyte and 
Müller glia reactivity, RGC health and cytokine signaling. The utilization 
of the DBA/2J mouse model in this study limits its interpretation to 
long-term exposure to glaucomatous stressors. It is likely that gp130-
mediated signaling by IL-6 family members also plays a role in more 
immediate responses to glaucomatous stressors, namely elevated IOP. 
As such, we are currently examining differences in the induction of 
gp130-mediated signaling via IL-6 family members in models of acute 
ocular hypertension.
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