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Abstract
Endothelial dysfunction and cell loss are prominent features of cardiovascular disease. Endothelial damage is 

a critical trigger of restenosis after percutaneous coronary angioplasty or stent implantation. Consequently, rapid 
re-endothelialization is essential for restoring normal vascular function and regulating neointimal hyperplasia. Bone-
marrow-derived cell therapy has emerged as a therapeutic option for the treatment of ischemic cardiovascular 
diseases by virtue of its effects in enhancing endothelial capillary growth and collateral formation. It remains to be 
seen whether this cell therapy is also effective for the treatment of restenosis, but evidence suggests that it may 
be. Bone marrow stem/progenitor cells promote endothelialization and modulate immune response, processes that 
can lead to vascular repair after injury. Given the increased concern over late thrombosis after drug-eluting stents, 
therapeutic re-endothelialization by the bone marrow stem/progenitor cells seems both attractive and promising. In 
this review we focus on the therapeutic potential of endothelial progenitors and mesenchymal stem cells from bone 
marrow for the prevention of restenosis after coronary intervention. We describe the current status of this nascent 
therapy and perspectives on where it may lead in the future.
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Introduction
In recent years, angiogenic cell therapy with bone marrow 

(BM)-derived cells has emerged as a potential new strategy for the 
treatment of refractory cardiovascular diseases. Promising results from 
experimental studies prompted investigators to initiate clinical pilot 
trials. The Therapeutic Angiogenesis by Cell Transplantation (TACT) 
study first demonstrated that the angiogenesis stimulated by BM cell 
implantation was sufficient in magnitude to benefit patients with “no-
option” chronic critical limb ischemia [1]. This study supported the 
notion that cell therapy may augment neovascularization and thereby 
restore oxygen supply to the tissue. Our group previously demonstrated 
the important contributions of the stem/progenitor cells among the 
BM mononuclear cells in improving limb ischemia [2]. In hearts, the 
infusion of BM mononuclear cells or BM–derived progenitor cells also 
enhances the tissue perfusion and improved function in patients after 
myocardial infarction [3-6]. 

Although drug-eluting stents have significantly reduced restenosis 
rates, delayed re-endothelialization and late stent thrombosis have 
emerged as major concerns [7]. It thus seems, even in the era of 
the drug-eluting stent, that a new type of stent or technology for 
percutaneous coronary intervention (PCI) will have to be developed 
for the abolishment of restenosis. BM stem/progenitor cells have 
properties that hold promise for the development of a safe and effective 
cell therapy for therapeutic re-endothelialization after PCI. Adult BM 
contains both hematopoietic lineage stem/progenitor cells (HSCs), 
including endothelial progenitor cells (EPCs), and non-hematopoietic 
progenitor subsets referred to as the mesenchymal stem/progenitor 
cells or multipotent stromal cells (MSCs). EPCs and MSCs have 
shown to strongly induce neovascularizaition compared with the 
freshly-isolated BM mononuclear cells in animal studies [8,9]. Both 
the progenitor cells have been used in several clinical trials as a “2nd-
generation” cellular therapy [4,5,10]. Therefore, in this review, we focus 
on and discuss the potential roles and effects of EPCs and MSCs from 
BM in vascular repair.

EPCs have emerged as an important component of vascular 
injury response and offer the potential to accelerate vascular repair by 
promoting re-endothelialization [11-13]. CD34 antibody-coated stents 
have been clinically used to capture circulating EPCs at the injury 
sites and enhance re-endothelialization [14,15]. We will begin, here, 
by reviewing this topic as a current status of cell-based approach to 
coronary intervention. Yet the therapeutic potential of MSCs from 
bone marrow in restenosis following vascular injury has been poorly 
investigated so far. Accumulating evidence from animal studies has 
shown that MSC therapy is a promising strategy to treat refractory 
diseases and organ failures through the multiple mechanisms [16-18]. 
Thus, in the later part of this review, we suggest future perspectives that 
MSCs are useful therapeutic vectors to prevent restenosis after PCI. 

Endothelial Progenitor Cells (EPCs) for Coronary 
Intervention
EPCs from bone marrow

The concept of BM cell implantation into ischemic tissues was 
originated from the discovery of EPCs derived from bone marrow 
and postnatal vasculogenesis. Adult EPCs were first identified in adult 
human peripheral blood by Asahara et al. [11] in 1997. Their study 
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demonstrated that CD34+ mononuclear cells gave rise to mature 
endothelial cells after ex vivo culture and contributed to endothelial 
recovery and new capillary formation after ischemia.

Though the strict definition is still controversial, EPCs are generally 
defined as cells that express HSC markers such as CD34 or CD133, along 
with an endothelial marker, vascular endothelial growth factor receptor 
2 (VEGFR2). EPCs and HSCs share many surface marker antigens and 
probably descend from a common precursor, hemangioblast, during 
embryonic development [19,20]. In adult, bone marrow is a major 
source of EPCs such as HSCs, and the EPCs endogenously mobilize 
from the bone marrow into the peripheral blood in response to a 
physiologic and pathophysiologic need for neovascularization [20-22].

Therapeutic potential of EPCs for vascular repair

Therapies designed to mobilize EPCs or to increase their ability to 
home to the site of stent implantation and facilitate vascular repair are 
attractive and have the potential to improve clinical outcomes after PCI 
[12,13]. 

Injured vessels after angioplasty express increased levels of stromal-
derived factor (SDF)-1α to promote vascular healing [23,24]. HSCs 
and EPCs express SDF-1α and its receptor CXCR4, both of which are 
crucial for cell recruitment to injured sites [25,26]. In a mouse model 
of injured carotid artery, intravenously administered EPCs inhibited 
neointimal hyperplasia by migrating into the injured vessel wall and 
promoting re-endothelialization [27]. Autologous EPC implantation 
also led to rapid re-endothelialization after balloon denudation of 
carotid arteries in rabbits [28]. Another study showed that transplanted 
EPCs were able to restore endothelial function in damaged vessels [29]. 

Exogenous mobilization of EPC from the bone marrow may provide 
a less cumbersome and potentially more effective strategy to enhance 
the re-endothelialization of damaged vessels. The administration of 
recombinant hematopoietic cytokines such as granulocyte-colony 
stimulating factor (G-CSF) mobilizes EPCs and HSCs, as well as mature 
hematopoietic cells. Several studies have demonstrated beneficial 
effects of G-CSF and erythropoietin on neovasucularization and re-
endothelialization [30-33]. Kong, et al. [33], for example, reported 
that G-CSF treatment before balloon injury of rat carotid arteries led 
to accelerated re-endothelialization and a concomitant reduction in 
neointima of the injured vessels, in association with an increase in 
the number of circulating EPCs. Statin therapy [34] and estrogen [35] 
also increase the number of mobilized EPCs and reduce neointimal 
hyperplasia in animal models of arterial injury. The mechanism 
underlying these actions might be attributable to the stimulation of 
endothelial nitric oxide synthase. 

These findings support the therapeutic concept of EPC-mediated 
re-endothelialization to inhibit restenosis after vascular injury. 

EPC capture stent

Drug-eluting stents have dramatically reduced the rates of in-stent 
restenosis compared with bare-metal stents, but local antiproliferative 
therapy has been associated with delayed or maladaptive re-
endothelialization, a process that leads to abnormal vascular 
homeostasis and late stent thrombosis [36]. 

A unique approach of the EPC-mediated re-endothelialization 
has recently been adopted for clinical use [14,15]. The Genous Bio-
engineered R stent (OrbusNeich, Hong Kong), a device coated 
with monoclonal antibodies directed against CD34, is designed 
to attract circulating EPCs onto the stent surface to augment re-
endothelialization and thereby prevent restenosis and thrombosis. 

Genous stents have already progressed to phase II and III clinical 
trials and have been deployed in >5,000 patients [13-15]. In the initial 
clinical trial [14,16] patients with de novo coronary lesions were 
implanted with EPC capture stents. Safety and feasibility were well 
demonstrated in the phase I study. Among the 4,939 patients in the 
e-HEALING registry, the 12-month cumulative event rates for the 
individual outcomes of cardiac death, myocardial infarction, and target 
lesion revascularization (TLR) were 1.7%, 1.9%, and 5.7%, respectively 
[15]. Notably, the incidence of late stent thrombosis (between 30 days 
and 12 months) was very low (0.2%). Comparisons between registries 
are hampered by the many differences in patient characteristics and 
practice patterns. Even so, the 5.7% incidence of clinically indicated 
TLR at 12 months compares well with the TLR rates for drug-eluting 
stents in the ARRIVE-1 registry (5.6%) [37] and E-FIVE registry (4.5%) 
[38]. The HEALING II registry reported that patients with normal 
CD34+VEGFR2+ EPC titers had lower rates of in-stent restenosis than 
patients with reduced circulating EPCs [39]. Intravascular ultrasound 
investigation in a subgroup analysis of this study demonstrated a 
regression of neointimal volume in patients with higher levels of EPCs.

The results from the registries hold promise, but large randomized 
studies to evaluate the long-term safety and efficacy of this stent are 
still underway. On a cautionary note, a recent preclinical study with 
a porcine model found that the EPC capture stent improved re-
endothelialization at the early stage but ultimately conferred no effect on 
the neointimal thickness compared with control stents over long-term 
observation [40]. Restenosis with CD34 capture stents may occur as a 
consequence of nonspecific binding with non-EPCs. CD34 is common 
to a number of progenitors, including smooth muscle progenitor cells, 
as we and others have previously shown [41,42]. Circulating smooth 
muscle progenitor cells are poorly characterized, but they are known to 
contribute to neointimal hyperplasia [31,43]. 

Mesenchymal stem/progenitor cells (MSCs) for coronary 
intervention

MSCs from bone marrow: Compared with EPCs, MSCs from 
bone marrow can be easily isolated and expanded in culture system. 
The first MSCs in the BM were reported in 1976 [44]. Friedenstein 
et al. [45] described clonal, plastic adherent cells from BM capable of 
differentiating into osteoblasts, adipocytes, and chondrocytes. Thus, 
MSCs are typically defined as adherent, fibroblastoid-like cells that 
differentiate to osteoblasts, adipocytes, and chondrocytes in vitro. 
MSCs in vitro express the surface receptors CD29, CD44, CD49a-f, 
CD51, CD73, CD105, CD106, CD166, and Stro1, and lack expression 
of the definitive hematopoietic lineage markers CD11b, CD14, and 
CD45 [18]. In the bone marrow, MSCs localize along the endosteal 
surface of the bone (an HSC niche) and also in a vascular-associated 
niche [46]. MSCs play a critical role in regulating HSC proliferation, 
differentiation, and quiescence in vivo by signaling via the “stem 
cell niche synapse” through which growth factors, cytokines, and 
immunomodulatory factors are exchanged [47,48]. In addition to 
regulating hematopoiesis, some nonhematopoietic progenitor cells 
may enter the blood stream and circulate as “continuous reservoirs” of 
replacement cells and/or reparative cells for nonhematopoietic tissues 
[49]. 

MSCs are isolated from the mononuclear layer of the bone marrow 
after separation by discontinuous density gradient centrifugation. 
The mononuclear layer is simply cultured and MSCs adhere to the 
culture plastic. Typically, MSCs recovered from a 2-mL bone marrow 
aspirate can be expanded 500-fold over about 3 weeks [50]. The cells 
generally retain their multipotentiality for at least 6–10 more passages. 
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Thus, the MSCs provide attractive opportunities for cell-based therapy 
in various diseases and organ failures. Indeed, the administration of 
exogenous cultured MSCs has proven to be significantly efficacious in 
experimental animal models of lung injury [51], kidney disease [52], 
diabetes [53], stroke [54], and myocardial infarction [55]. 

Cardiac repair by MSCs: Like EPCs, there has been considerable 
interest in the development of a new therapy with MSCs from bone 
marrow in cardiac repair or regeneration. Favorable effects of MSCs 
on jeopardized myocardium have been frequently reported [55-63]. 
MSCs can express phenotypic characteristics of cardiac myocytes 
[58]. This property prompted investigators in earlier studies to explore 
the ability of engrafted MSCs to differentiate into cardiac lineage 
cells [56,59]. Yet MSCs influence cardiac repair in spite of the low or 
transient levels of engraftment they show in vivo. We and others have 
shown that MSC treatment improves cardiac function in acute and 
chronic myocardial infarction models, in part through paracrine action 
[55,60-63]. Paracrine factors released from MSCs into the surrounding 
tissue direct a number of restorative processes, namely, myocardial 
protection [60], neovascularization [61], matrix remodeling [62], and 
differentiation of resident progenitors [63]. The capacity of MSCs to 
secrete soluble factors that alter the tissue microenvironment may 
play a more prominent role in tissue and organ repair than the cell 
transdifferentiation [18]. 

Vasculoprotective potential of MSCs: Vascular injury triggers 
local inflammation in a vessel wall. Macrophages and vascular 
smooth muscle cells release cytokines and growth factors, resulting 
in neointimal hyperplasia with phenotypic change, migration, and 

proliferation of smooth muscle cells. Rapid re-endothelialization after 
injury is important for restoring normal vascular function, reducing 
vascular inflammation, and preventing adverse remodeling and 
neointimal formation [64]. 

An analysis of transcriptome in human and murine MSCs revealed 
that the cells express transcripts encoding proteins that regulate a broad 
range of biological activities, including wound healing, angiogenesis, 
and immunity [55,65]. Thus, we hypothesize that MSCs modulate 
healing processes after vascular injury via the secretion of factors (Figure 
1). Anti-inflammatory effect of MSCs: Several experimental and clinical 
studies have shown that MSCs are highly immunosuppressive [66]. 
MSC-mediated immunosuppression has been variously demonstrated 
to involve IL-10 [67], nitric oxide [68], prostaglandin E2 [69], and 
tumor necrosis factor-α stimulated gene/protein 6 (TSG-6), a protein 
recently shown by Prockop’s group to have multifunctional anti-
inflammatory properties [70]. IL-10, nitric oxide, and prostaglandin 
E2 are well known to confer immunosuppressant effects. The TSG-6 
protein reduces nuclear factor-κB signaling in the macrophages and 
thereby modulates the cascade of proinflammatory cytokines [66]. Our 
group previously reported that intracardiac administration of human 
MSCs inhibited macrophage infiltration and neointimal formation in 
carotid artery after ligation in immunodeficient mice [71]. We were 
also interest to find, in the same series of experiments, that MSC 
administration reduced the serum levels of monocyte chemoattractant 
protein-1 in mice fed an atherogenic diet. Proangiogenic effect of 
MSCs: MSCs differentiated to endothelial cells in one of our earlier 
experiments with infarcted porcine myocardium, but the extent of 
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Figure 1: Modulation of vascular-related cells by MSCs. Secreted factors from MSCs activate endothelial cells and EPCs and suppress activation of immune cells and 
vascular smooth muscle cells, which leads to prevention of restenosis after vascular intervention.
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differentiation was far too low to account for the significant increases 
in the vessel numbers [61]. MSCs express a number of proangiogenic 
factors, as well as proteins that modulate endothelial cell migration 
[55,61]. Several of these factors, such as VEGF and SDF-1, have been 
shown to not only induce endothelial proliferation and capillary growth, 
but also mobilize HSCs and EPCs from the marrow and induce them to 
proliferate [72]. And in experiments comparing cultured human MSCs 
with HSCs, we found that the former expressed higher mRNA levels 
for proangiogenic factors such as VEGF and adrenomedullin [55]. We 
previously examined the culture system to confirm the angiogenic and 
endothelial protective effects of factors from MSCs. In our in-vitro 
angiogenesis assay, co-culture with human MSCs induced prominent 
capillary network formation [61]. We also found that conditioned 
medium from the MSCs rescued human umbilical vein endothelial 
cells from cell death during hypoxia exposure [55]. 

Again, these findings suggest that MSCs have vasculoprotective 
potential against restenosis after PCI via anti-inflammatory effects 
and re-endothelialization promoted by factors the cells secrete. We 
also found that conditioned medium from the MSCs directly and 
significantly attenuated the proliferation of vascular smooth muscle 
cells exposed to platelet-derived growth factor-BB (unpublished data). 

Future perspective on MSC therapy for the prevention of 
restenosis after PCI

As long as the specific cell surface markers on MSCs in vivo remain 
poorly defined, it will probably be difficult to develop an MSC capture 
stent. Yet recent advances of tissue engineering make it possible to 
directly seed cultured MSCs from the BM on stainless steel stents 
coated with gluten and polylysine [73]. Scanning electron microscopy 
elegantly demonstrated faster and more complete re-endothelialization 
on the MSC seeded stents, compared with unseeded control stents, 
within 1 month of implantation in rabbit femoral arteries. If this 
technology is available for clinical use, autologous MSC therapy will 
emerge as an option for the prevention of restenosis in individual 
patients undergoing PCI. Based on our observations, we further 
propose that the development of a stent coated with concentrated 
proteins and peptides secreted from the MSCs may become a more 
effective “off-the-shelf” strategy in interventional cardiology. 

Conclusions
Bone marrow stem/progenitor cells have drawn interest for their 

ability to promote proper healing by modulating vascular response 
after injury. 

EPC-based technologies and strategies have attracted considerable 
interest in the field of interventional cardiology. However, EPC 
capturing stents have a technological limitation as described above. 
Henceforth, further technological advances and a fuller understanding 
of the behavior of each BM progenitor such as EPCs and smooth 
muscle progenitors will be required before the outcomes after PCI can 
be improved. 

MSCs seem promising as a cell source for an effective treatment 
modality for restenosis, though basic research on the MSC biology 
and paracrine biology remains to be done. As tissue engineering 
technologies evolve, it will be possible to apply stem cell biology to 
endovascular techniques beyond drug-eluting stents.
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