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Introduction
In the pharmaceutical industry, the ultimate goal of a 

pharmaceutical development process is to produce high quality, safe 
and efficacious drug products for human use. The pharmaceutical 
development process, involving drug discovery, formulation, 
laboratory development, animal studies, clinical development, and 
regulatory registration, is a continual, length, and costly process. This 
lengthy and costly process is necessary to assure the safety and efficacy 
of the drug product under investigation. After the drug is approved, 
the United States Food and Drug Administration (FDA) also requires 
that the drug product be tested for identity, strength (potency), quality, 
purity, and stability before it can be released for human use.

Basically, a pharmaceutical development process consists of 
different phases of development, including non-clinical development 
(e.g., assay development/validation in laboratory development, 
manufacturing process validation, and stability testing and analysis), 
pre-clinical development (e.g., animal studies and bioavailability/
bioequivalence studies), and clinical development (e.g., phase 1-3 
clinical development) [1]. These phases may occur in sequential 
order or be overlapped during development process. At different 
phases of pharmaceutical development, valid statistical designs are 
usually employed to ensure that the drug product possesses good drug 
characteristics such as identity, strength, quality, purity, safety, efficacy, 
and stability before and post-approval of the drug product.

In this article, we will not only introduce the concept of quality by 
design suggested by the FDA, but also provide an overview of statistical 
designs that are commonly employed at different phases (stages) of a 
pharmaceutical development. In addition, the potential use of various 
adaptive trial designs in clinical development for not only shortening 
the development process but also for increasing the probability of 
success of the development process with limited resources available is 
also discussed.

In the next section, the concept of quality by design recommended 
by the FDA [2,3] is briefly introduced. Statistical designs that are 

commonly employed in non-clinical, pre-clinical, and clinical 
development are reviewed in Nonclinical Application, Pre-clinical 
Application, Clinical Application. Also included in Clinical Application is 
some discussion of the potential use of adaptive designs in clinical trials. A 
brief concluding remark is given in the last section of this article.

Quality by Design (QbD)
In the pharmaceutical industry, it is recognized that reasonable 

high quality product can only be achieved at a great effort and cost. 
In practice, pharmaceutical companies mainly focus on development 
rather than put their emphasis on manufacturing. In many cases, the 
manufacturing process is not only unable to meet pre-specified quality 
standard, but also inability to predict effects scale-up on final product. 
Quality by design is a concept that quality could be planned, and that 
most quality crises and problems relate to the way in which quality was 
planned. In recent years, FDA has considered quality by design as a 
vehicle for the transformation of how drugs are discovered, developed, 
and commercially manufactured. In the past few years, the FDA has 
implemented the concepts of QbD into its pre-market processes. The 
focus of this concept is that quality should be built into a product with 
an understanding of the product and process by which it is developed 
and manufactured along with a knowledge of the risks involved in 
manufacturing the product and how best to mitigate those risks. This is 
a successor to the “quality by QC” (or “quality after design”) approach 
that the companies have taken up until 1990s. Winkle [2] provides a 
comprehensive comparison of traditional approach with the systematic 
QbD approach (see Table 1). For example, under the concept of QbD, 
decisions are made based on scientific findings rather than empirical 
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Abstract
In recent years, the concept of quality by design in (global) pharmaceutical development has received much 

attention. The purpose is to ensure that the compound under investigation will possess good drug characteristics 
such as identity, strength, purity, quality, safety, efficacy and stability before and post approval. A pharmaceutical 
development process consists of non-clinical (e.g., assay/process validation and stability testing), pre-clinical (e.g., 
animal and bioavailability/bioequivalence studies), and clinical (e.g., phases 1-3 clinical trials) development. In this 
article, various statistical designs that are commonly considered for achieving desired good drug characteristics as 
described in the United States Pharmacopeia and National Formulary (USP/NF) at various stages of non-clinical, 
pre-clinical, and clinical development are reviewed. In addition, the possible use of innovative adaptive clinical trial 
designs that may lead to (i) the identification of any signals, trends/patterns, and optimal clinical benefits of a test 
treatment under investigation, and (ii) increase the probability of success of the development process with limited 
resources available are discussed.
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ones. To determine whether the test product possesses good drug 
characteristics such as identity, strength, purity and quality, unlike 
the traditional approach, it is suggested that multivariate experiments 
should be performed to make sure that the test product meets product 
specifications (e.g., as described in USP/NF, 2000). For development 
and validation of manufacturing process, traditional approach is to test 
whether each performance characteristics such as potency (% of label 
claim) meet specific product specification by ignoring the fact that these 
performance characteristics may be related. One disadvantage of this 
fixed approach is that some key performance characteristics may meet 
specific specifications but some don’t. With appropriate adjustable, we 
will be able to meet specific product specification for each performance 
characteristics and at the same achieve desirable (optimal) quality of 
the manufacturing process.

Winkle [2] pointed out that the implementation of quality by 
design is not only beneficial to industry but also to FDA. As an example, 
from the perspectives of pharmaceutical industry, quality by design 
ensures the production of better products with fewer problems in 
manufacturing. The use of quality by design cannot only reduce number 
of manufacturing supplements required for post market changes and at 
the same time, allow for implementation of new technology to improve 
manufacturing without regulatory scrutiny. In addition, it can also 
improve interaction with FDA reviewers and consequently speed up 
the review/approval process. On the other hand, from the perspectives 
of FDA, the implementation of quality by design will not only enhance 
scientific foundation for review, but also provides better coordination 
across review, compliance and inspection divisions within the FDA. 
Second, it not only improves information in regulatory submissions 
and quality of review, but also provides for better consistency and for 
more flexibility in decision making. Moreover, it ensures decisions 
made on science and not on empirical information. Quality by design 
not only involves various disciplines in decision making, but also 
allows the FDA to use limited resources to address higher risks more 
efficiently.

Nonclinical Application
Assay validation

The major objective of the validation of an assay method is to 

ensure that the assay method can produce unbiased and precise 
assay results for the active ingredient of a compound. To achieve this 
objective, a so-called recovery study is usually conducted. The USP/NF 
indicates that the assay method needs to be validated in terms of the 
primary validation parameters given in Table 2 (USP/NF 2000). See, 
also NCCLS (National Committee for Clinical Laboratory Standards) 
guidelines for validation. To meet the USP/NF standards for each of 
these parameters, an appropriate statistical design is necessarily chosen 
to provide sound statistical inferences for these parameters and their 
variances. In this section, several commonly employed designs in assay 
validation are briefly described.

Randomized block design: The randomized block design is 
probably the most commonly used design in assay validation. Suppose 
that there are J levels of potency (expressed as percent of label claim) in 
a recovery study. Samples are usually assayed on different days (say 3 
different days) with and/or without the same number of replicates (say 
3-5 replicates). Note that J is usually an odd number such as (L, M, H)
or (L, L, M, H, H), where L and H indicate below and above of the level 
of 100% of label claim. This design provides independent estimates of
day-to-day variability and within-day variability.

Latin square type of design: In the above design, assays of different 
levels on the same day are usually performed in sequential order, which 
may introduce bias due to testing order. To avoid the bias that may be 
introduced by testing order, it is suggested that a Latin square type of 
design be used to balance the potential bias. In other words, the number 
of days should be equal to the number of levels. The Latin square design 
is then applied to the test sequence of the levels of potency.

Incomplete block design: In practice, the number of assays 
performed on each day may not be able to cover all the levels of 
potency under study due to limited resources available. In addition, 
in some cases, the assay can only be conducted on a certain number 
of days, which are fewer than the number of levels of potency. In these 
situations, an incomplete block design may be used to randomize test 
sequences on each day.

Remarks: For validation of an assay method, recovery studies are 
conducted not only to estimate the accuracy, linearity, and precision but 
also to provide statistical inference on the ruggedness across different 
days or laboratories. Based on the nature of the various purposes of a 
recovery study, sample size determination has become a challenge to 
statisticians.

Aspects Traditional Quality by Design
Pharmaceutical Development Empirical; 

Univariate experiments
Systematic; 
Multivariate experiments

Manufacturing Process Fixed Adjustable
Process Control In-process testing for go/no-go; Offline analysis 

w/slow response
PAT utilized for feedback and feed forward at real time

Product Specification Primary means of quality control; 
Based on batch data

Overall quality control strategy; 
Based on desired product 
performance (safety and efficacy)

Control Strategy Based on intermediate and 
end product testing

Risk-based; 
Controls shifted upstream; 
Real-time release upstream

Lifecycle Management Reactive to problems; 
Scale-up and post-approval changes 

Continual improvement enabled within design space

Note: PAT=Process Analytical Technology 
 Modified from Winkle [2]. 

Table 1: A Comparison between Traditional Approach and QbD Systematic Approach.

Accuracy Selectivity
Precision Range
Limit of detection (LOD) Linearity
Limit of quantitation (LOQ) Ruggedness

Table 2: Performance Characteristics in Assay Validation.
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Process validation

A manufacturing process is a continuous process that involves 
a number of critical stages for quality assurance. For example, for 
tablets manufacturing process of a pharmaceutical compound, critical 
stages include active pre-blending stage, the primary blending stage, 
the lubricant pre-blending stage, the final blending stage, and the 
compression stage. At each critical stage, problems may occur during 
the process. For example, the ingredients may not be uniformly mixed 
at the primary blending stage; the segregation may occur at the final 
blending stage; a significant loss of active ingredient may encounter 
during the transfer from the V-blender to the transport devices. Thus, 
process validation is essential not only to ensure that the process does 
what it purports to do, but also to ensure that the drug product will 
conform to USP/NF specifications of good drug characteristics such 
identity, strength, quality and purity.

Regulatory requirement: In its recent guidance on process 
validation, FDA emphasizes the concept of quality by design in 
process validation and notes the need for pharmaceutical companies to 
continue benefiting from knowledge gained, and continually improve 
throughout the process lifecycle by making adaptations to assure root 
causes of manufacturing problems are corrected. For a prospective 
validation, FDA generally requires that at least three batches be 
evaluated. For each batch, data are usually collected at each critical 
stages of the manufacturing process according to a validation design 
as described in the validation protocol. In practice, a validation design 
clearly outlines sampling plan, testing plan, and acceptance criteria for 
validation, which are briefly described below. 

Sampling plan, testing plan, and acceptance criteria: The 
validation of a manufacturing process requires satisfactory results at 
each critical stage during a manufacturing process for three batches. For 
each batch, however, sampling plan may be different from stage to stage. 
For example, at the primary blending stage, twelve 5 g representative 
samples are usually drawn, one each from the top, middle, and bottom 
of the front and back from the right and left side of the V-blender 
after blending for 50, 60, and 70 minutes with the intensifier bar 
running. At compression stage, 200 tablets are usually removed at the 
beginning and after each one-ninth by weight of the contents of the 
transport device as compressed for the first, fourth (middle), and last 
transport devices emptied from the V-blender. For each batch, testing 
procedure may be different from stage to stage. For example, at the 
primary blending stage, for the first batch, 36 samples are used, testing 
one tablet equivalent per 5 g sample (12 samples per blending time×3 
blending times). For the second and third batches, 12 samples (from 
each batch) are used to test one tablet equivalent per 5 g sample. Thus, 
a total of 60 samples are tested for three batches. At compression stage, 
testing plan could be (i) for potency, 15 assays (one from the beginning 
and from the 2/9, 4/9, 2/3, and end sample from each of three transport 
devices sampled), (ii) for content uniformity, 120 tablets (40 tablets 
from each point in the sampling plan), and (iii) for dissolution, 18 
tablets (6 tablets from each of the three transport devices sampled; 
3 tablets each from the beginning and end of each transport device). 
Acceptance limits for the validation of a manufacturing process are 
usually designed to be more stringent to assure that the final product 
will pass USP/NF specifications. Acceptance limits are a set of sample 
statistics from which a confidence interval for a given parameter is 
constructed to meet a pre-specified lower probability bound for passing 
a particular USP test.

Remarks: For the validation of a manufacturing process, at least 
three batches or lots must be evaluated. If all three batches or lots 

pass USP tests, the manufacturing process is considered validated. In 
practice, however, one of the three batches may fail USP tests at some 
critical stages of the manufacturing process. In this case, the possible 
causes for the failure should be investigated. An additional batch or lot 
should be tested after the problem has been identified and corrected.

Scale-up 

In the pharmaceutical industry, it is important to ensure that a 
production batch can meet the USP/NF standards for the identity, 
strength, quality, and purity of the drug before a batch of the product 
is released to the market. Thus, scale-up program plays an important 
role to scale up a laboratory batch to a commercial (production) 
batch. The purpose of a scale-up program is not only to identify, 
evaluate, and optimize critical formulation and/or manufacturing 
process factors of the drug product but also to maximize or minimize 
excipient ranges. A successful scale-up program can result in an 
improvement in formulation/process or at least a recommendation 
on a revised procedure for formulation/process of the drug product. 
Some commonly employed designs in scale-up experiments are briefly 
described below.

Factorial design: A full factorial design is a design that consists of 
all possible different combinations of one level from each factor. If there 
are lk levels for the kth factor Xk, the corresponding full factorial design 
is called a general l1l2….lK factorial design. For example, when li=2 (or 
3) for all i, the general factorial design is called a 2K (or 3K) factorial 
design. A 2K (or 3K) factorial design denotes a full factorial design at 
two levels (or at three levels). In practice, a factorial design is expressed 
in terms of a number of arrays (or runs) that indicate the levels of each 
factor. For example, for a typical 24 factorial design, the arrangement of 
the arrays is given in the following standard order (Table 3). The first 
column of the design matrix consists of successive minus (-) and plus 
(+) signs, the second column of successive pairs of (-) and (+) signs, 
the third column of four (-) signs followed by four (+) signs, and so on. 
In general, the Kth column consists of 2K-1 (-) signs followed by 2K-1 (+) 
signs. In this 24 factorial design, there are four factors at two levels, with 
a total of N=24=16 runs. The two levels of each factor are conventionally 
denoted by (+) and (-) (they are sometimes denoted by 1 and -1). If a 
variable is continuous, the two levels, (+) and (-), denoted the high and 
low levels. If a variable is qualitative, the two levels may denote two 
different types or the presence and absence of the variable. Each row 

Design matrix
Run X1 X2 X3 X4 Y

1 ̶ ̶ – ̶ Y1

2 + ̶ ̶ ̶ Y2

3 ̶ + ̶ ̶ Y3

4 + + ̶ ̶ Y4

5 ̶ ̶ + ̶ Y5

6 + ̶ + ̶ Y6

7 ̶ + + ̶ Y7

8 + + + ̶ Y8

9 ̶ ̶ ̶ + Y9

10 + ̶ ̶ + Y10

11 ̶ + ̶ + Y11

12 + + ̶ + Y12

13 ̶ ̶ + + Y13

14 + ̶ + + Y14

15 ̶ + + + Y15

16 + + + + Y16

Table 3: A Full 24 Factorial Design.
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represents a different combination of one level from each factor. A full 
factorial design provides estimates not only for main effects but also for 
interactions with maximum precision. The main effects and interaction 
effects can easily be obtained using a table of contrast coefficients and/
or Yate’s algorithm Myers [4]; Hicks [5].

Fractional factorial design: A fractional factorial design is a design 
that consists of s fraction of a full factorial experiment. For example, a 

1( )
2

P fraction of a 2K factorial design is called a 2K-P fractional factorial 
design. When P=1, a full factorial design reduces to a one-half factorial 
design. For a full 24 factorial design, there are 16 effects, including 
grand average, four main effects, six two-factor interactions, four three-
factor interactions, and a single four-factor interaction. The full 24 
factorial design contains 16 observations, which provide independent 
estimates for each of these 16 effects. However, if we consider only a 
one-half fraction (i.e., only eight observations available), due to limited 
resources available, it is impossible to obtain 16 independent estimates. 
For a 24-1 fractional factorial design, the eight observations cannot 
provide independent estimates for the 16 effects alone but for some 
confounding effects, such as the sum of a main effect and a three-factor 
interaction that are confounded with each other. In practice, however, 
the three-factor or higher-factor interactions are usually negligible 
(Table 4). In this case, a fractional factorial design is useful in estimating 
the main effects. In practice, a fractional factorial design is useful when 
there are many factors to be studied because it is almost impossible to 
perform a full factorial design even at two levels.

Central composite design: A central composite design is a full 
factorial design or a fractional factorial design augmented by a ± α level 
at each of the K factors and n central points. The central composite 
design consists of one center point, eight points on the cube (a 23 
factorial arrangement), and six star points. It should be noted that 
a central composite design with K=2, α=1, and n=1 reduces to a 32 

factorial design (Table 5). For a full 2K factorial design, although the 
design provides independent estimates for the 2K -1 effects, it does 
not give an estimate of the experimental error unless some runs are 
repeated. Unlike the full 2K factorial design, the central composite 
design provides an estimate of the experimental error. The experimental 
error is usually estimated based on n observations at the central point.

Remarks: In addition to the factorial design, the fractional factorial 
design, and the central composite design, other designs such as the 
classical Plackett and Burman design [6] and the factorial or fractional 
factorial in randomized block design are also useful in scale-up 
experiments.

Stability analysis

Regarding study design and sample selection criteria, the ICH Q5C 
guideline recommends that a bracketing design or a matrixing design 
be used [7-11]. Samples can then be selected for the stability program 

on the basis of a matrixing system and/or by bracketing. A bracketing 
design is a design that only samples on the extremes of certain design 
factors which are tested at all time points. Stability at the intermediate 
levels is considered being represented by the stability of the extremes. 
Bracketing is generally not applicable for drug substances. Bracketing 
can be applied to studies with multiple strengths of identical or closely 
related formulation. In this case, only samples on the extremes of 
certain design factors (e.g., strength, container size, fill) are tested 
at all time points. A bracketing design can also be applied to studies 
with the same container closure system with the fill volume and/or the 
container size varied.

A matrixing design is a statistical design of a stability study that 
allows different fractions of samples to be tested at different sampling 
time points [8,11]. Each subset of samples represents the stability of 
all samples at a given time point. Differences in the samples should 
be identified as covering different batches, different strengths, and 
different sizes of the same container closure system. A matrixing design 
should be balanced such that each combination of a factor is tested to 
the same extent over the duration of the studies. It should be noted that 
all samples should be tested at the last time point before the submission 
of application. For the purpose of illustration, the following examples 
exhibit matrixing in a long-term stability study for one storage 
condition: (S1) one-half reduction eliminates one in every two time 
points (Table 6 of (S2) one-third design eliminates one in every three 
time points).

Storage Conditions Since stability data are analyzed using a linear 
regression, the selection of observations that will give the minimum 
variance for the slope is to take one-half at the beginning of the study 
and one-half at the end. The beginning of the stability study is usually 
called t=0. Stability studies are typically done at several different times. 
In practice, there is no unique best design. Thus, the choice of design 
must use the fact that analyses will be done after additional data are 

Design matrix
Run X1 X2 X3 X4=X1 X2 X3 Y

1 ̶ ̶ ̶ ̶ Y1

2 + ̶ ̶ + Y2

3 ̶ + ̶ + Y3

4 + + ̶ ̶ Y4

5 ̶ ̶ + + Y5

6 + ̶ + ̶ Y6

7 ̶ + + ̶ Y7

8 + + + + Y8

Table 4: A 24-1 Fractional Factorial Design.

Run X1 X2 X3

1 –1 –1 –1
2 1 –1 –1
3 –1 1 –1
4 1 1 –1
5 –1 –1 1
6 1 –1 1
7 –1 1 1
8 1 1 1
9 0 0 0

10 α 0 0
11 – α 0 0
12 0 α 0
13 0 – α 0
14 0 0 α
15 0 0 – α 

Table 5: Central Composite Design for K=3 and n=1.

Time-points (months) 0 3 6 9 12 18 24 36
strength S1 Batch 1 T T T T T T

Batch 2 T T T T T T
Batch 3 T T T T T

S2 Batch 1 T T T T T
Batch 2 T T T T T T
Batch 3 T T T T T

Key: T=Sample Tested 
Table 6: Example of Matrixing Design-One-half Reduction. “One-Half Reduction”.
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collected. Nordbrock [8] introduced several designs that are commonly 
considered in stability studies. These designs are briefly described 
below.

Basic matrix 2/3 on time design: A complete long-term study for 
one strength of a dosage form in one package has three batches, with 
all three tested every 3 months in the first year, every 6 months in the 
second year, and annually thereafter. Thus if a 36 month shelf life is 
desired and the complete study is used, each of the three batches is 
tested at 0, 3, 6, 9, 12, 18, 24, and 36 months. The basic matrix 2/3 on 
time design has only two of the three batches tested at intermediate 
time points (other than at times of 0 and 36), as presented in Table 
7. If an analysis is to be done after 18 months (e.g., for a registration 
application), the basic matrix 2/3 on time design can be modified by 
testing all batches at 18 months.

Matrix 2/3 on time design with multiple packages: The first 
extension of the basic design is when one strength is packaged into 
three packages (i.e., when each batch is packaged into each of three 
packages). The basic matrix 2/3 on time design is applied to each 
package in a balanced fashion, as presented in Tables 8 and 9. Balance 
is defined as testing each batch twice at each intermediate time point, 
and each package twice at each intermediate time point. If an analysis 
will be done after 18 months (e.g., for a registration application), this 
design can be modified by testing all batch-by-package combinations 
at 18 months.

Matrix 2/3 on time design with multiple packages and multiple 
strengths: When three strengths (say, 10 mg, 20 mg, and 30 mg) are 
manufactured using different weights of the same formulation, nine 
sub-batches result. We further assume that there are three packages 
for each strength. In this case, the basic matrix 2/3 on time design can 
be applied to each of the nine sub-batches in a balanced fashion (Table 
10). In this design, each sub-batch is tested twice at each intermediate 
time point, each package is tested twice at each intermediate time point 
for each batch, each batch is tested six times at each intermediate time 
point, and each package is tested six times at each intermediate time 
point. If an analysis will be done after 18 months (e.g., for a registration 
application), this design can be modified by testing all batch-by-
strength-by-package combinations at 18 months.

Matrix 1/3 on time design: A further reduction in the amount of 
testing is accomplished by reducing the testing in each of the preceding 
designs from 2/3 to 1/3. For example, the basic 1/3 on time design 

has one of the three batches tested at each intermediate time point, as 
presented in Table 11. If an analysis will be done after 18 months (e.g., 
for a registration application), the basic matrix 1/3 on time design can 
be modified by testing all batches at 18 months.

Matrix on batch×strength×package combinations: If there are 
multiple strengths and multiple packages, one could also choose to test 
only on a portion of the batch-by-strength-by-package combinations. 
An example of when this might be appropriate is when there are three 
batches, each made into two strengths, giving six sub-batches. Although 
three packages will be used, the batch size is small and only two packages 
can be manufactured in each strength sub-batch. A matrix design on 
batch×strength×package combinations is presented in Table 12, with 
two packages selected for each of the six sub-batches, and where time is 
also matrixed by the factor 1/2. This design is approximately balanced 
because two packages are tested per sub-batch, one or two strengths are 
tested for each selected package by batch, four sub-batches are tested 
for each package, etc. Similar statements for the balance on time can 
be made.

Uniform matrix design: Another approach to design is the 
uniform matrix design, for which the same time protocol is used for all 
combinations of the other design factors [12]. The strategy is to delete 
certain times (e.g., the 3 month, 6 month, 9 month, and 18 month time 
points); therefore testing is done only at 12, 24, and 36 months. This 
design has the advantages of simplifying the data entry of the study 
design and eliminating time points that add little to reducing the 
variability of the slope of the regression line. The disadvantage is that 
if there are major problems with the stability, there is no early warning 
because early testing is not done. Further, it may not be possible to 
determine if the linear model is appropriate (e.g., it may not be possible 
to determine whether there is an immediate decrease followed by very 
little decrease). The greatest disadvantage is that this design is probably 
not acceptable to some regulatory agencies.

Batch Test times (months)
A
B
C

0,   3,         9,   12,           24,   36
0,   3,   6,         12,   18,           36
0,         6,   9,           18,   24,   36

Table 7: Basic matrix 2/3 on time design.

Batch Pkg1 Pkg2 Pkg3
A T1 T2 T3
B T2 T3 T1
C T3 T1 T2

Note: Pkg1=Package 1, etc. 
Table 8: Matrix 2/3 on Time Design with Multiple Packages.

Code Test times after time 0
T1
T2
T3

3,         9,   12,           24,   36
3,   6,         12,   18,           36
      6,   9,           18,   24,   36

Note: Batches are tested at time 0. 
Table 9: Test Time Intervals.

Batch Strength Package 1 Package 2 Package 3
A 10 T1 T2 T3
A 20 T2 T3 T1
A 30 T3 T1 T2
B 10 T2 T3 T1
B 20 T3 T1 T2
B 30 T1 T2 T3
C 10 T3 T1 T2
C 20 T1 T2 T3
C 30 T2 T3 T1

Table 10: Matrix 2/3 on time design with multiple packages and multiple 
strengths.

Batch Test times (months)
A
B
C

0,   3,             12,                   36
0,         6,               18,           36
0,              9,                  24,   36

Table 11: Basic Matrix 1/3 on Time Design.

Batch Strength Package 1 Package 2 Package 3
A 10 T1 T2 -
A 20 T2 - T1
B 10 T2 - T1
B 20 - T1 T2
C 10 - T1 T2
C 20 T1 T2 -

Table 12: Matrix 1/2 on Time and Matrix on Batch-by-Strength-by-Package.
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Comparison of designs: Nordbrock [8] compared designs based 
on the power approach. This approach can be easily performed in SAS, 
and computes the probability that a statistical test will be significant 
when there is a specified alternative slope configuration. The strategy is 
to compute power for several designs and then to choose the design that 
has acceptable power and the smallest sample size (or cost). Acceptable 
power is not well defined currently. Other methods of comparing 
designs are given in Ju and Chow [13] and Pong and Raghavarao [10], 
where the criterion is the precision for estimating shelf life. 

When evaluating designs, it is also important to answer the 
question “What is the probability of being able to defend the desired 
shelf-life with the study?” In other words (assuming that the parameter 
is expected to decrease over time), what is the probability that the 95% 
one-sided lower confidence bound for the slope will be acceptable for 
specified values of the slope(s) for particular subsets of data, which may 
include, for example, only one strength and/or only one package? It 
is important to know at the design stage what the statistical penalty 
(with respect to shelf life) might be if differences among packages and/
or strengths are found. Similarly, Nordbrock [14] compared matrix 
designs to full designs using the probability of achieving the desired 
shelf life.

Pre-clinical Application
Animal studies

The primary focus of pre-clinical drug development is to evaluate 
the safety of the drug product through in vitro assays and animal 
studies. In vitro assay and animal testing are often considered as 
surrogate for human testing, under the assumption that they can 
be predictive of results in humans. Basically, pre-clinical drug 
development includes the stages of chemical synthesis, screening for 
activities, and pre-clinical testing. At pre-clinical drug development, 
the mess compounds are necessarily screened to distinguish those that 
are active from those that are not. The purpose of drug screening is to 
identify a stable and reproducible compound with fewer false-negative 
and false-positive results. For this purpose, a multiple-stage screening 
procedure (design) is usually employed. Pre-clinical testing involves 
dose selection, toxicological testing for toxicity and carcinogenicity, 
and animal pharmacokinetics. For selection of an appropriate dose, 
dose-response studies are usually conducted to determine the effective 
dose such as the median effective dose ED50 in animals. The objective 
of toxicological testing in animal studies is to explore not only realistic 
safety extrapolation, but also to evaluate new methods to test for 
toxicity. 

In pre-clinical development, the primary focus of toxicity 
testing in animals includes long-term carcinogenicity studies and 
reproductive toxicology studies. The major objective of the long-term 
carcinogenicity study is to identify those compounds that are probable 
human carcinogens, i.e., they have abilities to cause (i) an increased 
incidence of tumor types, (ii) an earlier appearance of tumors, and 
(iii) an increased multiplicity of tumors in individuals. On the other 
hand, the purpose of reproductive toxicology is to identify the effect 
of a xenobiotic on mammalian reproduction. The effect is referred to 
any adverse effect on male or female reproduction. The toxicity may 
be expressed as alternations to the reproductive organs, the related 
endocrine system, or pregnancy outcomes. 

Gad and Weil [15] indicated that there are four basic experimental 
designs that are commonly used in toxicology. These designs are 
completely randomized design, randomized block design, Latin square 
design, and nested design which are briefly described below.

Completely randomized design: In practice, the most commonly 
used design in toxicological testing is probably the completely 
randomized design. A completely randomized design is a design in 
which the treatments are completely assigned to the experimental units 
at random. The design imposes no restrictions on the allocation of 
treatments to the experimental units, although a balance on the number 
of experimental units used per treatment group is preferred. This 
design is efficient if the experimental units are nearly homogeneous. 
In case where there is evidence of heterogeneity, it is suggested that 
blocking should be used to increase the design efficiency.

Randomized block design: In a randomized block design, the 
experimental units are allocated to blocks such that the experimental 
units within a block are relatively homogenous and the number of 
experimental units within a block is equal to the number of treatments 
being investigated. The treatments are then assigned at random to the 
experimental units within each block. Note that a randomized block 
design is often used to control for a single identified source of variation.

Latin Square design: A Latin square design is an extension of the 
randomized block design. As indicated earlier, a Latin square design 
permits the investigator to assess treatment effects when a double-
blocking restriction it used on the experimental units, controlling for 
two sources of variation. In the Latin square design, the number of row 
blocks, number of column blocks, and number of treatment groups are 
equal. Thus, the randomization of the treatments to the experimental 
units is somewhat restricted in the sense that each row block and each 
column block has all of the treatments represented. 

Nested design: A nested design is a multi-factor experiment that 
has important applications in animal studies for toxicological testing. 
As an example, for simplicity, suppose there are two factors (say factor 
A and Factor B). A nested design is a design in which levels of one 
factor (say Factor B) are hierarchically subsumed under (or nested 
within) levels of another factor (say Factor A). Thus, in practice, it is 
not possible to assess the complete combination of A and B levels in a 
nested design. 

Bioequivalence studies

When an innovative (or brand-name) drug product is going off 
patent, pharmaceutical or generic companies may file an abbreviated 
new drug application (ANDA) for generic approval. Generic drug 
products are defined as drug products that are identical to an innovative 
(brand-name) drug which is the subject of an approved NDA with 
regard to active ingredient(s), route of administration, dosage form, 
strength, and conditions of use. For approval of generic drug products, 
the FDA requires that evidence of average bioequivalence in drug 
absorption be provided through the conduct of bioavailability and 
bioequivalence studies. Bioequivalence assessment is considered as a 
surrogate for clinical evaluation of the therapeutic equivalence of drug 
products.

As indicated in the Federal Register [Vol. 42, No. 5, Sec. 320.26(b) 
and Sec. 320.27(b), 1977], a bioavailability study (single-dose or multi-
dose) should be crossover in design, unless a parallel or other design 
is more appropriate for valid scientific reasons. Thus, in practice, a 
standard two-sequence, two-period (or 2×2) crossover design is often 
considered for a bioavailability or bioequivalence study. Denote by T 
and R the test product and the reference product, respectively. Thus, 
a 2×2 crossover design can be expressed as (TR, RT), where TR is the 
first sequence of treatments and RT denotes the second sequence of 
treatments. Under the (TR, RT) design, qualified subjects who are 
randomly assigned to sequence 1 (TR) will receive the test product 
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(T) first and then cross-over to receive the reference product (R) 
after a sufficient length of wash-out period. Similarly, subjects who 
are randomly assigned to sequence 2 (RT) will receive the reference 
product (R) first and then cross-over to receive the test product (T) 
after a sufficient length of wash-out period.

One of the limitations of the standard 2x2 crossover design 
is that it does not provide independent estimates of intra-subject 
variabilities since each subject receives the same treatment only once. 
In the interest of assessing intra-subject variabilities, the following 
alternative crossover designs for comparing two drug products are 
often considered:

Design 1: Balaam’s design-i.e., (TT, RR, RT, TR);

Design 2: Two-sequence, three-period dual design-i.e., (TRR, 
RTT);

Design 3: Four-period design with two sequences-i.e., (TRRT, 
RTTR);

Design 4: Four-period design with four sequences-i.e., (TTRR, 
RRTT, TRTR, RTTR).

The above study designs are also referred to as higher-order 
crossover designs. A higher-order crossover design is defined as a 
design with the number of sequences or the number of periods greater 
than the number of treatments to be compared. As an example, the 
following is a crossover design with three periods with two cross-over 
treatments at periods B and C as shown in Figure 1 (see also, ICH E3 
Annex IIIa).

For comparing more than two drug products, a Williams’ design 
is often considered. For example, for comparing three drug products, 
a six-sequence, three-period (6×3) Williams’ design is usually 
considered, while a 4×4 Williams’ design is employed for comparing 4 
drug products. Williams’ design is a variance stabilizing design. More 
information regarding the construction and good design characteristics 
of Williams’ designs can be found in Chow and Liu [16].

Clinical Application
Selecting an appropriate statistical design is critical in clinical 

development during the process of drug development. In recent 
years, there has been tremendous discussion on whether the choice 
of study design should be based solely on medical consideration. 
Another interesting question raised is whether to include marketing, 
regulatory, and/or statistical perspectives as well. Ideally an optimal 
design will account for considerations from different perspectives. In 
practice, however, such a design may not exist. It should be noted that 
considerations from different perspectives always mean limitations 
to the choice of design. Therefore, Temple [17] pointed out that a 
study must be sufficient to its task, and design limitations should be 
understood before proceeding, first to see whether a better design can 
be found and to understand the limits on interpretation imposed by a 
less than optimal design, and second, so that, it necessary, the limits 
can be discussed with the regulatory agency and potential problems 
are anticipated.

Parallel versus crossover

Crossover design: A crossover design is a modified randomized 
block design in which each block receives more than one treatment at 
different dosing periods. A block can be a patient or a group of patients. 
Patients in each block receive different sequences of treatments. A 
crossover design is called a complete crossover design if each sequence 
contains all treatments under investigation. For a crossover design it 
is not necessary that the number of treatments in each sequence be 
greater than or equal to the number of treatments to be compared. We 
will refer to a crossover design as a p×q crossover design if there are 
p sequences of treatments administered at q different dosing periods. 
Basically a crossover design has the following advantages: (1) it allows 
a within-patient comparison between treatments, since each patient 
serves as his or her own control. (2) It removes the inter-patient 
variability from the comparison between treatments. (3) With a proper 
randomization of patients to the treatment sequences, it provides the 
best unbiased estimates for the differences between treatments. The use 
of crossover designs for clinical trials has been much discussed in the 
literature Jones and Kenward [18], and Chow and Liu [16].

Parallel group design: A parallel group design is a complete 
randomized design in which each patient receives one and only one 
treatment in a random fashion. Basically there are two types of parallel 

STUDY  DESIGN AND SCHEDULE OF ASSESSMENTS

TREATMENT
RERIOD

A B

B1 B2

C

C1 C2

TEST DRUG/
INVESTIGATIONAL     PRODUCT
A

5 mg 10 mg

TEST DRUG/
INVESTIGATIONAL     PRODUCT
B

5 mg 10 mg

Run-in
5 mg 10 mg

TEST DRUG/
INVESTIGATIONAL     
PRODUCT B

5 mg 10 mg

TEST DRUG/
INVESTIGATIONAL     
PRODUCT A

Figure 1: An example of crossover design with three treatment periods with two treatments.
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group design for comparative clinical trials, namely, group comparison 
(or parallel-group) designs and matched pairs parallel designs. The 
simplest group comparison parallel group design is the two-group 
parallel design which compares two treatments (e.g., a treatment group 
vs. a control group). Each treatment group usually, but not necessarily, 
contains approximately the same number of patients. The ICH E9 [19] 
guideline “Statistical Principles for Clinical Trials” indicates that the 
parallel group design is the most common trial design for confirmatory 
trials (ICH E9, 1998).

Remarks: When planning a clinical trial, it is suggested that the 
relative merits and disadvantages of candidate statistical designs be 
compared before an appropriate design is chosen for the clinical trial. 
It is important to evaluate the suitability of the chosen design for 
addressing scientific/medical questions and/or claims. For example, if 
we are to choose between a crossover design and a parallel design for a 
clinical trial, we must first understand the nature of these two designs. 
For a parallel design, each patient receives one and only one treatment 
in random fashion, whereas for a crossover design each patient receives 
more than one treatment at different dosing periods. If a clinical trial 
is intending to investigate the residual effect that may be carried over 
from one treatment to another, a crossover design could be employed. 
Note that the Federal Register (Vol. 42, No. 5, Sec. 320.26(b) and 
320.27(b), 1977) indicate that a bioequivalence trial (single dose or 
multiple dose) should be crossover in design, unless a parallel design 
or another design is more appropriate for some valid scientific reasons. 
On the other hand, if a clinical trial is intended to demonstrate the 
effectiveness and safety of a study medicine, a parallel design is more 
appropriate.

Cluster randomized design

The fundamental theory of the classic experimental design is based 
on the fact that the randomization unit is the same as the analysis 
unit used as the experimental unit for statistical inference. In clinical 
trials, the randomization units could be some social intact units such 
as family, school, worksites, athletic teams, hospitals, or communities. 
These social units are called clusters. The resultant randomized design 
with clusters as experimental units are referred to as cluster randomized 
design.

For cluster randomized designs, randomization is performed at the 
cluster level rather than at the subject level. Thus, the unit of analysis 
may not be necessarily the same as the unit of randomization. If the 
inference is made at cluster level, then the standard methodologies 
for traditional clinical trials provided can be applied because cluster 
is the unit of randomization as well as the unit of analysis. However, 
for most clinical trials with a cluster randomized design, the inferences 
are intended at the subject level, and hence, the standard methods for 
sample size calculation and data analysis considering subject as analysis 
unit are not appropriate. One of the major considerations for design 
and analysis of cluster randomized trials is the control of the intra-
cluster and inter-cluster variations. As clusters are some intact social 

units such as families or worksites, therefore, we would anticipate that 
the subjects within the same cluster might share the same traits or have 
similar characteristics. In other words, the subjects within the same 
cluster are more similar than are those between clusters. One statistical 
measure to quantify this similarity is the intra-class correlation 
coefficient (ICC) If the intra-class correlation coefficient, denoted by 
ρ, is positive, the intra-cluster variation is smaller than the inter-cluster 
variation. The ICC plays a very important role in analysis of cluster 
randomized trials using subjects as the unit of inference.

Titration design 

For phase I safety and tolerance studies, Rodda et al. [20] classify 
traditional designs as (i) rising single-dose design, (ii) rising single-
dose crossover design, (iii) alternative-panel rising single-dose design, 
(iv) alternative-panel rising single-dose crossover design, (v) parallel-
panel rising multiple-dose design, and (iv) alternative-panel rising 
multiple-dose design Ting [21]; Chow and Liu [22].

Phase I studies are usually conducted in young, healthy male 
volunteers. The purpose of phase I studies is to obtain initial 
appraisement of drug safety through the evaluation of vital signs, 
physical health, and adverse events and frequent assessments of 
hematology, blood chemistry, and urine samples. The above designs 
are commonly employed in phase I safety and tolerance studies 
to efficiently provide the data that can be analyzed for generating 
hypotheses rather than for making definitive inference.

In medical practice, if the study medicine is intended for cancer or 
some life-threatening diseases, it may not be ethical to conduct phase I 
safety and tolerance studies on normal volunteers due to potential toxic 
or fatal effects. In addition results from animal studies provide little 
information regarding the therapeutic range for possible efficacy with 
tolerable safety. Due to the special characteristics of cancer patients 
and toxic profiles of cancer treatments, designs for cancer clinical trials 
require special considerations.

Adaptive design

In February 2010, the FDA [23] circulated a draft guidance on 
adaptive design clinical trials, which defines an adaptive design as a study 
that includes a prospectively planned opportunity for modification 
of one or more specified aspects of the study design and hypotheses 
based on analysis of (usually interim) data from subjects in the study. 
Analyses of the accumulating study data are performed at prospectively 
planned time points within the study, with or without formal statistical 
hypothesis testing. The FDA’s definition has been criticized for 
inflexibility in the sense that it is difficult, if not impossible, to consider 
all possible scenarios (to plan opportunities) ahead of time for clinical 
investigation of a test compound with complicated structure and 
certain uncertainties. The benefits and limitation of adaptive design are 
outlined in Table 13.

As described in the 2010 draft guidance, the FDA classifies adaptive 

Possible benefits Limitations
Flexibility for identifying optimal clinical benefits 
in a more efficient way

Validity and quality/integrity are the major concerns due to possible optional bias caused by adaptions applied

Correct wrong assumption early Statistical methods for some specific adaptive designs (e.g., less well-understood designs) are not well-established
Select the most promising option early Criteria for decision-making may not scientifically justifiable
Make use of emerging external information Statistical inference (e.g., p-value and CI) may not be reliable and the overall type I error rate may not be controlled
React to surprise (positive or negative) early The role of Data Monitoring Committee (DMC) is not clear
Speed development process There are some obstacles for implementation

Table 13: Possible Benefits and Limitation for Utilizing Adaptive Designs in Clinical Trials.
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designs into two categories, namely “well understood” and “less well 
understood”. Well-understood designs are those that have been in use 
for years; the corresponding statistical methods are well established, 
and most importantly, the FDA is familiar with the study designs 
through the review of submissions utilizing them. In contrast, the 
relative merits and limitations of less well-understood designs have not 
yet been fully evaluated. Valid statistical methods have not yet been 
developed or established, and most importantly, the FDA does not have 
sufficient experience with submissions utilizing such study designs.

Depending upon the adaptations employed, adaptive designs can 
be classified into the following types: (i) an adaptive randomization 
design, (ii) an adaptive group sequential design, (iii) a flexible sample 
size re-estimation design, (iv) a drop-the-losers design, (v) an adaptive 
dose finding design, (vi) a biomarker-adaptive design, (vii) an adaptive 
treatment-switching design, (viii) an adaptivehypothesis design, (ix) a 
phase I/II or II/III adaptive seamless trial design, and (x) a multiple 
adaptive design Chow and Chang [24]. These designs are briefly 
described below. 

Adaptive randomization design: An adaptive randomization 
design is a design that allows modification of randomization schedules 
based on varied and/or unequal probabilities of treatment assignment 
both prospectively and after the review of the response of previously 
assigned subjects. The purpose is to assign more subjects to promising 
test treatment under investigation and potentially to increase the 
probability of success of the intended trial. The commonly used 
adaptive randomization procedures include treatment-adaptive 
randomization, covariate-adaptive randomization, and response-
adaptive randomization. In practice, an adaptive randomization design 
may be valuable in trials with a relatively small sample size or a trial 
with short-term outcomes, but may not be feasible for a large trial 
with relatively long treatment duration. Adaptive randomization is 
classified as a less well-understood design according to the FDA draft 
guidance (FDA, 2010) [23]. The issue regarding the balance of patient 
characteristics between the treatment groups is a concern for this type 
of design. The imbalance in important characteristics is problematic 
especially for confirmatory studies. 

Adaptive group sequential design: An adaptive group sequential 
design is a classical group sequential design with pre-specified options 
of additional adaptations (e.g., sample size re-estimation, modification/
deletion/addition of treatment arms, change of study endpoints, 
modification of dose and/or treatment duration, and/or randomization 
schedules, etc.) at interim analyses. For the classical group sequential 
design, statistical methods and various stopping boundaries based on 
different boundary functions for controlling an overall type I error rate 
are available in the literature Chow and Chang [24]. Thus, the classical 
group sequential design is considered a well-understood design by the 
2010 FDA draft guidance. However, with additional adaptations (e.g. 
sample size re-estimation based on unblinded interim analyses), the 
adaptive group sequential design may be a less well-understood design. 
In this case, standard methods for the classical group sequential design 
may not be appropriate, as it may not be able to control the overall type 
I error rate at the desired level of 5% due to potential issues pertaining to 
adaptations of a given study design. Appropriate statistical procedures 
are necessary to avoid the potential increase in the study-wide type I 
error rate (FDA, 2010). 

Flexible sample size re-estimation design: A flexible sample size 
re-estimation design is referred to as a design that allows for sample 
size adjustment or re-estimation based on the observed data at interim. 
In general, sample size is determined before the trial formally starts 

based on pilot estimates of efficacy endpoints and their variability, or 
a best guess for the lowest clinically meaningful effect size between the 
treatment and control groups. Practically, parameter misspecification 
may be inevitable, which can lead to an underpowered design if the true 
variability is much larger than the initial specification of the variability 
(FDA, 2010). Thus, it is of interest to adjust sample sizes adaptively 
based on accrued data from the ongoing trial. However, sample size 
re-estimation suffers from the same disadvantage as the original power 
analysis for sample size calculation prior to the conduct of the study 
because it is performed by treating estimates of the study parameters, 
which are obtained based on data observed at interim, as true values. It 
should be noted that the observed difference at interim based on a small 
number of subjects may not be of statistically significance. In other 
words, the results observed from the study may be due to chance alone 
and cannot be reproducible. Thus, standard methods for sample size 
re-estimation based on the observed difference with a limited number 
of subjects may be biased and misleading (FDA, 2010). Sample size 
adjustment or re-estimation could be done in either a blinded Gould 
[25] which is based on overall data or unblinded fashion Cui et al. 
[26] which is based on the criteria of treatment effect-size, variability, 
conditional power, and/or reproducibility probability. In the FDA draft 
guidance, sample size re-estimation methods based on blinded interim 
analyses of aggregate/overall data are well-understood designs and 
they are recommended because these approaches do not introduce bias 
or impair interpretability. In contrast, statistical methods for sample 
size re-estimation based on knowledge of the unblinded treatment-
effect sizes at an interim stage of the study are considered less well-
understood designs. Such designs may have the potential of increasing 
Type I error rate, which is the major regulatory concern for this class 
of designs. As indicated in the draft guidance, a statistical adjustment is 
necessary for the final study analysis to protect against such an increase 
of the type I error rate. 

Drop-the-losers design: A drop-the-losers design is a design 
with multiple stages which allows (i) dropping the inferior treatment 
groups, (ii) modifying treatment arms, and/or (iii) adding additional 
arms after the review of accumulated data at interim. Drop-the-losers 
design is also known as selection design or pick-up-the-winner design. 
A drop-the-losers design is useful in phase II trials with the goal of 
finding the appropriate dose and frequency of dosing for later phase 
of clinical development. Typically, drop-the-losers design is the first 
stage of a two-stage design Thall et al. [27]. At the end of the first stage, 
the inferior arms will be dropped based on some pre-specified criteria. 
The winners will then proceed to the next stage. In practice, the study 
is often powered for achieving a desired power at the end of the second 
stage (or at the end of the study). In other words, there may not be 
any statistical power for the analysis at the end of the first stage for 
dropping the losers. In this case, effect size may be exaggerated and may 
consequently have a negative impact on future phase III study design. 
It, however, should be noted the investigator may be at risk of picking 
up the wrong dose group or dropping a group which contains valuable 
information regarding dose response of the treatment under study. 
Therefore, the selection criteria and decision rules play important roles 
for drop-the-losers designs. Figure 2 outline an example of using the 
adaptive model to drop the inferior treatment Chow and Change [24].

Adaptive dose finding design: An adaptive dose finding design is 
often used in early phase clinical development to identify the maximum 
tolerable dose (MTD), which is usually considered as the optimal dose 
for later phase of clinical development. In practice, it is undesirable to 
have too many subjects exposed to the dose limiting toxicity (DLT), 
while it is desirable to have a high probability for achieving the MTD 
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with a limited number of subjects. Thus, the selection of initial dose, 
dose range, and criteria for dose escalation and/or dose de-escalation 
is important to the success of the adaptive dose finding design. The 
traditional “3+3” dose finding design is commonly used in the early 
phase of oncology studies. In recent years, several useful adaptive dose 
finding designs are proposed in the literature Pong [28]; a special issue 
of the Journal of Biopharmaceutical Statistics 17(6), 2007). Among 
those methods, continual re-assessment method (CRM) in conjunction 
with Bayesian approach introduced is usually considered Storer [29]. 
For the method of CRM, the dose-response relationship is continually 
reassessed based on accumulative data collected from the trial. The 
next patient who enters the trial is then assigned to the potential MTD 
level. However, a potential disadvantage is that the model may predict a 
higher MTD due to delayed response and/or a constraint on dose-jump 
O’Quigley et al. [30]. It is not uncommon that the sponsors propose 
CRM-based approaches in their regulatory submissions. In general, 
CRM-based approaches are considered to be more efficient than that 
of the commonly used “3+3” rule with respect to accuracy and the 
allocation of the MTD except when the true dose is among the lower 
levels. Note that drop-the-losers design and adaptive dose finding 
designs are best left to exploratory or early phase studies with the goal 
of obtaining information for designing subsequent studies. 

Biomarker-adaptive design: A biomarker-adaptive design is a 
design that allows for adaptations based on the response of biomarkers. 
A biomarker is a characteristic that is objectively measured and 
evaluated as an indicator of normal biologic processes, pathogenic 
processes, or pharmacologic responses to a therapeutic intervention 
Iasonos et al. [31]. An adaptive biomarker design involves biomarker 
qualification and standard, optimal screening design, and model 
selection and validation. A biomarker-adaptive design is useful in the 
following ways: (i) identify patient population which is most likely to 
respond to the test treatment under study, (ii) identify natural course 
of disease, (iii) early detection of disease, and (iv) help in developing 
personalized medicine Freidlin and Korn [32]. It should be noted that 
correlation between biomarker and true clinical endpoint regardless 
of the treatment given makes a prognostic marker. A prognostic 
biomarker informs distinct expected clinical outcomes, which is 
independent of treatment. They provide information about the natural 
course of the disease in individuals who have or have not received the 
treatment under study. Prognostic markers may be used to separate 

good- and poor-prognosis patients at the time of diagnosis. In this 
case, stratification on prognostic biomarkers often improves design 
efficiency. However, prognostic markers cannot be used to guide to 
choosing a particular therapy Freidlin et al. [33]. On the other hand, 
correlation between biomarker and true clinical endpoint does not make 
a predictive biomarker. A predictive biomarker informs the treatment 
effect on the clinical endpoint, i.e. it identifies patients who are sensitive 
or non-sensitive to a given agent. Therefore, predictive markers can 
guide the choice of treatment methods. Biomarker-adaptive designs are 
typically used in exploratory studies which are important in selecting 
patient population for subsequent trials. However, as indicated in the 
draft guidance (FDA, 2010)), this type of design is considered less well-
understood if it is imbedded in a confirmatory trial to modify patient 
eligibility criteria after the interim look. In such a situation, statistical 
adjustment is needed to avoid increasing the type I error rate Sargent 
et al. [34].

Adaptive treatment-switching design: An adaptive treatment-
switching design is a design that allows the investigator to switch 
a patient’s treatment from an initial assignment to an alternative 
treatment if there is evidence of lack of efficacy, disease progression, 
or safety of the initial treatment. Adaptive treatment-switching is 
commonly seen in oncology clinical trials due to ethical consideration 
Shao et al. [35]. In a cancer trial, estimation of survival (the clinical 
endpoint) is a challenge when treatment-switching has occurred 
in some patients. In practice, it is not uncommon that up to 80% of 
patients may switch from one treatment to another. Such a high 
percentage of subjects who switched due to disease progression could 
lead to change in hypotheses to be tested and cause further challenges 
in result interpretation Branson and Whitehead [36]. 

Adaptive-hypothesis design: An adaptive-hypotheses design is 
referred to as a design that allows modifications or changes in hypotheses 
based on interim analysis results. Modifications of hypotheses of on-
going clinical trials based on accrued data can certainly have an impact 
on the type I error rate, statistical power for testing the hypotheses 
with the pre-selected sample size for achieving the desired power. 
Some adaptive-hypotheses designs examples include pre-planned 
switch from a single hypothesis to a composite hypothesis or multiple 
hypotheses, pre-planned switch the null hypothesis and the alternative 
hypothesis, and pre-planned change due to switch between the primary 
study endpoint and the secondary endpoints. 
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Phase I/II (or Phase II/III) adaptive seamless design: An adaptive 
seamless design is a design that combines the study objectives, which 
are traditionally addressed in separate trials, into one single study. 
Most commonly used adaptive seamless designs include (i) adaptive 
seamless phase I/II design, and (ii) adaptive seamless phase II/III 
design. An adaptive seamless phase I/II design is referred to a design 
that combines a phase I trial which usually aims to find the maximum 
tolerated dose (MTD) for an investigational drug, and a phase II trial 
which examines the efficacy of the drug at the identified MTD. An 
adaptive seamless phase II/III design is a two-stage design consisting of 
a so-called learning or exploratory stage (phase II) and a confirmatory 
stage (phase III). An adaptive seamless design would use data from 
patients enrolled before and after the adaptation in the final analysis. 
Thus, an adaptive seamless design may reduce study sample size as 
compared to traditional designs. In addition, an adaptive seamless 
design is considered to be more efficient because there is no lead time 
between the two stages, i.e., the study moves to the second stage without 
holding the enrollment process. In practice, the sponsors often propose 
to use the so-called operationally adaptive seamless designs, in which 
two traditional trials (e.g. phase II and phase III) are conducted under a 
single study protocol but analyzed separately to address each objective 
using data from each stage. In this case, the investigators simply enjoy 
the saving in time. For an adaptive seamless phase II/III design, a 
typical approach is to power the study for the phase III confirmatory 
phase and obtain valuable information with certain assurance at the 
phase II learning stage. Its validity and efficiency, however, has been 
challenged. According to the draft guidance (FDA, 2010), an adaptive 
seamless phase II/III design is considered as a less well-understood 
design and may introduce bias. The type I error rate may be higher 
than stated in this design and could be a cause for concern. 

Multiple adaptive design: A multiple adaptive design is a design 
with any combination of the above mentioned adaptive designs. 
A multiple adaptive design is more flexible but more problematic. 
Although a multiple adaptive design is more attractive, it makes good 
statistics practice (GSP) more difficult and challenging in practice.

Remarks: As noted in the draft guidance (FDA, 2010), the main 
concerns with designs that are less well-understood at this time include: 
(i) control of the study-wide Type I error rate, (ii) minimization of the 
impact of any adaptation associated statistical or operational bias on 
the estimates of treatment effects, and (iii) the interpretability of the 
results.

Concluding Remarks
In this article, several commonly employed statistical designs in 

pharmaceutical/clinical development are reviewed. Following the 
concept of quality by design as recommended by the US FDA, these 
statistical designs are useful in non-clinical, pre-clinical, and clinical 
development of test compound under investigation to ensure that the 
test compound will possess good drug characteristics such as identity, 
strength (potency), quality, and purity (before approval) and safety, 
efficacy, quality, and stability (post-approval). Each design has its own 
merits and limitations under different circumstances at various stages 
of pharmaceutical/clinical development. As a result, how to select 
an appropriate design when planning a clinical trial is an important 
question. The answer to this question depends on many factors. As an 
example, for clinical development, these factors include (i) number of 
treatments to be compared, (ii) characteristics of the treatment, (iii) 
study objective(s), (iv) availability of experimental units (e.g., subjects 
or patients), (v) Inter-subject and intra-subject variabilities, (vi) 
duration of the study, and (vii) dropout rates.

In practice, as rule of thumb, Chow and Liu [22] suggested that for 
a multicenter trial,  the number of centers (study sites) should not 
be greater than the number of subjects in each center for achieving 
optimal statistical properties.
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