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Introduction
Protein microarrays

In recent years powerful high throughput microarray techniques for 
gene expression profiling have emerged and have been widely applied 
in comparative studies of cellular states and biological specimens [1,2]. 
These facilitate automated, paralleled analysis of thousands of genes 
and have created new possibilities in biomedical research. Despite such 
advantages, it should be noted that the correlation of RNA expression 
data and protein translation is variable [3] and transcriptomics 
measurement cannot take into account post-translational changes 
[4]. An important alternative is the use of protein microarrays, which 
can be used for protein detection, quantification and interaction 
measurements, thus providing a promising complementary approach 
to other systems biology approaches [5].

Akin to their oligonucleotide targeting analogues, protein 
microarrays are constructed on solid supports, such as a glass slide 
or nitrocellulose membrane, onto which small amounts of different 
probes (proteins) are bound at discrete locations [6]. These can range 
from high density chips containing thousands of proteins to specific 
arrays with tens or hundreds of antibodies. Currently there are three 
different types of protein microarrays: functional microarrays, reverse 
phase microarrays and analytical microarrays [6]. Functional protein 
microarrays generally incorporate a large panel of purified proteins or 
protein domains and are used to detect the biochemical activity and 
protein interactions [7]. With reverse phase protein microarrays a 
cell lysate is arrayed and then probed with antibodies against specific 
protein targets [8]. Analytical microarrays have included arrays of 
antibodies, aptamers, or affibodies and are typically used to measure 
binding affinities, specificities, and protein expression levels of proteins 

in complex mixtures [9,10]. Overall the main areas of application for 
protein microarrays include proteomics, protein functional analysis, 
antibody characterization, diagnostics, and treatment development. 
The listed range of specific targets and application reads like a who’s 
who of protein orientated biological research, including protein-
protein/peptide/RNA interactions [11-13], protein post-translational 
modifications [4] and biomarker identification [14]. The latter includes 
application towards detection of infectious disease [15], cancer [14,16] 
and autoimmune diseases, e.g. systemus erythematosus [17] and 
rheumatoid arthritis [18].

Amongst the methods of detection used with protein microarrays, 
fluorescent labelling is the most widely used. Other approaches include 
photochemical and radioisotope tags. The fluorescent label or tag 
is attached to the probe or secondary antibody and the interaction 
determined by, for example, a microarray scanner [6].

Type 1 diabetes

Type 1 diabetes (T1D) is an autoimmune disease that results in 
the destruction of the insulin producing beta cells of the islets of the 
Langerhans [19]. At this point the patient is dependent on a daily 
insulin substitution for the rest of his/her life and there is a high risk of 
developing acute and long-term complications. There is a strong genetic 
component for T1D risk, in addition to the role of the environment, 
diet and viral infections, which have been indicated as influential 
factors driving its onset. Whilst the genetic traits for T1D are common 
in some populations, the outcome is unpredictable. Early signs of its 
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onset are found with the detection of autoantibodies against islets cells 
(ICA). Currently the panel of autoantibodies that are regularly used to 
determine the development of the autoimmune reactions that underlie 
the development of T1D, consists of islet cell autoantibodies (ICA) 
and antibodies against insulin (IAA), glutamic acid decarboxylase 
(GADA), IA-2 protein (IA-2A) and Zinc transporter 8 (ZnT8) [20]. In 
prospective studies of T1D pathogenesis, serum samples are collected 
at regular intervals from genetically conferred risk groups and tested 
for these autoantibodies [21,22]. In this respect the use of protein 
microarrays is an attractive option for multiplexed detection of these 
known autoantibodies and for the detection of new markers.

Amongst the literature describing the use of protein microarrays in 
T1D research there have been a number of studies using commercial 
cytokine antibody arrays [23-27]. Broadly these include a group of 
studies using essentially the same cytokine array (RayBiotech) to study 
the effects of T1D autoantigen stimulation on cytokine production 
from peripheral blood mononuclear cells (PBMCs) from diabetics and 
children with diabetic parents. The PBMC samples used in these studies 
were from patients with cystic fibrosis related T1D [23], neonates with 
T1D parents [24], T1D patients and their relatives [26], T1D children 
[27] and children with mothers displaying maternal hyperglycaemia 
[25]. Miersch et al. [28] produced microarrays displaying 6000 proteins 
that were used to identify new T1D autoantibodies from the sera of T1D 
patients. Their analysis revealed 26 novel autoantibodies. In a similar 
fashion, Koo et al. [29] screened sera from type 1 and type 2 diabetes 
using arrays of 9,600 proteins. In their study, two novel autoantibodies 
were identified.

Protein microarrays: statistical and computational 
approaches

There are a number of reviews on differential expression analysis 
and feature selection using microarray data [30-35]. Most of them 
have focused on gene expression microarrays. Here we provide a brief 
review of differential expression analysis in the context of protein 
microarrays. In particular, we describe the essential steps in the analysis 
of protein microarray data and a number of computational tools for 
determining statistically significant differences between distinct sample 
groups. Finally, we provide a case study with a recently published 
protein microarray data from a study of T1D, which demonstrates the 
favourable performance of our reproducibility-optimized test statistic 
ROTS in comparison to six other methods, including Rank Product 
[36], T-test [37], SAM [38], LIMMA [39], Wilcoxon rank sum test [40] 
and M-score [41].

Pre-processing

After data generation pre-processing is typically needed. This 
step includes removing unwanted outliers, damaged microarrays 
and normalizing data distribution [42]. With the determination of 
biological differences between different sample groups (e.g. cases and 
controls), normalization is needed to avoid systematic errors and other 
artificial differences. In general, normalization is used to adjust the 
expression values so that the measurements across the samples can be 
compared. The most common methods for protein microarrays are 
quantile normalization, variance stabilizing normalization, cyclic loess 
and robust linear model normalization [43-47]. The normalization 
methods can affect the results of the analysis, but currently there is no 
global consensus on the best solution for this [42,48,49]. 

Analysis of differential expression

A common goal in the analysis of experimental results is to identify 

the features that distinguish different conditions. This often begins by 
using statistical tools to compare the expression levels of the different 
conditions to find differentially expressed proteins. Several different 
approaches have been employed for protein microarrays, including 
Rank Product (RP) [50], Wilcoxon rank sum test [26,50], T-test 
[51,52], Significance Analysis of Microarrays SAM [53], Linear Models 
for Microarray Data LIMMA [54], M statistic [29] and many more. 
The available tools often have some critical points, for instance, they 
can be time consuming to apply, they do not adapt well to the intrinsic 
properties of new data sets or the results show poor reproducibility 
across data sets. For example, the T-test does not work well for data 
sets with only few replicate samples and it relies on the assumption that 
the data are normally distributed, which is not usually the case [55,56]. 
When the distribution of the data is not known, non-parametric 
methods are preferred. However, they can also be dependent on the 
characteristics of the data. To deal with small sample sizes, it has 
been proposed to use relevant background knowledge [57], improved 
statistical tests [38,39,58,59] or more than one method to obtain better 
detections [45,60]. Overall, there have been strong reasons to develop 
different tools to improve statistical power and identify reliable features 
from differential expression analysis.

To address the problem of deciding which statistical test is suitable 
for a particular data and best adaptive to the data characteristics, we have 
introduced a Reproducibility-Optimized Test Statistic ROTS [58,59], 
which learns the optimal test statistic directly from the given data. 
More specifically, ROTS gives more freedom for the standard deviation 
term in T-test, which enables the optimization process toward maximal 
overlap among top-ranked proteins across bootstrap resamples. Table 
1 summarizes ROTS together with several other widely used tools for 
differential expression analysis: Rank Product, Wilcoxon rank sum 
test, the ordinary T-test, SAM and LIMMA. In brief, SAM and LIMMA 
are modifications of the ordinary T-test whereas Wilcoxson rank sum 
test and Rank Product are common non-parametric methods based on 
ranks.

False discovery rate

Statistical testing is based on setting a null hypothesis (e.g. there is 
no difference in protein expression between two groups) and testing if 
it is true or not. Statistical significance is determined by p-value, which 
is the probability that we reject the hypothesis while it is actually true. 
If the p-value is small (e.g. 0.05 or less) then there is strong evidence 
against the null hypothesis, whilst a large p-value means that the 
evidence is weak or the test is not significant.

In protein microarray studies, a large number of statistical tests 
are made simultaneously, one for each protein on the array. With such 
multiple testing it is necessary to apply corrections when assessing 
protein differential expression. For example, if there are 1000 proteins 
on the array and we use the p-value of 0.05 to determine differential 
expression, then by random chance alone we would expect 50 false 
positive discoveries. To reduce the number of false positives, the 
p-value needs to be corrected. Traditionally, Bonferroni correction 
has been used, but it is often too conservative and may also discard 
many true discoveries [61]. Therefore, the False Discovery Rate (FDR) 
approach has been developed that is less conservative. Common 
methods to control FDR include the Benjamini–Hochberg procedure 
and permutation-based procedures [62,63]. 

Data visualization

For each processing step, good visualization is helpful in the 
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interpretation of the results, especially with high-dimensional data. 
Before and after normalization, histograms or boxplots can show the 
overall change in the shape of the data. This can also indicate possible 
outliers, which should be removed from the data before further analysis. 
Next, unsupervised clustering such as hierarchical clustering and heat 
maps can be used to explore known patterns or suggest new ones to be 
considered in order to obtain the full picture of the data. After detection 
of differential expression, volcano plots or the receiver operating 
characteristics (ROC) curves are often drawn to aid the interpretation 
the results. For example, volcano plots can show the fold change and 
the significance, while ROC curves visualize the relationships between 
the sensitivity and specificity of classification.

Case study: Identification of autoantibodies for T1D
To illustrate the performance of the different statistical methods in 

discovering new autoantibody biomarkers of T1D, we re-analysed the 
recently published protein microarray data by Koo et al. [29]. The data 

were downloaded from Gene Expression Omnibus (GEO) database 
(accession number GSE50866), including measurements from serum 
samples of 16 T1D patients, 16 T2D patients, and 27 healthy controls 
with normal glucose tolerance (NGT). The data were from the 
ProtoArray protein microarrays, containing 9480 human proteins. The 
data were log transformed (base 2) and quantile normalized before the 
statistical analysis. The readily normalized data were downloaded from 
GEO.

Using six different statistical methods, we identified proteins that 
showed significant differences between two groups of samples at false 
discovery rate FDR<0.05. Following the approach of the original study, 
three comparisons were considered: T1D vs. NGT, T1D vs. NGT and 
T2D (NGT+T2D), and T1D vs.T2D. Additionally, we compared the 
obtained results to those of the original study using the M-statistic with 
P<0.05 and an additional Z-score criterion [29]. Table 2 illustrates the 
numbers of detections with the different methods. 

Methods Formula with relevant details FDR computation Note 
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differential expression
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distribution approximation
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approach
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wherexj(i) and s(i) are the same as in T-test. The parameters α0 and α1 are determined 
so that they maximize the reproducibility Z-score
Zk,α=(Rk,α−R0

k,α)/sk,α,

where k is the top list size; α=(α0, α1); Rk,α and R0
k,α are the observed and random 

reproducibility; sk,α is the standard deviation of the bootstrap distribution. Reproducibility 
is the overlap of the top-ranked proteins across bootstrap re-samples.

permutation-based 
approach

Special cases:  the T-test 
(α0=0, α1=1), the signal log-ratio 
(α0=1, α1=0), the SAM statistic 
(α1=1, α0 is a percentile of the 
standard deviation).

Table 1: Summary of six statistical tools used to determine differential expression: T-test, SAM, LIMMA, Wilcoxon rank sum test, Rank Product and ROTS.
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Overall, the widely used LIMMA and the Wilcoxon test detected 
only one protein in the three comparisons, whereas Rank Product 
resulted in very long lists of detections, suggesting that these methods 
may not suit the present data. In general, many more findings were 
made in the original study than in our comparisons. This is in line with 
the fact that the original study did not control the FDR levels, and was 
therefore more liberal than our FDR controlling strategy and thus more 
prone to false positive detections. SAM and ROTS detected similar 
numbers of proteins as significant. T-test detected more proteins in the 
comparisons T1D vs. NGT, and T1D vs. NGT+T2D, but none in the 
comparison T1D vs. T2D. 

Investigation of the common detections between SAM, T-test 
and ROTS suggested that the overlap of the detections between these 
methods was often relatively small (Figure 1). In the comparison T1D 
vs.NGT, only ~15% (6/39) of the detections made by the T-test were 
found with at least one other method. With SAM the overlap was 
~50% (10/19), and with ROTS 60% (9/15). In the comparison T1D vs. 
NGT+T2D, the overlap was ~5% (1/23) with T-test, 20% (2/10) with 
SAM, and 40% (2/5) with ROTS. Finally, in the comparison T1D vs. 
T2D, the overlap was ~50% (5/11) and ~80% (5/6) for SAM and ROTS, 
respectively, whereas T-test did not find any proteins. Taken together, 
ROTS gave the highest proportion of detections that were also found 
by at least one of the other methods. This supports the potential 
relevance of the proteins detected using ROTS, as it has been found 
in various contexts that detections made simultaneously by multiple 
different statistics are more likely to be true than those made by a single 
statistic [64,65]. Furthermore, out of all the 18 detections made with at 
least two methods across the three comparisons (11 in T1D vs. NGT, 2 

in T1D vs. NGT+T2D, and 5 in T1D vs. T2D; Table 3) only two were 
not detected by ROTS (~10%), and these two were quite close to the 
borderline (FDR=0.056 and FDR=0.125). 

Figure 2 further illustrates the relationship between the significant 
proteins detected using ROTS in the different comparisons. A total 
of four proteins were detected both in the comparison T1D vs. 
NGT and in the comparison T1D vs. NGT+T2D. These included 
EEF1A1 (eukaryotic translation elongation factor 1 alpha 1), 
EDIL3 (EGF-like repeats and discoidin I-like domains 3), ZADH1 
(PTGR2, prostaglandin reductase 2), and MGC72080 (MGC72080 
pseudoprotein). The latter two were not detected in the original study 
or with the other statistical tests considered in this study (Table 4). 
Prostaglandin reductase 2 (ZADH1) is involved in the metabolism of 
prostaglandins and has been implicated in relation to insulin sensitivity 
[66]. MGC72080 appears to be the product of a pseudo gene. It should 
be noted, however, that both of these proteins were detected with low 
intensity signals, and thus the interpretation of the results should be 
treated with caution. One alternative in such circumstances, is to filter 
out the low abundant proteins using, for instance, the overall average 
intensity or variance across the samples [67] or the combination of Z 
score, Chebyshev inequality precision value and coefficient of variation 
[68,69]. However, such implementations can be subjective and result in 
the loss of data describing potentially important proteins, such as lower 
abundance signalling molecules or receptors.

Four different proteins were detected by all the three methods 
(T-test, SAM and ROTS) across the comparisons. These were EEF1A1, 
EDIL3, SFRS3 (serine/arginine-rich splicing factor 3), and CPEB1 
(cytoplasmic polyadenylation element binding protein 1). EEF1A1 was 
the key finding in the original study, where as SFRS3 was not detected 
in the original study despite the overall lower stringency used there. The 
T1DBase database http://www.t1dbase.org/ shows that these proteins 
are highly expressed in T1D related cells, such as in pancreatic islets. 
Our consistent findings with the different methods suggest that these 
proteins could be useful candidates for further experimental studies to 
validate their role in T1D, such as using validation methods shown in 
[28,29]. In addition it was notable that UBE2L3, the other validated 
protein in the original study, was not consistently detected by multiple 
statistical tests in our comparisons. This is likely due to the fact that it 
was detected with a wide range of signal intensities in the individual 

Figure 1: Overlap of the detections between the methods. The Venn diagrams illustrate the numbers and 
overlaps of the detections (FDR<0.05) made by the ordinary T-test, the Rank Product (RP), the SAM method, or the 
reproducibility-optimized test statistic (ROTS) in the different comparisons: (A) T1D vs NGT, (B) T1D vs NGT+T2D 
and (C) T1D vs T2D. LIMMA and Wilcoxon rank sum test detected almost nothing and they were excluded from 
here for the clarity of illustration. The numbers of detections with all the methods are shown in Table 2. 

A                   B  C 

   

T1D vs NGT T1D vs NGT+T2D T1D vs T2D 

t-test
RP ROTS

SAM t-test
RP ROTS

SAM t-test
RP ROTS

SAM

Method T1D vs. NGT T1D vs. NGT+T2D T1D vs. T2D
M-test (original study) 103 79 27
T-test 39 23 0
SAM 19 10 11
LIMMA 0 1 0
Wilcoxon rank sum test 0 1 0
Rank Product 736 885 548
ROTS 15 5 6

Table 2: Number of differentially expressed proteins detected with the 
different tools (FDR<0.05). The data contains measurements from 16 T1D 
patients, 16 T2D patients, and 27 healthy controls with normal glucose tolerance 
(NGT). 

http://www.t1dbase.org/
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is likely to produce several false positive findings. Accordingly, they 
found a large set of detections that was eventually reduced to two 
candidates validated in independent experiments [29]. Controlling 
FDR helps to eliminate many of the false positive detections.

In prospective studies of T1D risk cohorts, diabetes has been 
diagnosed in subjects who have not displayed any of the known 
autoantibodies [70,71]. Noticeably in one diabetes study, 19% of the 
children were negative for all autoantibodies and this significantly 
increased with the age of diagnosis [70]. Therefore, there is a growing 
demand to discover and validate new autoantibodies which can better 
predict the disease onset. The capabilities of protein microarray 
technology present many possibilities for T1D research, including the 
search for new autoantibodies. Moreover, proteomics markers, derived 
from discovery experiments in T1D research, could be profiled using 
targeted antibody assays to assist in risk classification, as has been 
investigated in the context of Systemic lupus erythematosus [72]. In 
such studies, flexibility in the statistical approaches employed can help 
to fully utilize the data. With more biological information about the 
relevant proteins, more complex dimensions could be integrated for 
further study, for example, connecting the detected proteins with their 
interactive pathways or networks to enhance the markers and practical 
applications in clinical T1D.

Finally, increasing the public availability of protein microarray 
data sets, in formats suitable for reanalysis, would greatly benefit the 
research community. If the collected data from most of the studies were 

A  T1D vs NGT (15) 

 

             
T1D vs NGT+T2D

 
(5)

           
T1D vs T2D (6)

 

B 

 

T1D          NGT                 T2D

2

0

-2

11

4

1

6

Figure 2: ROTS detections. (A) Numbers and overlaps of the ROTS detections (FDR < 0.05) in the three 
comparisons:  T1D vs NGT, T1D vs NGT+T2D, and T1D vs T2D. (B) A heat map representation of all these 22 
proteins detected by ROTS. The columns show the total of 59 samples from three groups (T1D, NGT, T2D) and 
the rows correspond to the 22 detected proteins. The 4 proteins overlapped between T1D vs NGT and T1D vs 
NGT+T2D are highlighted in red: EEF1A1 (eukaryotic translation elongation factor 1 alpha 1), EDIL3 (EGF-like 
repeats and discoidin I-like domains 3), ZADH1 (PTGR2, prostaglandin reductase 2), and MGC72080 (MGC72080 
pseudoprotein). The ZADH1 and MGC72080 were not found in original study [29]. The signal intensities were 
log2-transformed and autoscaled similarly as in the original study [29]. Yellow represents increase and blue means 
decrease in abundance.

samples measured. This further highlights the importance of careful 
validation in independent sample cohorts.

Conclusions
This report provides an overview of the statistical and 

computational tools available for protein microarray data analysis and 
demonstrates how they can be used to help to study T1D. In addition 
to clarifying the expression changes and activity of known proteins 
relevant to T1D, protein microarrays can enable the discovery of new 
biomarkers to predict the onset of T1D. From the computational 
viewpoint, the existing literature reveals limitations in the current 
practices. In particular, our reanalysis of the recently published T1D 
data [29] demonstrated how the choice of the statistical test can have 
a large impact on the results obtained. For instance, the widely-used 
methods for differential expression analysis LIMMA, Rank Product 
and Wilcoxon rank sum test did not perform well in these data. To 
overcome such limitations, we propose to adjust the test statistic to the 
properties of the data by optimizing the reproducibility of detection 
by using bootstrap resampling. Our ROTS package performed well for 
the given data set, yielding the highest proportion of detections that 
were also found by at least one of the other methods, supporting their 
potential relevance. 

Another important issue in the analysis to be highlighted is the use 
of FDR to reduce the number of false positive discoveries. For instance, 
in the original study of the T1D data [29], the authors used nominal 
p-values to determine significance, which does not control FDR and 
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T1D vs. NGT
SwissProt Symbol T-test Wilcoxon SAM LIMMA ROTS Koo et al. [29]
P84103 SFRS3 0,042 0,262 0,000 0,141 0,000 0
O43854 EDIL3 0,038 0,146 0,000 0,140 0,000 1
Q9BZB8 CPEB1 0,031 0,213 0,000 0,140 0,000 1
P40394 ADH7 0,586 0,278 0,000 0,141 0,000 1
Q96JZ2 HSH2D 0,096 0,199 0,000 0,141 0,000 1
Q6PIH6 IGKV1-5 0,128 0,395 0,000 0,249 0,050 1
P68104 EEF1A1 0,060 0,146 0,000 0,140 0,000 1
P17813 ENG 0,173 0,262 0,000 0,141 0,000 1
P09210 GSTA2 0,043 0,146 1,000 0,141 0,000 0
Q8NB37 PDDC1 0,022 0,393 0,000 0,231 0,056 1
NA NA 0,041 0,395 0,051 0,389 0,125 0
T1D vs. NGT+T2D
SwissProt Symbol T-test Wilcoxon SAM LIMMA ROTS Koo et al. [29]
P68104 EEF1A1 0,038 0,251 0,000 0,025 0,000 1
O43854 EDIL3 0,058 0,359 0,000 0,237 0,000 1
T1D vs. T2D
SwissProt Symbol T-test Wilcoxon SAM LIMMA ROTS Koo et al. [29]
NA NA 0,281 0,186 0,000 0,069 0,000 0
Q969W0 C14orf147 0,654 0,241 0,088 0,354 0,000 0
Q5R7J7 C16orf69 0,839 0,146 0,000 0,257 0,000 0
P12074 COX6A1 0,435 0,168 0,000 0,354 0,000 0
Q96IY1 NSL1 0,907 0,112 0,000 0,354 0,000 0

Table 3: Differential expression detections made with at least two methods 
excluding Rank Product (FDR<0.05). Significant detections with FDR<0.05 are 
highlighted in bold text. The first two columns are the detected proteins and the 
next five columns show their corresponding FDR values from the different tests. 
The last column indicates whether our detections were found in the original study 
of Koo et al. [29]: “1” means “detected” and “0” means “not detected”. 

T1D vs. NGT
SwissProt Symbol T-test Wilcoxon SAM LIMMA ROTS Koo et al. [29]
Q8N8N7 ZADH1 0,13 0,15 1,00 0,14 0,00 0
Q4G0Q6 MGC72080 0,34 0,15 1,00 0,14 0,00 0
Q8NCL8 TMEM116 0,13 0,26 1,00 0,19 0,00 0
Q19CC5 TRABD 0,21 0,31 1,00 0,21 0,00 0
NA NA 0,18 0,15 1,00 0,20 0,00 0
Q86UD5 LOC133308 0,99 0,52 1,00 0,17 0,00 0
T1D vs. NGT+T2D
SwissProt Symbol T-test Wilcoxon SAM LIMMA ROTS Koo et al. [29]
P35443 THBS4 0,15 0,36 1,00 0,24 0,00 0
Q8N8N7 ZADH1 0,24 0,36 1,00 0,26 0,00 0
Q4G0Q6 MGC72080 0,42 0,25 1,00 0,24 0,00 0
T1D vs. T2D
SwissProt Symbol T-test Wilcoxon SAM LIMMA ROTS Koo et al. [29]
P49959 MRE11A 0,66 0,26 1,00 0,35 0,00 0

Table 4: ROTS detections that were not found by the other methods 
(FDR<0.05).  The first two columns are the detected proteins and the next five 
columns show their corresponding FDR values from the different tests. The last 
column indicates whether our detections were found in the original study of Koo et 
al. [29]: “1” means “detected” and “0” means “not detected”.

made available, one could utilize several computational and statistical 
methods to identify and suggest a smaller set of relevant candidate 
biomarkers for further validation experiments, which would essentially 
save laboratorial effort and cost.
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