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Abstract
Next generation sequencing has revolutionized the status of biological research. For a long time, the gold standard of 

DNA sequencing was considered to be the Sanger method. However, in 2005, commercial launching of next generation 
sequencing has made it possible to generate massively parallel and high resolution DNA sequence data. Its usefulness 
in various genomic applications such as genome-wide detection of SNPs, DNA methylation profi ling, mRNA expression 
profi ling, whole-genome re-sequencing and so on are now well recognized. There are several platforms for generating 
next generation sequencing (NGS) data which we briefl y discuss in this mini overview. With new technologies come 
new challenges for the data analysts. This mini review attempts to present a collection of selected topics in the current 
development of statistical methods dealing with these novel data types. We believe that knowing the advances and 
bottlenecks of this technology will help the researchers to benchmark the analytical tools dealing with these data and 
will pave the path for its proper application into clinical diagnostics.
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Introduction
Next generation sequencing (Shendure and Ji, 2008), also known 

as deep sequencing, is a transformative technology for today’s 
biomedical research. The growing importance of next generation 
sequencing for the clear understanding of various biological systems 
has indirectly triggered a competition among several companies, 
each trying to come up with a sequencing platform which can 
produce high quality longer read sequences with greater throughput 
and reduced cost. We begin this mini review by discussing various 
technologies for next-generation sequencing.

Roche 454

NGS using Roche 454 technology became commercially available 
in 2005 (Margulies et al., 2005). This technology uses bead-based 
emulsion polymerase chain reaction (em- PCR) to amplify copies of 
templates of DNA molecule (Dressman et al., 2003). The amplified 
beads are sequenced in parallel by pyrosequencing (Marsh, 2007). In 
pyrosequencing, four different nucleotides are flowed in a sequential 
manner through a solid surface containing wells into which single 
beads can fit. This process goes on for cycles and the signal intensity 
per flowing nucleotide is recorded for each bead over time and is 
analyzed to generate good quality sequence.

This platform is lot more high throughput than any capillary 
based sequencing. In the Titanium version of the Roche 454 
platform, the output has several hundred mega bases of 400-500 base 
reads per run. Hence, it is more cost effective than Sanger’s chain 
termination method (Sanger et al., 1977) which was the old standard 
of DNA sequencing. The 454 technology does not suffer from the 
G-C rich content and does not skip the unclonable segments as the
process does not rely on cloning. However, it is to be noted that 454
technology suffers from detecting subsequences of repetitive DNA
sequences or homopolymers in a DNA sequence. As pyrosequencing
depends on intensities of light, the light emitted for detecting
TAAAA or AAAAA could be very similar. Also, while 454 sequencing is
cheaper and faster per base, each run is quite expensive (over $8000), 
and so it is not suitable for sequencing targeted fragments from small 
numbers of DNA samples.

SOLiD by applied biosystem

In this technology, similar to 454, DNA fragments are amplified by 
em-PCR onto beads (Dressman et al., 2003). The difference between 
the SOLiD and the 454 platform is that the SOLiD beads are much 
smaller than 454 beads (1 m vs. 28 m ). This results in much denser 
packing of beads into the same area in SoLiD (100 million beads per 
sequencing run). This platform can produce approximately 20 Gb of 
short-read sequence data per run (25-50 bases) and so is preferable to 
resequencing for de novo assembly. SOLiD uses a unique ligation-
mediated sequencing strategy which is less prone to the errors 
involved with pyrosequencing method in 454 platform. In the SOLiD 
system, each data point represents two adjacent bases, and each base 
is interrogated twice. Hence it can discriminate between sequencing 
errors and true polymorphisms. The drawback of this platform is that 
the data is collected in color space and it provides information about 
two adjacent bases but not the definitive identification. So, they have 
to be decoded in order to be mapped to a reference genome and 
conventional alignment tools can’t be used for the mapping process. 
Direct conversion from color to sequence data also is prone to error 
such as reads that contain sequencing errors can not be converted 
accurately. Error rate of this platform is significantly higher than 
traditional Sanger sequencing.

Illumina/solexa genome analyzer

This platform was first introduced by Solexa in 2006 and later on 
re-branded as Illumina Genome Analyzer (GA). This technology does 
not depend on the em-PCR to amplify the template DNA strands like 
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the other two platforms mentioned before. Instead, adapter ligated 
template molecules flow into the flow cell (hollow glass slide). 
Template DNA hybridizes to the primers on the flow cell surface and 
gets copied onto the flow cell as an extension to the hybridization 
primer. This results in a generation of reverse complimentary copy of 
the template. This newly synthesized strand serves as templates for 
isothermal amplification reaction and results in clusters of amplified 
strands. Due to the terminator nucleotides, each DNA strand within a 
cluster incorporates the same nucleotide within a cycle. The clusters 
are imaged and the next round of nucleotide incorporation begins 
after removing the imaged blocked groups and the flurophores of the 
newly incorporated nucleotides. Analysis of the images generates a 
separate sequence for each cluster.

An Illumina Genome Analyzer is currently capable of producing a 
sequence up to 10-Gb per 76-cycle paired-end run. However, beyond 
this length the frequency of the substitution errors are high due to 
cluster phasing and de-phasing.

Helicos true single-molecule-sequencing (tSMS) technology

This sequencing platform has been launched in 2008, and is 
considered as the next-next generation or 3rd generation sequencing. 
This platform is based on the technology that was published in 2003 
(Braslavsky et al., 2003). This sequencing also deals with millions of 
templates parallely; however, tSMS differs from the existing next 
generation sequencing described earlier in that it does not amplify 
the template molecules. So it is free from any errors due to the 
amplification process. Also, the library preparation is simple and 
rapid. In this technology, single molecules are the substrates for the 
sequencing reaction. Fluorescent nucleotides are added singly. The 
flow cell is visualized to identify strands that hybridized the particular 
nucleotide with the help of the fluorescence of the nucleotide. The 
incorporation of the nucleotides to the strand depends on the 
compatibility of the template strand with the order of the nucleotide 
addition. Hence the length of the sequences is variable but on average 
they are of lengths of 25-30 bases.

This technology is free from phasing errors. However, sensitivity 
seems to be an issue with this platform (Harris et al., 2008). The true 
error rate can be reduced from 2 to 3% to below 1% by repeating the 
reading of the same strand twice. However, it increases the running 
time (Harris et al., 2008).

Other than these major platforms, some noteworthy emerging 
platforms are mentioned here. The SMRT technology by Pacific 
Biosciences (Eid et al., 2009) has recently showed promising early 
results using single-molecule real-time DNA sequencing. Dover 
Systems’ Polonator was announced in early 2008 by George Church 
at MIT and arose from collaboration between George Church’s 
laboratory and Danaher Corporation. Although this system uses 
bead based em-PCR (Dressman et al., 2003) and sequencing by 
ligation (Shendure et al., 2005), this is very high throughput and can 
generate data up to 3 Gb per day. However, read lengths are short 
and so it is difficult to use them for vertebrate-size genome. An 
appealing feature of this technology is that it is open source and the 
users can buy all the reagents from any supplier. Other NGS platforms 
include: BASE (single-molecule sequencing technology) by Oxford 
Nanopore Technologies/Illumina, one by Intelligent Bio-systems 
using proprietary sequencing-bysynthesis technology (Ju et al., 2006) 
and single-molecule sequencing technology based on fluorescence 
resonance energy transfer (FRET) by VisiGen Biotechnologies etc. 
Sequencing technologies are also under development by Affymetrix, 

Reveo, Base4innovation, Genome Corp, and Complete Genomics, 
among others. Detailed technical reviews of various NGS platform 
appeared in Mardis (2008) and Metzker (2010).

A brief comparison of the three most popular NGS platforms

Roche 454 gives longer reads (500-700 bp) than both Illumina and 
SOLiD but it suffers from low accuracy in the long homopolymeric 
regions.

The price for sequencing each nucleotide is several times 
reduced in the Illumina technology compared to the Roche 454 
pyrosequencing platform. In terms of the total analysis time and 
sequencing throughput, Illumina and SOLiD platforms are close 
to each other (flow cell construction being costlier in Illumina and 
sequencing in SOLiD).

From the perspective of practical applications, both Illumina 
and SOLiD platforms have their respective cutting edges. In high-
throughput resequencing of large genomes SOLiD is more accurate 
than Illumina whereas for RNA sequence analysis (RNA-seq), Illumina 
is more suitable.

Base calling techniques

Most of the work in this important research area has taken place 
primarily for the llumina (Solexa) platform. Its base calling can suffer 
from three dominant noise factors (Erlich et al., 2008) as follows. In 
sequencing-by-synthesis, each single-stranded nucleotide fragment 
is amplified around the initial attachment in the flow cell, resulting 
in a cluster of about 1,000 identical copies of each fragment. Each 

Figure 1: a: The Illumina noise factors. Here the identical DNA templates are 
depicted as the colored boxes and the black ovals denote DNA polymerases. 
With no noise, the current signal (red lightning) is strong enough to infer the 
DNA sequences directly. b: When the phasing noise is introduced, it causes 
lagging (green lightning) or leading (blue lightning). c: The loss of material can 
cause reducing the signal intensity (fading noise). d: The fl uorophore cross-
talk can cause misinterpretation of the current signal.
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terminal nucleotide in all the clusters is then excited by lasers and 
its signal is detected by charged coupled device (CCD) images of 
fluorescence emission. Ideally, the current position for synthesizing 
will be the same within a cluster, generating a strong signal (Figure 
1a). However, the unstable chemistry causes stochastic failures in 
reading the next nucleotide, introducing phasing (lagging; no new 
base synthesized) and prephasing (leading; two bases synthesized) 
noises (Figure 1b). The second noise factor is due to loss of copies 
of fragments so that the signal intensity is reduced, which is called 
the fading noise (Figure 1c). The third noise factor is known as the 
fluorophore cross-talk, causing misinterpretation of the signal (Figure 
1d).

Illumina developed the built-in base-caller Bustard to transform 
observed intensities into sequences. Bustard consists of three steps 
and each step deals with the three main noise factors separately. It 
first handles the fluorophore cross-talk by transforming intensities 
to concentrations. To do this, it defines the cross-talk matrix and 
removes the overlapping fluorophore effect from intensities by taking 
the inverse crosstalk matrix. Next renormalization of concentrations 
is performed by dividing by the average concentration to eliminate 
the fading noise. The third step involves fitting a Markov model to 
eliminate the phasing noise resulting in the estimated sequences.

Rougemont et al. (2008) used probabilistic modeling and model-
based clustering to identify and code ambiguous bases and to arrive 
at decisions to remove uncertain bases towards the ends of the reads. 
Alta-Cyclic was developed by Erlich et al. (2008) based on support 
vector machine (SVM), requiring a control lane containing a sample 
with a known reference genome for supervised learning. Another 
attempt to improve the Illumina basecaller led to Swift by Whiteford 
et al. (2009). They devoted it to the image analysis.

One of the primary challenges in base calling is the dependency 
among cycles. Bustard, including Alta-Cyclic, assumes that all 
the cycles are performed independently. Recently, several cycle-
dependent base-callers have been introduced. Ibis (Improved base 
identification system) was developed based on the SVM by Kircher 
et al. (2009). They used the multiclass-SVM to provide for a cycle-
dependent model differently from Alta- Cyclic in which univariate SVM 
was used (Erlich et al., 2008). Bravo and Irizarry (2009) came up with 
their own modeling to quantify the read/base-cycle effects. Recently, 
Kao et al. (2009) developed BayesCall based on a stochastic Bayesian 
modeling. A somewhat complex dynamic modeling strategy is used 
in BayesCall which is schematically described in Figure 2, where L 
refers to the total number of cycles (length of fragments) in a run, Sk= 
(S1,k, S2,k,…SL,k) represents the complementary DNA sequence with 
length L in cluster k,  4 1

, , , , ,I =(I ,I ,I ,I )A C G T
t k t k t k t k t k R denotes the observed 

fluorescence intensities of the A, C, G, T channels at cycle t in cluster 
k, and Λt,k denotes the active template concentration in cluster k
at the t-th cycle. One of the novelties of BayesCall is the capability to 
use cycle-dependent parameters in its modeling, adding greater 
flexibility. To avoid over-fitting, the read length is divided into non-
overlapping windows and it is assumed that the parameters remain 
constant within each window. In general, three types of algorithms 
are used to estimate the parameters in BayesCall, namely, MCEM 
(Wei and Tanner, 1990), ECM (Meng and Rubin, 1993) and simulated 
annealing (Kirkpatrick et al., 1983). Finally, a quality score for a call 
is calculated based on its estimated posterior probability. For further 
details we refer the readers to the original paper by Kao et al. (2009).

For the Roche (454 Life Sciences) platform, there exist two base 
callers that are the built-in 454 base caller and Pyrobayes (Quinlan et 

al., 2008). The Applied Biosystems (SOLiD) uses a different style to 
detect the signal by the two base color code and there currently is 
only its own built-in base-caller.

Data quality and reproducibility

Several papers have examined the reliability and reproducibility 
of data from next generation sequencing platforms. While some 
studies have found next generation sequencing data to be superior to 
competing methods, others have found systematic problems with the 
reads obtained in next generation sequencing. Most of these studies 
used data obtained from the Illumina platform.

Marioni et al. (2008) observed that next generation sequencing 
data from Illumina are highly reproducible and very reliable, and 
overall they found it to be superior to the data produced by microarray 
technology. They used Illumina to sequence each sample on seven 
lanes across two plates. The gene counts were highly correlated 
across lanes (Spearman correlation average = 0.96). 

To test for a lane effect by comparing each pair of lanes, Marioni et al.
(2008) tested the null hypothesis that gene counts in one lane represent a 
random sample from the reads in both lanes for each mapped gene. 
Let, for a sample t,  xtk denote the observed number of counts in lane
k and let Ck denote the number of reads in lane k for k = a, b. For a
clear understanding of this test for a lane effect, it is helpful to let 
Xtk denote the random variable representing the number of counts in
lane a in an experiment with xta+xtb total counts, Ca reads from lane a,
and Cb reads from lane b. Now, they tested the null hypothesis that 
the gene counts in one lane represent a random sample from the 
reads in both lanes for each mapped gene; symbolically, this is a test 
of the null hypothesis H0 : π = P0 (xta) versus the alternative HA : π ≠ P0 
(xta) where π = P (Xta= xta) and
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is the probability that Xta =x if the null hypothesis is true (in which
case Xta follows a hypergeometric distribution). They used this test to
compute the P-values for each gene and plotted the quantiles of the 
uniform distribution against the observed quantiles of the P-values 
for each gene, and they found that less than 0.5% of the genes had 
small P-values when the pair of lanes had the same concentration 
of samples. However, a larger proportion of genes indicated a lane 

Figure 2: The graphical modeling for BayesCall when the window size is 1.
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effect when the pair of lanes had different concentrations.

Marioni et al. (2008) also suggested a global test for lane effects 
by comparing all L lanes. For each sample i, they assume that the 
number of reads mapped to gene j for lane k follows independent 
Poisson distributions with mean cik λijk where cik is the total rate that
lane k produces reads at and λijk is the rate of reads to gene j in lane
k relative to other genes. To test the null hypothesis H0: λij1 =…= λijL 

(i.e., λijk are equal for each lane k = 1,…, L ) versus the alternativeH
A
:

λijk are not equal for all k, they used a goodness-of-fit statistic which
follows a chi-square distribution with L -1 degrees of freedom when 
the null hypothesis is true. After plotting the Chi-squared quantiles 
against the observed quantiles for each gene j, they found that only 
about 0.5% of the genes had extra Poisson variation when lanes 
sequenced the same sample at the same concentrations.

Marioni et al. (2008) also used the Poisson model to identify 
differentially expressed genes. Specifically, for each gene j, they 
tested the null hypothesis that the rate of reads λijk are the same
for all i and k versus the alternative that the liver and kidney 
sample have different read rates  A

ijk and B
ijk  . Here, they used the 

likelihood ratio test statistic which follows a 2
1X -distribution under 

the null hypothesis. Using this method, 11493 genes were found to 
be differentially expressed in the liver-versus-kidney samples. This 
list of differentially expressed genes obtained with the Illumina 
data was compared with the results based on Affymetrix U133 Plus 
2 arrays where an empirical Bayes approach was used to identify 
differentially expressed genes. Of 8113 differentially expressed 
genes found by the array, 81% were also found to be differentially 
expressed using Illumina. Finally, quantitative PCR (qPCR) was used 
to examine discrepancies, and overall, the qPCR results agreed more 
with Illumina than with the arrays.

Fu et al. (2009) arrived at a similar conclusion by comparing 
the relative accuracy of transcriptome sequencing (RNA-seq) 
and microarrays with protein expression data from adult human 
cerebellum using 2D-LC MS/MS. They found that the next generation 
sequencing provided more accurate estimation of absolute transcript 
levels.

Wall et al. (2009) used simulation models to compare next 
generation sequencing with traditional capillary-based sequencing 
and concluded that next generation sequencing offers great benefit 
in terms of coverage over capillary-based sequencing. However, 
they suggest combining sequencing methodologies such as FLX and 
Solexa to achieve optimal performance at a modest cost.

On the other hand, a number of authors have reported problems 
and systematic biases with the sequence reads obtained in next 
generation sequencing. Dohm et al. (2008) considered two Solexa read 
data sets and found that error rates were greater at the end of reads 
(0.3% at the beginning compared with 3.8% at the end) and wrong base 
calls are often preceded by base G. Also, base substitution errors were 
significantly disproportionate with A to C substitution error being 10 
times more frequent than the C to G substitution. Similar artifacts 
were observed by Bravo and Irizarry (2009) who considered data from 
the control lane of an Illumina ChIP-seq experiment and reported A 
to T miscall to be the most common error in their calibration study. 
They also reported that the error rates vary with the position on 
the read and questioned the utility of the quality scores supplied 
by the manufacturers with a base call. These and other systematic 
biases may lead to wrong statistical conclusions. Finally, Oshlack and 
Wakefield (2009) considered three data sets including sequencing 

data from Illumina and SOLiD and demonstrated for each data set 
that when gene expression is calculated using aggregated tag counts 
for each gene in RNA-seq technology the ability to call differentially 
expressed genes (or ranking) between samples is strongly associated 
with the length of the transcript.

Statistical tools for using sequence reads

There are a number of notable papers in the area of transcriptome 
analysis using NGS technology: Nagalakshmi et al. (2008) in yeast; 
Cloonan et al. (2008); Morin et al. (2008); Marioni et al. (2008) in 
human; Mortazavi et al. (2008) in mouse; Vera et al. (2008) in butterfly, 
and so on. A next generation sequencing technology obtains millions 
of short reads from the transcript population of interest and by 
mapping these reads to the genome, RNA-Seq produces digital 
(counts) rather than analog signals and offers the chance to detect 
novel transcripts. Obviously, there are several protocols for transcript 
quantification for NGS data.

Mapping software such as MAQ by Li et al. (2008) are useful in 
assembling short sequence reads to match a reference genome. MAQ 
uses a Bayesian calculation to produce a phred-scaled probability (10 
times the common logarithm of the probability) that an individual 
alignment is mapped incorrectly. It also includes the capability to 
use mate-pair information for paired-end read alignment in diploid 
samples. MAQ can assimilate the mapping quality and raw sequence 
base quality scores and uses a Bayesian analysis to make a final 
genotype call. More recent mapping tools such as Bowtie (Langmead 
et al., 2009) and BWA (Li and Durbin, 2009) utilize computational 
advantages of string matching theory via the Burrows-Wheeler 
transform to provide much faster algorithms for short read alignment 
against a large reference genome with a small memory footprint. 
Bowtie extends the Burrows-Wheeler transform for alignment using 
backtracking to allow mismatches as well as double indexing to 
avoid excessive backtracking. Although it is a greedy algorithm which 
will not necessarily find the best match if it is inexact, Bowtie gives 
users options to improve its accuracy in return for computational 
costs. The BWA algorithm uses an efficient backward search with 
the Burrows-Wheeler transform and allows for inexact matching and 
gapped alignment. Li and Durbin (2009) describe the computational 
performance and accuracy of MAQ, Bowtie, and BWA on some 
simulated and real data examples.

The software package F-seq, developed by Boyle et al. (2008), 
employs kernel smoothing in converting high-throughput sequencing 
reads into continuous signals along a chromosome whose output can 
be displayed directly in the UCSC Genome Browser. This type of data 
summary will be useful to identify specific sequence features, such 
as transcription factor binding sites (ChIP-seq) or regions of open 
chromatin (DNase-seq). F-seq provides a more statistically rigorous 
tool to researchers who would otherwise use histograms to calculate 
regions of highly dense sequence reads. Also, Zhang et al. (2008a) 
developed MACS (Model-based Analysis of ChIP-seq) that utilizes 
Poisson modeling and to capture local biases in the genome resulting 
in more robust predictions of binding sites.

Jiang and Wong (2009) used statistical inference of isoform 
expression using high throughput RNA sequencing (RNA-Seq) data 
by Poisson modeling and solving a convex optimization problem. 
The measure RPKM (reads per kilobase of the transcript per million 
mapped reads to the transcriptome) was originally introduced by 
Mortazavi et al. (2008). Normalizing the counts of reads mapped to 
a gene (or to exons belonging to gene) against the transcript length 
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and the sequencing depth, this RPKM measure can compare the 
expression measures across different genes and different experiments. 
However, reads that are mapped to a gene are frequently shared by 
multiple isoforms. Consequently, Jiang and Wong (2009) developed 
the following statistical model for this isoform expression estimation 
problem. Let G be the set of genes and F be the set of isoforms for all 
possible isoforms for all genes. Let lf be the length and let kf be the
number of copies of the transcripts in the form of an isoform f F  . 
Assuming every read is independently and uniformly sampled from all 
possible nucleotides in the sample, the probability that a read comes 
from isoform f is kf lf / L, where the total length of the transcripts in
the sample is   f F f fL k l . If w denotes the total number of mapped 
reads, then the number of reads coming from a region of length l in 
f can be modeled by a Binomial random variable with w trials and 
probability of success kf l / L. Furthermore, if w is large and p is small,
the law of rare events allows this distribution to be approximated 
by a Poisson distribution with mean λ =kf lw /L. Now, assume that
there are m exons with respective lengths l1,...,lm and n isoforms with
respective expressions θ1,...,θn . The set of observations falling into
a region can be modeled by a Poisson random variable with mean 

1  n
g f fg fl w c  where cfg is an indicator variable that equals 1 if

isoform f contains exon g and equals 0 otherwise. The counts for 
exon-exon junctions can be modeled by a Poisson random variable 
with mean 1  n

f fg fh flw c c . In the multiple isoform case, numerical 
methods (e.g., hill climbing) must be used to obtain the maximum 
likelihood estimate of the θ’s; fortunately, the joint log-likelihood 
is concave, so any local maximum is also guaranteed to be a global 
maximum. Standard numerical calculations based on the Fisher 
information matrix can be problematic when some of the isoforms 
have low expressions, so in these cases, a Bayesian alternative using 
importance sampling is proposed for making statistical inferences.

In a recent article, Bullard et al. (2010) explore the effects of 
different systematic sources of variability in measuring the differential 
expression of genes using three platforms (mRNA-seq data from 
Illumina sequencing, microarray and quantitative real time PCR assay 
data), all of which are based on the context of the Microarray quality 
control project (MAQC). In addition, it is also shown that using an 
auto-calibration instead of Illumina’s standard way of reserving one 
flowcell lane for the control can help improving the mapping quality 
of the reads thereby ensuring a much more cost-effective and efficient 
experimental design. Normalization strategies are suggested to get 
rid of these biases.

Other notable contributions leading to broad data analytic 
tools include Johnson et al. (2007, mapping techniques); Fejes et al. 
(2008, enrichment analysis); Ji et al. (2008, ChIP-seq data); Sharon et 
al. (2008, protein-DNA interactions); Zhang et al. (2008b, ChIP-seq 
data); Rozowsky et al. (2009, ChIP-seq data); Langmead et al. (2009, 
alignment tool); Xie and Tammi (2009, DNA copy number variation). 
For a comprehensive review of methods for ChIP-seq and RNA-seq 
data, see Pepke et al. (2009).

R and bioconductor packages

Already, a number of R (http://www.r-project.org/) and 
Bioconductor (http://www.bioconductor.org/) packages/tools for 
analyzing NGS data have been developed. The rtracklayer (Lawrence 
et al., 2009) package provides an interface between R and genome 
browsers. This package includes functions that import/export, track 
data and control/query external genome browser sessions/views. The 
chipseq (Kharchenko et al., 2008) package provides useful tools for design 
and analysis of ChIP-seq experiments and detection of protein-

binding positions with high accuracy. These tools include functions 
that improve tag alignment and correct for background signals. The 
Biostrings 2 (Pages, 2009) package allows users to manipulate big 
strings easily and quickly by introducing new implementations and 
new interfaces into Biostrings 1. The ShortRead package (Morgan et 
al., 2009) provides useful tools for analyzing highthroughput data 
produced by Solexa, Roche 454, and other sequencing technologies. 
These tools include input and output, quality assessment, and 
downstream analysis functions. The IRanges package (Pages et 
al., 2009) includes functions for representation, manipulation, 
and analysis of large sequences and subsequences of data as well 
as tools for attaching information to subsequences and segments. 
The BSgenome package (Pages, 2009) provides infrastructure for 
accessing, analyzing, creating, or modifying data packages containing 
full genome sequences of a given organism. The biomaRt package 
(Durinck et al., 2006) allows users to connect to and search BioMart 
databases and integrates them with software in Bioconductor. This 
package includes functions that annotate identifiers with genetic 
information and allow retrieval of data on genome sequences and 
single nucleotide polymorphisms. The ChIPpeakAnno package (Zhu 
et al., 2009) provides users with facilitation tools for the batch 
annotation of the peaks identified from either ChIP-chip or ChIP-
seq experiments. These tools include functions that find the nearest 
gene, exon, miRNA or transcription factor binding sites as well as 
identify Gene Ontology (GO) terms followed by GO enrichment test. 
The TileQC package (Dolan and Denver, 2009) can be used with 
Solexa output; it identifies bias and error in data by flow cell tiles 
through graphical means. The PICS package (Zhang et al., 2010; 
http://www.bioconductor.org/packages/2.6/bioc/html/PICS.html) can 
identify enriched regions by extracting information from ChIP-Seq 
aligned-read data via a Bayesian hierarchical t-mixture model. The 
rGADEM package (Droit et al., http://bioconductor.org/packages/2.6/
bioc/html/rGADEM.html) provides users with an efficient de novo 
motif discovery tool for large-scale genomic sequence data. Several 
of these packages work in consort as shown in Figure 4.

Besides, there are several packages/tools for visualizing NGS data. 
The HilbertVis package (Anders, 2009) provides several functions for 
visualizing long vectors of integer data by means of Hilbert curves. 
The GenomeGraphs packages (Durinck et al., 2009) allows users 
to plot different data types such as array CGH, gene expression, 
sequencing and other data, together in one plot using the same 
genome coordinate system. These tools include functions to convert 
the Eland and Q-score data contained within the Solexa text files to a 
more flexible database form.

Some selected applications and statistical analyses

In earlier sections, we have mentioned several papers (and 
packages) developing statistical tools for use with NGS data, many 
of which are broad based while others are specific to certain types 
of applications. In this section, we selectively review a number 
of additional papers applying the next generation sequencing 
technology in a multitude of biological investigations along with 
brief descriptions of the statistical techniques used; each of these 
papers employ interesting novel statistical methods for downstream 
analyses of NGS data for solving the problem at hand. For a general 
review of applications of NGS technology, see the article by Fox et 
al. (2009).

In a recent article, Choi et al. (2009) used NG ChIP-seq data 
together with array hybridization data towards enhancing the 
detection of transcription factor binding sites. There are a number of 
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reasons for combining these two platforms. ChIP-seq offers genome-
wide coverage in a single base pair resolution at low cost; however, 
with ChIPseq, different mapping strategies may identify mutually 
exclusive peak regions as candidate binding sites and massively 
parallel sequencing may not work well for all DNA fragments 
uniformly. Other mapping methods not relying on direct sequencing, 
e.g. ChIP-chip, can be a valuable source to complement the weakness 
of the sequencing technology. See Schones and Zhao (2008) for 
an excellent review of various technologies and their combination 
for studying chromatin modifications genome-wide. This rather 
interesting analysis by Choi et al. (2009) uses a hierarchical hidden 
Markov model to combine individual hidden Markov models used 
with each data types. Regular hidden Markov models (HMMs) have 
been a standard tool in modeling ChIP-chip data (Humburg et al., 2008). The main 
difficulties in combining data from these two sources arise from the  
distinct nature of these two data types. The peaks identified by ChIP-seq  
are expected to form regions that are much sharper than those in ChIP-
chip due to its superior resolution, whereas ChIP-chip tends to report 
broader regions with moderate significance including potential 
false positives. The signals from the two data sources have to be 
appropriately weighted in order to keep the overall false positive 
rates low and obtain good sensitivity in the joint analysis. This is 
done through a mostly Bayesian strategy. Individual HMMs {hst} 
and {hct} are fit to both ChIP-seq data {St} and ChIP-chip data {Ct} 
which, in turn, are controlled by a master or hierarchical HMM {ht} 
consisting of either ChIP enriched or background states (Figure 3). 
The states in the individual HMMs were generated from a multinomial 
distribution given the emissions of the master HMM. HMM in ChIP-
chip followed the uniform and normal distributions, respectively, for 
the ChIP enriched and the background states. The counts in ChIP-
seq data in the two states were modeled by a generalized Poisson 
and a zero-inflated Poisson (to reflect the empty reads), respectively. 
Posterior probabilities of the master states are computed and a state 

is declared to be ChIP enriched if this probability exceeds a given 
threshold, say, 90%.

A similar combination of data types was used by Zang et al. (2009), 
who looked for spatial clusters of signals, for identification of ChIP 
enriched signals for histone modification profiles. Chu et al. (2009) 
applied whole genome sequencing to diagnose the fetal genetic 
disease using cell-free DNA from maternal plasma samples in the first 
trimester of pregnancy. Cokus et al. (2008) used NG sequencing to 
identify novel components of the Arabidopsis for methylation. In a 
rather potentially high impact application, Quon and Morris (2009) 
developed a statistical method to identify the primary origin of a 
cancer sample via next generation sequencing. This utilizes a detail 
profile of tissues of each primary origin and not a data based classifier. 
Friedländer et al. (2008) used deep sequencing technology to identify 
small RNAs (miRNAs). They were able to identify and experimentally 
validate four novel miRNAs for the worm Caenorhabditis elegans 
and altogether over two hundred potential miRNAs using data from 
C. elegans, dog and human those were previously unknown. They 
computed a test statistic (i.e., a score) based on the compatibility 
of the position and frequency of sequenced RNA with the secondary 
structure of the miRNA precursor. The false positive rates (or sizes) 
of their test were estimated using a permutation algorithm. Meng 
et al. (2008) studied targeted gene inactivation in zebra fish using 
engineered zinc-finger nucleases (ZFNs). They demonstrated that co-
injection of mRNAs encoding these ZFNs (that were engineered to 
recognize certain sequence) into one-cell-stage zebra fish embryos led 
to mutagenic lesions at the target site that were transmitted through 
the germ line with high frequency. They showed this by comparing the 
Solexa sequence data from target sites versus off-target sites at each 
ZFN dose; Fisher’s exact test was employed to test whether these two 
groups had different insertion/deletion rates in the sequence. Dalevi 
et al. (2008) considered the problem of matching individual short 
reads sampled from the collective genome of a microbial community 
to protein families. They found that assignments based on proxy-
genes, where full-length protein sequences with high similarity to 
the translated sequences are identified, were typically more accurate 
than direct assignment. However, proxy-gene assignments may lead 
to redundancy, so hierarchical clustering was used to significantly 
reduce the size of the dataset while still maintaining the quality of 
the functional information obtained from the analysis. Use of NGS 
for discovering structural variation is reviewed in Medvedev et al. 
(2009). Very recently, Goya et al. (2010) developed novel statistical 
methods of predicting single nucleotide variant from NGS data using 
mixtures of binomial distributions to model allelic counts. Their 
methodologies were developed specifically to work with cancer data 
where earlier simpler methods (e.g., Li et al., 2008) did not work 
adequately.

Concluding Remarks

With new technology come new challenges for the data analysts 
and next generation sequencing is no exception. There seems 
to be a general perception that given the high quality of NGS 
data, replication is hardly necessary. While this may be true for 
technical replicates it cannot be the case with biological replicates 
in experiments where a conclusion is being reached about certain 
genetic aspect of a population from a biological sample from that 
population. The high dimensionality of the data makes direct use of 
classical statistical techniques difficult if not outright impossible. The 
success stories thus far seem to come from mostly Bayesian statistical 
techniques; however, often these are combined with frequentist 

Figure 3: Joint modeling of ChIP-seq and ChIP-chip data.

Figure 4: The dependency among the released R/Bioconductor packages. 
The solid lines represent the direct dependency and the dotted lines the 
indirect dependency.
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calculations. In many instances, the entire analysis combines various 
statistical methods of varied complexities in a mostly ad hoc manner. 
Although, simulation studies are generally performed to demonstrate 
the effectiveness of the combined approach, its overall statistical 
properties are difficult to assess from a theoretical standpoint; 
in particular, no assessment of optimality of the overall statistical 
procedure can be assessed this way.

There is also a misconception amongst some practitioners that 
Bayesian methods are immune from the sample size requirement. 
While it is true that one can always get a Bayesian answer even with 
a small number of biological replicates, for good empirical statistical 
properties such as posterior consistency, a large sample size is 
necessary; this issue is directly linked with overall robustness with 
respect to prior misspecification and the overall reliability of the 
answers from a Bayesian calculation. Next generation sequencing also 
presents some of the same statistical challenges presented by other 
high throughput genomic data types, namely, high dimensionality, 
global error rate control, and correlation amongst counts at different 
sites.

The challenges described above also present new opportunity 
for the statisticians for collaborative (interdisciplinary) as well as 
methodological development in this exciting area of research. In 
particular, there is a need for development of systematic statistical 
methods that adhere to fundamental statistical principles while 
addressing the practical needs of the researchers. There is still scope 
of employing novel statistical methods as new applications to this 
technology emerge. Also, methods to get a better handle of the 
issues mentioned in the previous paragraph are needed sooner than 
latter. Finally, there needs to be more work towards development 
of study designs and establishing global statistical standard in these 
platforms.
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