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Abstract
Alzheimer's disease (AD) is characterized by several pathologies, as this disease involves neuropathological lesions 

in the brain. Indeed, a wealth of evidence suggests that β-amyloid is central to the pathophysiology of AD and is likely to 
play an early role in this intractable neurodegenerative disorder. AD is the most prevalent form of dementia, and current 
indications show that twenty-nine million people live with AD worldwide, a figure expected to rise exponentially over the 
coming decades. Clearly, blocking disease progression or, in the best-case scenario, preventing AD altogether would be 
of benefit in both social and economic terms. However, current AD therapies are merely palliative and only temporarily 
slow cognitive decline, and treatments that address the underlying pathologic mechanisms of AD are completely lacking. 
While familial AD (FAD) is caused by autosomal dominant mutations in either amyloid precursor protein (APP) or the 
presenilin (PS1, PS2) genes. First, we have reviewed 2D QSAR, 3D QSAR, CoMFA, CoMSIA and docking for GSK-3α 
and GSK-3β with different compounds to find out their structural requirements. Next, we develop a QSAR for GSK-3β, 
because is one of the most important enzymes that intervenes in neuropathological disease such as Alzheimer. QSAR 
could play an important role in studying these GSK-3 inhibitors. For this reason we developed QSAR models for GSK-
3β, LDA, ANNs and CT from more than 40000 cases with more than 2400 different molecules inhibitors of GSK-3β 
obtained from ChEMBL database server; in total we used more than 45000 different molecules to develop the QSAR 
models. We used 237 molecular descriptors calculated with DRAGON software. The model correctly classified 1310 out 
of 1643 active compounds (79.7%) and 24823 out of 26156 non-active compounds (94.9%) in the training series. The 
overall training performance was 94.0%. Validation of the model was carried out using an external predicting series. In 
this series the model classified correctly 757 out of 940 (80.5%) active compounds and 14 166 out of 14 937 non-active 
compounds (94.8%). The overall predictability performance was 94.0%. In this work, we propose five types of non 
Linear ANN and we show that it is another alternative model to the already existing ones in the literature, such as LDA. 
The best model obtained was RBF 166:166-402-1:1 which had an overall training performance of 94.2%. All this can 
help to design new inhibitors of GSK-3β. The present work reports the attempts to calculate within a unified framework 
probabilities of GSK-3β inhibitors against different molecules found in the literature.
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Introduction
Glycogen synthase kinase-3 (GSK-3) has two isoforms, GSK-3α 

and GSK-3β, [1] and they are serine/threonine kinases involved in 
numerous cellular processes and diverse diseases as Alzheimer disease, 
cancer, and diabetes. GSK-3α and GSK-3β have been shown to be 
present in mammals and the latter is specifically expressed in the central 
nervous system [2,3]. In particular, GSK-3β is well known to play 
critical roles in oxidative stress-induced neurodegenerative diseases 
such as Alzheimer´s disease (AD) [2,4]. Despite intensive investigation 
into the physiological roles of GSK-3 isoforms, the basis for their 
differential activities remains unresolved. A more comprehensive 
understanding of the mechanistic basis for GSK-3 isoform-specific 
functions could lead to the development of isoform-specific inhibitors 
[5]. GSK-3β knock-out mice die in utero [6], whereas GSK-3α knock-
out mice are viable and display improved glucose tolerance in response 
to glucose load and elevated hepatic glycogen storage and insulin 
sensitivity [7,8].

Alzheimer´s disease [9] is a serious and degenerative disorder that 
causes a gradual loss of neurons, and in spite of the efforts realized 
by the big pharmaceutical companies of the world, the origin of 
this pathology is still not very clear. β-amyloid (Aβ) is an important 
protein implicated in the pathogenesis of AD, but the mechanism by 
which it causes neurotoxicity is still unknown [10,11]. In particular, 
there are few literature reports to study the direct link between the 
pathological hyperphosphorylation of tau protein, a microtubule-

associated protein, and the formation of neurofibrillary tangles (NFT) 
[12]. The last decades had marked a very significant era of AD research. 
During this period, the nature of amyloid plaques and NTFs, the 
two histopathological hallmarks of AD, had been elucidated. Recent 
research efforts have led to several hypotheses to explain AD. Amyloid 
β toxicity is believed to play a primary role in the development of AD 
[13]. GSK-3β activity may increase with aging [14], which is consistent 
with the fact that aging is the most important risk factor for AD. Both 
in vitro and in vivo studies have demonstrated that inhibition of GSK-
3β, can reverse hyperphosphorylation of tau and prevent behavioral 
impairments in mice [15-20]. These studies make GSK-3β inhibition 
very attractive as a therapeutic target for AD [21].

In the last years, a number of publications have been published 
suggesting GSK-3 as a target for the treatment of AD. There are two 
isoforms of GSK-3, GSK-3α and GSK-3β, both sharing a high homology 
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at their catalytic site, but the α form possesses an extended N-terminus 
with respect to the β form [22,23]. The phosphorylation of proteins 
by GSK-3 is an important link in neural function [24-26]. There are 
two characteristic neuropathological hallmarks of AD, Neurofibrillary 
Tangles (NFT’s) and an increased production of amyloid beta (Aβ) 
peptides, where NFT’s are composed of highly phosphorylated forms 
of the microtubule-associated protein tau [27] and studies have shown 
that GSK-3 is one of the main in vivo players of phosphorylation of 
tau protein [28]. It has been reported that Lithium, a GSK-3 inhibitor, 
blocks production of Aβ peptides by interfering with APP cleavage at 
γ-secretase step, where the target for Lithium is GSK-3α [22,29]. Phiel 
et al. [29] showed that selective reduction in concentration of the α 
isoform led to a decrease in the concentration of Aβ40 and Aβ42, 
primary constituents of amyloid plaques in AD. Thus, inhibition of 
GSK-3α could potentially provide dual therapy against AD, preventing 
the buildup of amyloid plaques and of neurofibrillary tangles [29-31].

GSK-3β is a serine/threonine kinase and is thought to be a key factor 
for aberrant tau phosphorylation [32]. Activated GSK-3β coexists with 
progression of NFT’s and neurodegeneration in the AD brain [33-
35]. A conditional GSK-3β overexpressing transgenic mouse exhibits 
persistent tau hyperphosphorylation, pretangle-like somatodendritic 
localization of tau, neuronal death in hippocampus and cognitive 
deficits [36,37]. These studies suggest that GSK-3β is associated with 
AD progression, and GSK-3β inhibition is expected to be a promising 
therapeutic approach for AD.

In this sense, quantitative structure-activity relationships (QSAR) 
could play an important role in studying these β and γ-secretase 
inhibitors. QSAR models are necessary in order to guide the β and 
γ-secretase inhibitors.

On the other hand, QSAR models can be used to explore the 
relationships between the structural spaces of compounds as inhibitors 
for specific enzymes, such as MAO inhibitors [38], HIV-1 integrase 
inhibitors [39], and/or protease inhibitors [40] or tyrosinase inhibitors 
[41-43]. In fact, almost all QSAR techniques are based on the use of 
molecular descriptors, which are numerical series that codify useful 
chemical information and enable correlations between statistical and 
biological properties [44,45]. Recently, the field has moved from small 
molecules to proteins and other systems. For instance, González-Díaz 
et al. have discussed the use of these methods but only from the point 
of view of proteins [46]. Later, some groups have published different 
papers in one special issue on QSAR but they have been also restricted to 
the field of protein and proteomics [47-53]. In other recent issue, guest-
edited by González-Díaz [54] a series of papers have been published, 
devoted to QSAR/QSPR techniques for low-molecular-weight drugs 
[54-63]. Most recently, Prado-Prado et al. [64] have published a mt-
QSAR for anti-parasitic drugs. This year we have published another 
issue [65] focused on QSAR/QSPR models and a graph theory used 
to approach Drug ADMET processes and Metabolomics [66-73]. Last, 
one of the most recent issues published has discussed the applications 
of QSAR in Pharmaceutical Design [74-83].

The functions of GSK-3 and its implication in various human 
diseases have triggered an active search for potent and selective GSK-3 
inhibitors [12] in the last years. QSARs can be used as predictive tools 
for the development of molecules [84,85]. The QSAR approach involves 
the development of models that relate the structure of drugs with 
their biological activity against different targets [86,87]. Furthermore, 
there are multiple chemometric approaches that can, in principle, be 
selected for this step. Multiple linear regression (MLR), LDA, partial 
least squares (PLS) and different kinds of artificial neural networks 

can be used to relate molecular structure (represented by molecular 
descriptors) with biological properties. The ANNs are particularly 
useful in QSAR studies in which the linear models fit poorly due to 
high data complexity; an example was the work of Prado-Prado et al. 
in which four types of non-ANN were developed to calculate within an 
unified framework probabilities of antiparasitic action of drugs against 
different parasite species [64,88,89]. There are several different kinds 
of ANN and these include multilayer perceptron (MLP), radial basis 
functions (RBF) and PNNs; the latter ANN is a variant of RBF systems. 
In particular, PNN is a type of neural network that uses a kernel-based 
approximation to form an estimate of the probability density functions 
of classes in a classification problem [90]. In the present work, we have 
reviewed previous works based on 2D-QSAR, 3D-QSAR, CoMFA, 
CoMSIA and docking techniques, which studied different compounds 
to find out the structural requirements. Last, in this review, we developed 
quantitative structure-activity relationships (QSAR) models for GSK-
3β, linear discriminant analysis (LDA) [91] and linear artificial neural 
networks (ANNs) from more than 40000 cases with more than 24000 
different inhibitors of GSK-3β obtained from ChEMBL database http://
www.ebi.ac.uk/chembldb/index.php/target/browser/classification 
[92,93]; in total we used more than 45000 different cases to develop the 
QSAR models. In addition, we did a study of different fragments that 
exist in the molecules of the database in order to see which fragments 
had more influence in the activity, and which fragments interact more 
with the protein. As there are very studies with GSK-3β that can be 
found in the literature the design of new inhibitors of this enzyme is 
very important for study of the neurodegenerative diseases [94,95]. The 
topics reviewed, discussed, and/or reported in this paper are:

1. Studies of GSK-3α inhibitors

1.1. 2D-QSAR for 3-anilino-4-phenylmaleimides

1.2. 3D-QSAR and docking of 3-anilino-4-phenylmaleimides

1.3. QSAR studies of Some GSK-3α Inhibitory pyrimidines

2. Studies of GSK-3β inhibitors

2.1. Design, synthesis and structure-activity relationships of 
1,3,4-oxadiazole derivatives

2.2. Linear/Nonlinear Regression Methods for Prediction of 
Glycogen Synthase Kinase-3β Inhibitory Activities

2.3. Molecular modeling, docking and 3D-QSAR studies for 
maleimides

2.4. Molecular Docking and biological testing of new GSK-3β 
inhibitors 

2.5. 3D-QSAR Modeling of Paullones

2.6. Modeling of Binding Mode of Benzo[e]isoindole-1,3-diones

 3. QSAR studies of GSK-3β

 3.1. Theoretical study of GSK-3β: Neural Networks QSAR studies

Studies of GSK-3α Inhibitors
2D-QSAR for 3-anilino-4-phenylmaleimides

Sivaprakasam et al. [31] reported in their study a 2D-QSAR 
exploration of the physicochemical (hydrophobic, electronic, and steric) 
and structural requirements among 3-anilino-4-phenylmaleimides 
toward GSK-3α binding. Using Fujita-Ban and Hansch QSAR analyses, 
electronic and steric interactions at the 4-phenyl ring and hydrophobic 

http://www.ebi.ac.uk/chembldb/index.php/target/browser/classification
http://www.ebi.ac.uk/chembldb/index.php/target/browser/classification


Citation: García I, Prado-Prado F (2015) State of Art: Review of Theoretical Study of GSK-3β and a New Neural Networks QSAR Studies for the 
Design of New Inhibitors Using 2D-Descriptors. Biochem Pharmacol (Los Angel) 4: 170. doi:10.4172/2167-0501.1000170

Page 3 of 10

Volume 4 • Issue 3 • 1000170
Biochem Pharmacol (Los Angel), an open access journal
ISSN:2167-0501 

interactions at the 3-anilino ring were shown to be crucial. Hansch-
type QSAR was still widely used in the lead optimization stage of 
synthetic and other projects.

Fujita-Ban analysis of 3-anilino-4-phenylmaleimides revealed 
that certain structural features such as Cl, OCH3, and NO2 mono 
substitution at any position around the 4-phenyl ring were favorable 
for GSK-3α inhibition. Substituents at the 3-anilino ring such as 3-Cl, 
4-Cl, 5-Cl, 3-COOH, 4-OH, and 4-SCH3 were positively and 3-OH was 
negatively correlated with GSK-3α inhibitory activity.

Through Hansch QSAR analyses, they found that the GSK-3α 
inhibitory activity was enhanced by: 1. Electron-withdrawing, bulky 
ortho substituents at 4-phenyl ring; 2. 4-chloro substitution around 
anilino ring; 3. 3-anilino rather than 3-N-methylanilino derivatives; 
4. Hydrophobic meta substituents on the anilino ring. Overall, QSAR 
models 13a and 14a suggested electronic and steric effects at the 4-phenyl 
ring and hydrophobic effects at the 3-anilino or 3-N-methylanilino ring 
were crucial. Their 2D-model (Figure 1) illustrated these effects which 
are essential for binding the maleimides to the GSK-3α enzyme. Their 
analysis provided key information regarding ligand–target interactions 
which they believed would help medicinal chemists to design more 
potent GSK-3α inhibitors.

3D-QSAR and docking of 3-anilino-4-phenylmaleimides

3D-QSAR analyses were reported in this article [96], using 
CoMFA and CoMSIA and molecular docking studies on 3-anilino-4-
phenylmaleimides as GSK-3α inhibitors, in order to better understand 
the mechanism of action and structure-activity relationship of these 
compounds. The comparison of the active site residues of GSK-3α 
showed that all the key amino acids involved in polar interactions 
with the maleimides for the β isoform were the same in the α isoform, 
except for Asp133 in the β isoform, which was replaced by Glu196 
in the α isoform. The authors prepared a homology model for GSK-
3α and showed that the change from Asp to Glu should not affect 
maleimide binding significantly. Their best CoMFA model contained 
steric and electrostatic fields and had n = 56, q2 = 0.844, r2 = 0.942, 
SEE = 0.104, F = 162.49 and r2

pred = 0.779 for five components. CoMFA 
electrostatic contours revealed that increased negative charge at the 
meta position of the 4-phenyl ring was favorable for the activity. They 
found that electron withdrawing groups at the meta and para positions 
around the anilino ring were important for enhancing activity. 

Electron-withdrawing bulky ortho substituents on the 4-phenyl ring 
were conducive to GSK-3α inhibition. CoMSIA model showed the 
importance of hydrogen bond donor groups on these ligands for 
enhanced activity. The best CoMSIA model (S + E + D) had n = 56, 
q2 = 0.833, r2 = 0.932, SEE = 0.113, F = 111.67 and r2

pred = 0.803 for six 
components. Comparatively, 3-N-methylanilino derivatives were less 
active than 3-anilino derivatives.

Docking studies revealed the binding poses of three subclasses 
of these ligands, namely anilino, N-methylanilino and indoline 
derivatives, within the active site of the β isoform, and helped to explain 
the difference in their inhibitory activity.

QSAR studies of some GSK-3α inhibitory pyrimidines

Jamloky et al. studied in this paper [22] a series of pyrimidines 
which was performed to gain structural insight into the binding mode 
of the molecules to the GSK-3α. The molecular modeling studies were 
performed using CS Chem. Office 2001 molecular modeling software 
version 6.0. MOPAC module was used to minimize the energy and 
calculate the descriptors. The thermodynamic and steric features 
of the pyrimidines were highly correlated with GSK-3α inhibitory 
activity. The positive coefficient of PMI-Y in the model suggested 
that the presence of bulky substituents positioned towards the Y-axis 
of the molecule would enhance the GSK-3α inhibitory activity. The 
observation supports the hypothesis that the presence of the bulky 
substituents like bromine with inherent hydrophobic character may 
be involved in the nonspecific interaction with the ATP binding site. 
The results of the study suggested that the introduction of bulky groups 
at C-5 position of the hydrophobic interaction with the ATP binding 
site of the enzyme may be attributed to the strain exerted by the two 
adjacent phenyl rings on the planar pyrazolo (3,4-b) pyridine ring, 
thereby partly disrupting the hydrogen bonding interaction between 
nitrogen in the pyrazolo group and the complementary group in the 
enzyme.

Studies of GSK-3β Inhibitors
Design, synthesis and structure-activity relationships of 
1,3,4-oxadiazole derivatives

Saitoh et al. [97] reported design, synthesis and structure–activity 
relationships of a novel series of oxadiazole derivatives as GSK-3β 
inhibitors. Among these inhibitors, compound 20x showed highly 
selective and potent GSK-3β inhibitory activity in vitro and its binding 
mode was determined by obtaining the X-ray co-crystal structure 
of 20x (Figure 2) and GSK-3β (Figure 3). The hydrogen bonding 
interaction of the benzimidazole core with the hinge region and the 
oxadiazole with Asp200 were observed. Additionally, the interaction of 
4-methoxyphenyl group with Arg141 was also observed.

Linear/nonlinear regression methods for prediction of 
glycogen synthase Kinase-3β inhibitory activities

Freitas et al. [98] applied linear/nonlinear regression methods as 
multiple linear regression (MLR), artificial neural network (ANN), 
and support vector machines (SVM) with a series of glycogen synthase 
kinase-3β (GSK-3β) inhibitors using calculated Dragon descriptors. 
Few variables were selected from a pool of calculated Dragon 
descriptors through three different feature selection methods, namely 
genetic algorithm (GA), successive projections algorithm (SPA), and 
fuzzy rough set ant colony optimization (fuzzy rough set ACO). The 
fuzzy rough set ACO/SVM-based model gave the best estimation/
prediction results, demonstrating the nonlinear nature of this analysis 

Figure 1: Proposed model based on 2D-QSAR analyses showing the nature 
of interactions and substitution requirements for effective binding of 3-anilino-
4-phenylmaleimides with the GSK-3α isoform.
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and suggesting fuzzy rough set ACO, introduced in chemistry for the 
first time, as an improved variable selection method in QSAR for the 
class of GSK-3β inhibitors. MLR yielded QSAR models only reasonably 
predictable, with r2 ranging from 0.77 to 0.81 and r2

test of 0.67 to 0.76, 
ANN and specially SVM were capable of estimating and predicting 
biological activities very accurately.

Molecular modeling, docking and 3D-QSAR studies for 
maleimides

Hwan-Kim et al. [99] carried out molecular modeling and docking 
studies with three-dimensional quantitative structure relationships 
(3D-QSAR) to determine the correct binding mode of glycogen 
synthase kinase 3β (GSK-3β) inhibitors. For the 3D-QSAR (CoMFA 
and CoMSIA), they used 51 substituted benzofuran-3-yl-(indol-3-yl) 
maleimides. Two binding modes of the inhibitors to the binding site of 
GSK-3β were analyzed. The binding mode 1 yielded better 3D-QSAR 
correlations using both CoMFA and CoMSIA methodologies. The 
three-component CoMFA model from the steric and electrostatic 
fields for the experimentally determined pIC50 values had the following 
statistics: R2(cv) = 0.386 and SE(cv) = 0.854 for the cross-validation, and 

R2 = 0.811 and SE = 0.474 for the fitted correlation. F (3.47) = 67.034, 
and probability of R2 = 0 (3.47) = 0.000. The binding mode suggested 
by the results of this study was consistent with the preliminary results 
of X-ray crystal structures of inhibitor-bound GSK-3β. The 3D-QSAR 
models were used for the estimation of the inhibitory potency of two 
additional compounds.

Molecular docking and biological testing of new GSK-3β 
inhibitors

Lavrovskii et al. [100] used a series of new heteroaryl-substituted 
oxadiazole-5-carboxamide inhibitors of GSK-3β. Molecular docking 
was used for the rational selection of synthesized compounds for the 
subsequent biological testing. It was established that the inhibitory 
activity of the synthesized compounds strongly depends on the 
character of substituents in the phenyl ring and the nature of terminal 
heterocyclic fragments. The most active compounds inhibit GSK-3β 
at IC50 in the micro molar range and could be considered as potential 
drug candidates. 

3D-QSAR modeling of paullones

Osolodkin et al. [101] carried out a 3D-QSAR study which 
suggested ways of modification of the molecule to increase its 
physiological activity. A comparative molecular field analysis 
(CoMFA) [7] and a comparative molecular similarity indices analysis 
(CoMSIA) [8] are among the most widely used 3D-QSAR methods. 
The energy of Van der Waals and electrostatic interactions of a probe 
atom (with the charge +1) with molecules of the training set (CoMFA) 
or the electrostatic, Van der Waals, hydrophobic, and donor/acceptor 
similarity indices (CoMSIA) were used as descriptors. The equation 
for activity prediction was derived using the partial least squares (PLS) 
method. The advantages of the methods were the ability of graphic 
representation of PLS model coefficients and the fact that they allowed 
the user to suggest substitutions affecting activity and/or selectivity of 
the molecules. The authors built a new 3D-QSAR model for GSK-3β 
inhibition by paullones by means of the CoMFA method. This model 
can be used as a guide for designing new paullone GSK-3β inhibitors.

Modeling of binding mode of Benzo[e]isoindole-1,3-diones

Yang et al. [102] synthesized benzo[e]isoindole-1,3-dione 
derivatives and the effects on GSK-3β activity and zebrafish embryo 
growth were evaluated. A series of derivatives showed obvious 
inhibitory activity against GSK-3β. The most potent inhibitor, 
7,8-dimethoxy-5-methylbenzo[e]isoindole-1,3-dione, showed 
nanomolar IC50 and obvious phenotype on zebrafish embryo 
growth associated with the inhibition of GSK-3β at low micro molar 
concentration. The interaction mode between this compound and 
GSK-3β was characterized by computational modeling. To rationalize 
the structure-activity relationships of these compounds, the binding 
modes of the most potent inhibitors 8a and 8b (Figure 4) were modeled 
using docking simulations. Compounds 8a and 8b were docked into 
the ATP binding site of GSK-3β, and the binding modes of the lowest 
energy were analyzed. Compounds 8a and 8b fit the ATP pocket of 
GSK-3β well. The maleimide motif of type II formed a pair of hydrogen 
bonds with the hinge region (Glu133 and Val135) of GSK-3β, similar to 
the binding mode of other known maleimides GSK-3β inhibitors. The 
two methoxy oxygen atoms formed another two hydrogen bonds with 
the positively charged Lys85. The methyl group of the methoxy at C-8 
position docked to the small back cleft of GSK-3β. This binding mode 
explicitly explained the important role of the two methoxy groups at 
C-7 and C-8 positions. Another result was the 4-ethyl group of 8b 
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Figure 2: Structure of 20x.

 

Figure 3: X-ray co-crystal structure of 1 in complex with GSK-3β.
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docks to the minor hydrophobic pocket made up of Ile62 and Val70 in 
front of the ATP binding site of GSK-3β (Figure 5), which contributed 
to its higher binding affinity compared to 8a. The docking results also 
provided a template to understand the structure-activity relationships 
of other compounds.

QSAR Studies of GSK-3β
Theoretical study of GSK-3β: Neural Networks QSAR studies 
for the design of new inhibitors using 2D-descriptors

Alzheimer´s disease [9] is a serious and degenerative disorder that 
causes a gradual loss of neurons, and in spite of the efforts realized 
by the big pharmaceutical companies of the world, the origin of 
this pathology is still not very clear. β-amyloid (Aβ) is an important 
protein implicated in the pathogenesis of AD, but the mechanism by 
which it causes neurotoxicity is still unknown [10,11]. In particular, 
there are few literatures report to study the direct link between the 
pathological hyperphosphorylation of tau protein, a microtubule-
associated protein, and the formation of neurofibrillary tangles (NFT) 
[12]. The last decades had marked a very significant era of AD research. 
During this period, the nature of amyloid plaques and NTFs, the 
two histopathological hallmarks of AD, had been elucidated. Recent 
research efforts have led to several hypotheses to explain AD. Amyloid 
β toxicity is believed to play a primary role in the development of AD 
[13]. GSK-3β activity may increase with aging [14], which is consistent 
with the fact that aging is the most important risk factor for AD. Both 
in vitro and in vivo studies have demonstrated that inhibition of GSK-
3β, can reverse hyperphosphorylation of tau and prevent behavioral 
impairments in mice [15-20]. These studies make GSK-3β inhibition 
very attractive as a therapeutic target for AD [21].

We developed quantitative structure-activity relationships (QSAR) 
models for GSK-3β, linear discriminant analysis (LDA) [91] and linear 
artificial neural networks (ANNs) from more than 40000 cases with 
more than 24000 different molecules inhibitors of GSK-3β obtained 
from ChEMBL database http://www.ebi.ac.uk/chembldb/index.php/
target/browser/classification [92,93]; in total we used more than 45000 
different molecules to develop the QSAR models. In addition, we did a 
study of different fragments that exist in the molecules of the database 

in order to see which fragments had more influence in the activity, 
and which fragments interact more with the protein. As there many 
studies with GSK-3β that can be found in the literature the design 
of new inhibitors of this enzyme is very important for the study of 
neurodegenerative diseases [94,95].

Methods
Linear classifier

 A database from ChEMBL database [92] containing assayed GSK-
3β inhibitors was used (Table SM from the Supplementary Material). 
The DRAGON software 4.0 [14] was utilized here and provides 1664 
descriptors classified as zero- (0D) one- (1D), two- (2D) and three-
dimensional (3D) descriptors depending on the fact they are computed 
from the chemical formula, substructure list representation, molecular 
graph or geometrical representation of the molecule, respectively 
[103]. In this work, we calculated the following descriptors: 2D 
autocorrelations, Burden eigenvalues, topological charge indices, 
eigenvalue-based indices, functional group counts, atoms-centred 
fragments, charge descriptors and molecular properties. The QSAR 
model was constructed with the multivariate regression technique, 
the LDA, employing the Forward stepwise method for the selection of 
variables. All statistical analyses and data exploration were carried out 
in STATISTICA 6.0 [104]. In the actual work, the independent data 
test is used by splitting the data randomly in a training series used for 
a model construction and a cross-validation (CV) one. The general 
formula of the QSAR classification function is the following:

03 2m
score m iGSKI W D Wβ− = ⋅ +∑                              (1)

where GSKI-3βscore is the continuous and dimensionless score value 
for the GSKI-3β/non-GSKI-3β classification that gives relatively higher 
values to molecules with more probability to act as GSKI-3β, m2Di are 
the 2Ds of type m, Wm is the coefficient (weights) of these indices in the 
QSAR model and W0 is the independent term.

The reported statistical parameters of the QSAR model are the 
following: N, χ2, F, and p-level as well as Sensitivity, Specificity, and 
Accuracy for both training and CV [104]. N is the number of molecules 
used to train the model, λ is Wilks statistic parameter, χ2 is Chi-square 
and p-level is the probability of error.

Figure 4: Structure of 8a and 8b.

 

Figure 5: Docked binding modes of compounds 8b in the ATP binding site of 
GSK-3β.

 

http://www.ebi.ac.uk/chembldb/index.php/target/browser/classification
http://www.ebi.ac.uk/chembldb/index.php/target/browser/classification
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Nonlinear classifiers

 We processed our data with different ANNs using the STATISTICA 
6.0 software [104] looking for a better model to predict activity against 
GSK-3β. Five types of ANNs were used, namely, Probabilistic Neural 
Network (PNN), Radial Basis Function (RBF) [105], Three Layers 
Perceptron (MLP-3), and Four Layer Perceptron (MLP-4) and Linear 
(LNN). The profile of a ANN is: Ni:I-H1-H2-O:No. It means that we 
have inputs variables (Ni), neurons in the input layer (I), neurons in the 
first hidden layer (H1), in the second hidden layer (H2), neuron in the 
output layer (O) and output variable (No).

We can used a very simple type of ANN called Linear Neural 
Network (RBF) to fit this discriminant function. The model deals 
with the classification of a compound set with or without affinity on 
different receptors. A dummy variable Affinity Class (AC) was used as 
input to codify the affinity. This variable indicates either high (AC = 1) 
or low (AC = 0) affinity of the drug by the receptor. S(DTP)pred or DTP 
affinity predicted score is the output of the model and it is a continuous 
dimensionless score that sorts compounds from low to high affinity to 
the target coinciding DTPs with higher values of S(DTP)pred and nDTPs 
with lowest values. In equation (6), b represents the coefficients of the 
RBF classification function, determined by the ANN module of the 
STATISTICA 6.0 software package [104]. We used Forward Stepwise 
algorithm for a variable selection.

Let be kχ(G) drugs molecular descriptors and kξ(R) receptor or drug 
target descriptors for different drugs (d) with different receptor; we can 
attempt to develop a simple linear classifier of mt-QSAR type with the 
general formula:

( ) ( ) ( )
5

0
0

k
i kpred

k
S DTP b G G bχ

=

= ⋅ +∑                                    (2)

We assessed the quality of models with different statistical 
parameters like Specificity (Equation 2), Sensitivity (Equation 
3), Accuracy (Equation 4) and ROC curve (Receiver Operating 
Characteristic curve) which is a graphical plot of the sensitivity, or true 
positives, vs. (1−specificity), or false positives,

 
NTNspecificity

NTN NFP
=

+
                                           (3)

NTPsensitivity
NTP NFN

=
+

                                       (4)

NTP NTNaccuracy
NTP FN FP TN

+
=

+ + +
                        (5)

where NTN means number of true negatives, NFP is number of 
false positives, NTP is number of true positives, NFN is number of 
false negatives, FN is false negatives, FP is false positives and TN is true 
negatives.

The data set used in this article was obtained from ChEMBL 
database [92,93]. It has more than 56000 cases and more than 24000 
different compounds inhibitors of GSK-3β. In total we used more than 
45000 different molecules to develop the QSAR models obtained in 
ChEMBL. This is a database of bioactive drug-like small molecules, 
it contains 2-D structures, calculated properties (e.g. logP, Molecular 
Weight, Lipinski Parameters, etc.) and abstracted bioactivities (e.g. 
binding constants, pharmacology and ADMET data). ChEMBL 

normalises the bioactivities into a uniform set of end-points and units 
where possible, and also tags the links between a molecular target 
and a published assay with a set of varying confidence levels. The 
data is abstracted and curated from the primary scientific literature, 
and covers a significant fraction of the structure activity relationship 
(SAR) and discovery of modern drugs. The codes and activity for all 
compounds as well as the references used to collect them are depicted 
in Table SM of the supplementary material file.

Results and Discussion
LDA

 In this paper we obtained a LDA study with Equation 6, and we 
can observe that eighteen variables entry inside equation:

3 18.1 1 18.9 2 0.7 3 22.0 4 37.7 5 11.7 6 6.6 7 8.5 8 20.9 9 5.4 10
7.2 11 2.4 12 1.2 13 14.3 14 14.6 15 10.8 16 12.4 17 20.1 18 9.4 19 13.6 20 8.8 21
14.1 22 168.

scoreGSKI D D D D D D D D D D
D D D D D D D D D D D
D

β− = − ⋅ + ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ +

+ ⋅ − ⋅ + ⋅ + ⋅ − ⋅ − ⋅ + ⋅ + ⋅ − ⋅ + ⋅ + ⋅ +
+ ⋅ −

2

3 23 122.8 24 2.8 25 0.1 26 0.7 27 86.4
45,299 0.64 12201.95 0.001

D D D D D
N p levelλ χ

⋅ − ⋅ − ⋅ + ⋅ − ⋅ −

= = = − <

 (6)

In Table 1, we show the code names of descriptors used in the 
equation 6. The nomenclature used in the descriptors of the equation 
is the same as establishing the Dragon software, where N is the number 
of compounds used for training, λ is the Wilks statistic parameter, 
χ2 is the Chi-square and p is the level of error. The model correctly 
classified 1310 out of 1643 active compounds (79.7%) and 24823 out 
of 26156 non-active compounds (94.9%) in the training series. The 
overall training performance was 94.0%. Validation of the model was 
carried out using an external predicting series. In this series the model 
classified correctly 757 out of 940 (80.5%) compounds and 14166 out 
of 14937 non-active compounds (94.8%). The overall predictability 
performance was 94.0% (Table 2).

ANN models

The ANN models are non-linear models useful to predict the 
biological activity of a large datasets of molecules. This technique is an 
alternative to linear methods such as LDA [106,107]. Figure 6 depicts 
the networks maps for some of the ANN models. In general, at least 
one ANN of every types tested was statically significant. However, 
one must note that the profiles of each network indicate that these are 
highly nonlinear and complicated models [108-110].

In Figure 7, we depict the ROC-curve [111,112] for RBF tested. 
Notably, almost model presented and an area under curve higher 
than 0.5 (the value for a random classifier). The vitality of this type 
of procedures developing ANN-QSAR models has been demonstrated 
before [113]; see, for instance, the work of Fernandez and Caballero 
[114]. The same is true about the ANNs tested, where is illustrated 
ROC-curves of ANN RBF with an area higher than 0.99. To show how 
important is this result, we compared the present model with other 
model used to address the same problem. We processed our data with 
ANNs looking for a better model. In general, the ANN RBF tested was 
statically significant [107].

The network found was RBF and it showed training performance 
higher than 94.2%. The summary of results is showed in Table 2. After 
direct inspection of the results reported in Table 2 for ANN methods, 
we can conclude that a complex ANN method is a good method to 
predict the activity. We compare different types of networks to obtain 
a better model; Table 2 shows the classification matrix of the different 
networks. RBF 166:166-402-1:1 was taken as the main network because 
it presented a wider range of variables, 166 inputs in the first layer 
and 166 neurons in second layer, and two sets of cases (Training and 
Validation). Another tested networks found were LNN 233:233-1:1 and 

http://en.wikipedia.org/wiki/Graph_of_a_function
http://en.wikipedia.org/wiki/Sensitivity_(tests)
http://en.wikipedia.org/wiki/Specificity_(tests)
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LNN 232:232-1:1 presented low accuracy and PNN 233:233-20619-2-
2:1 had a very low percentage of DTPs leading to possible errors in 
the model although its accuracy was very good, (Table 1). We depict 
the ROC-curve for RBF 166:166-402-1:1 to show how reliable was the 
network model developed, (Figure 7).

Conclusion
The functions of GSK-3 and its implication in various human 

diseases have triggered an active search for potent and selective GSK-3 
inhibitors. Nowadays, theoretical studies such as QSAR models have 
become a very useful tool in this context to substantially reduce time 
and resources consuming experiments. In this work we developed a 
new LDA model using the Dragon descriptors, with a large data base 
using about 20000 different drugs obtained from the ChEMBL server. 
We conclude that a large database gives a much more precise model; 
the use of tools such as ChEMBL database enables us to develop 

Definition Name Descriptor
D1 ATS1m
D2 ATS2m
D3 ATS8m
D4 ATS3v
D5 ATS3e
D6 MATS3m
D7 MATS4m
D8 MATS3e
D9 MATS2p
D10 GATS1v
D11 GATS4v
D12 GATS1e
D13 GATS7e
D14 GATS3p
D15 BELm4
D16 BELm5
D17 BELv2
D18 BEHe1
D19 BEHe8
D20 BELe5
D21 BELe8
D22 BELp4
D23 JGI4
D24 JGI7
D25 Ui
D26 AMR
D27 MLOGP

Table 1: Code names of the different molecular descriptor used in the equation 6.

Model Train Stat. Validation

profile Active Non-Active % Par. % Active Non-Active

1310 333 79.9 Sn 80.5 757 183

LDA 1333 24823 94.9 Sp 94.8 771 14166

94.0 Ac 94.0

RBF 1552 100 94.0 Sn 94.3 889 53

166:166-
402-1:1 1572 25613 94.2 Sp 94.1 909 14611

94.0 Ac 94.2

Table 2: Comparison of LDA and ANN classification model.

Figure 6: Depicts the networks maps for some of the ANN models used in this 
manuscript.

 

Figure 7: ROC curve for training and prediction of RBF network.

 

models with large data bases, and this helps us to make the results 
more reliable. To improve the model we developed non-linear models 
and compared them to LDA. We proposed non-linear models, and for 
the first time, we proposed ANN models based on Dragon Descriptors 
series of GSK-3β, and we concluded that they are alternative methods 
to study the activity of different families of molecules compared with 
other methods found in the literature.
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