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Abstract
We consider a twisted Peyrard-Bishop-Dauxois (PBD) model and construct the exact analytical solutions, which 

can describe the propagation of solitary waves by invoking a discrete Jacobian elliptic function method. These solutions 
include the Jacobian periodic solution as well as bubble solitons. Through the Fourier series approach, we have 
found that the DNA dynamics is governed by a modified discrete nonlinear Schrodinger (MDNLS) equation. A detailed 
analysis of the role of the twisted angle in the process of bioenergy localization is presented in the form of coherent 
localized breather modes in a PBD model. A linear stability analysis is performed and we obtain that the stability of the 
solutions also depends on the twisted angle.
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Introduction
Understanding the dynamics of biological processes such as 

transcription, duplication or DNA translocation by viruses is a 
challenge for biophysicists. The local opening of the DNA double helix 
at the transcription start site is a crucial step for the genetic code. This 
opening is driven by proteins, but the intrinsic fluctuations of DNA 
itself probably play an important role. The dynamical properties of 
these bubbles and their relations to biological functions have therefore 
been the subject of many experimental and theoretical studies. Several 
models have been used for studying bubble breathing and in attempts 
to explain these long experimental bubble life-times. i) The Poland-
Scheraga model [1] is a one-dimensional (1D) Ising model modified 
to account for the entropic penalty of creating a closed flexible loop. 
This term leads to a non-monotonic free energy landscape in which 
the typical breathing time comes from a Kramer’s process [2-4]. ii) 
Yomosa’s dynamic plane-base rotator model [5], which involves 
rotational motion of bases [6,7] and later extended by Zhang [8] by 
expressing the interstrand interaction through hydrogen bonds in 
terms of a double-well potential. iii) In the model [9], transverse and 
longitudinal displacements of the bases were represented in terms 
of the Toda potential. iv) The Peyrard-Bishop model is a non-linear 
phonon 1D model where bubbles emerge as soliton-like solutions of 
undamped Newton’s equations in a Morse potential (possibly with 
a noise term) [10-12]. This model describes, in a simplified way, 
the hydrogen bond and has been used successfully in numerous 
applications such as energy localization [13] or to calculate solitonic 
speed [14,15]. Experiments proved that the free energy of opening base 
pairs depends on the identity of the next base pairs; this is due to the 
stacking interaction between neighboring bases on the same strand 
[16]. As is well known, the solitons existing in the PB model result 
from the balanced competition between dispersion and nonlinear 
effects. In the huge taxonomy of the models for DNA dynamics, the 
possibility that nonlinear effects might focus the vibrational energy 
of DNA into localized coherent structures is indeed expressed by 
considering pulse waves, kinks, or breathers [17]. The impact of a 
protein interaction on the breather dynamics of DNA by extending 
the model of Peyrard and Bishop, which is more accurate for the 
formation of localized oscillations in terms of breathers and bubbles 

[18]. Since the DNA molecular chain is sequence or site dependent, 
the strands are flexible and the molecule is helical in shape. Recently, 
detailed analytical study of the base-pair opening in an inhomogeneous 
continuum DNA chain in terms of perturbed kink-antikink and 
bubble solitons, respectively [19,20]. However, the Hamiltonian model 
proposed so far suffers of a serious short-coming as it does not account 
for the helicoidal structure and solvent interaction which would have 
the immediate effect of bringing closer to each other non-consecutive 
bases along the molecule backbone [21,22]. As a first step to describe 
helicity in the path integral method, [23,24] recently suggested that 
one may generalize the stacking Hamiltonian by introducing the angle 
of rotation between a base pair and the previous one. The twist angle, 
which increases from one base-pair to the next one, is responsible for 
the helicoidal structure of the molecule and capture the importance 
of nonlinear effects on the thermodynamical properties. In B-DNA 
at room temperature, one turn of the helix hosts about ten base pairs 
[25]. Accordingly, the equilibrium twist angle, eq=2π/10.4, is expected 
to provide the energetically most favorable configuration, the stablest 
one against thermal disruption of the base pair bonds. Also, nonlinear 
interactions between atoms in DNA can give rise to intrinsically 
localized breather-like vibration modes [26]. It has been shown that the 
inclusion of anharmonicities in the study of lattice models can produce 
qualitatively new effects. In particular, Rosenau and Hyman [27] found 
solutions of the solitary type without infinite tails, termed solitons with 
compact support or compactons. These traveling wave solutions have 
a remarkable property. Interestingly enough, analytic methods have 
been used to find some analytical solitonic and periodic wave solutions 
for the DNA molecules.
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The exact solutions of nonlinear partial differential equations help 
us to understand the mechanism of complicated phenomena of the 
natural systems. Motivated by the above works and applications of excat 
solutions of DNA molecule, we aim in this work to explicitly present 
analytical solitary and periodic wave solutions for the twisted (PBD) 
model with solvent interaction. The paper is organized as follows: in 
section 2, we briefly present the twisted PBD model of DNA dynamics 
and then we derive the (MDNLS) equation. Using the Jacobian elliptic 
function approach, we obtain some exact solutions of the model under 
study in section 3. In section 4, we study the stability of these solutions. 
The last section presents some concluding remarks.

Brief presentation of the twisted DNA with solvent interaction

The PBD Hamiltonian for a system of N base pairs assumes the pair 
mates separation yn (for the nth base pair) with respect to the ground 
state position as the relevant degree of freedom. The longitudinal base 
displacements along the molecule backbone are neglected as they are 
much smaller than the transverse stretching yn. Hence, the model 
Hamiltonian is essentially one-dimensional. The general form of the 
PBD Hamiltonian which incorporates, nonlinearities both in the inter-
base pair interactions and in the coupling between neighboring base 
along the two strands, helicity and solvent interaction is considered. 
The Hamiltonian is composed of the following elements.

U=w(yn, yn-1)+V (yn)              (1)

where yn is the stretching of the nth base-pair, w(yn, yn-1) is the 
stacking interaction of the nearest neighbours n and n+1, and V (yn) 
the interaction of the nth base-pair. In this work, we consider two terms 
for the base-pair interaction,

V (yn)=Dn(exp(-ayn)-1)2-Dnfs(tanh(yn/ls)-1)              (2)

The first term is the usual Morse potential which describes the 
hydrogen bonds of the base-pairs. The second term is a solvent 
interaction potential on the form presented in Ref. [24] which 
simulates the formation of hydrogen bonds with the solvent once the 
base-pair hydrogen bonds are stretched by more than a value ls from 
their equilibrium values. The solvent interaction potential is a function 
which varies smoothly from fsD at yn<-ls to zero for yn>ls. For yn<ls, 
the base-pairs are pulled away from each other until the bond with the 
solvent is established. The harmonic stacking interaction is considered 
in a modified form,

( ) ( )2 2
1 1 1,  2 2n n n n n nw y y y y y cos y− − −= − θ+

where θ is the twist angle between neighboring base-pairs, and one 
takes K=60 meVA. This is motivated by 3D helicoidal models [29], as 
well as torsional potentials used in molecular dynamics [28], and is 
introduced as a way to avoid the divergence of the partition function 
[30]. For an angle of θ=0 the usual harmonic stack-ing interaction term 
[31] is obtained and would represent the situation of perfectly parallel
neighboring bonds. Evidently, the base-pairs can only de-naturate
when the double helix is largely uncoiled and therefore we use a small
angle [32,33]. One also consider the anharmonic Hamiltonian [34,35],
where the same torsion angle dependence is introduced as in Equation
3 for the stacking interaction,

( ) ( )( ) 2 2
1 1 1 12 (,  1  ) 2an n n n n n n n nw y y exp y y y y y cos yk− − − − = +ρ −α + − θ+ (4)

ρ and α are the anharmonic stacking parameters which are also 
assumed independent of the type of base at the n and n-1 sites Thus, 
generalizing the DPB Hamiltonian to the following expression:
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K is the harmonic stacking related to µ by K=µν2, ν being the 
frequency of the phonon mode. The AT and GC base are comparable in 
size and weight with their effective masses usually taken as µ=300 amu. 
From this Hamiltonian, an equation governing the local oscillations of 
DNA nucleotides is derived.
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In the following, we consider a special collective motion of the pairs 
in a DNA molecule. The amplitude of the wave packet is big enough, so 
that the nonlinear effect plays an essential role in DNA molecules. On 
the other hand, it is still very small compared with the amplitude of the 
broken base pairs. Therefore, the base pairs in DNA molecule do not 
oscillate far away from the bottom of the Morse potential well. In this 
respect, we can assume 0<αyn ≪ 1, 0<ayn ≪ 1 and expand the terms 
in exponential eα(yN+yN−1), eα(yN+yN+1) and e−ayN until the second and third 
orders, respectively. This leads to the modified equation:
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Where,

Linearizing Equation (7) yields plane wave solutions with 
wavenumber k and frequency ω(k) given by the dispersion relation 

0
2 2 2

1 12 ( ) 4
2
qlS cos ql K sin  ω = ω + +  

 
. For the nonlinear Equation (7), we search 

for small amplitude time periodic solutions as
(p) bip t

n ny a e
+∞

ω

−∞

=∑              (8)

where ωb is close to some linear oscillation frequency and the 
Fourier coefficients are slowly depending on time, (p) 2( t)na ∈ ; we have 
defined the smallness implicit parameter (p) ~ p

na ∈ . Due to exponential 
decay of the Fourier

coefficients in p, they must satisfy (p) ~ p
na ∈  for p>0, while ( ) ( )*~ ,p p

n na a −

. More-over, ( ) ( )*~ ,p p
n na a −  since yn is real. This allows for a slow time 

dependence of the Fourier coefficients (1)
na to derive a MDNLS equation 

for the dominating coefficient (1)
na  describing the leading-order 

nonlinear effects. Defining
2 2
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5 3
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K S
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(9)

the modified DNLS equation of the DNA model reads
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where, 5 3 3 3 31 1
1 2 3

5 3 5 3 5 3

2 3 2; ; ; .
2 2 3 6 2b

K S K K SK SP Q Q Q
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− − −−
= = = =
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For θ=0, we have Q1=1, Q3=0, 
3

2
5 33 6

KQ
K S
−

=
+

and 3
2

5 33 6
KQ

K S
−

=
+ , Eq. (10)

becomes as the one studied in Ref. [34]. For 
0 ,

3
and π

θ ≠ θ ≠
, Q2 = 0, Q1>0 

and Q3<0, we have here a modified version of the DNLS equation. In 
the case where, 0 ,

3
and π

θ ≠ θ ≠  Equation 10 is also a modified DNLS 
equation.

Jacobian elliptic solutions for the twisted DNA with solvent 
Interaction

Seeking exact soliton solutions to nonlinear partial differential 
equations (PDEs), which describes many complex systems in the field 
of condensed matter systems, plasma physics, astrophysics, biological 
systems, etc, is one of the fundamental studies of nonlinear science. 
Several powerful methods have been proposed to solve differential-
difference equations and to obtain exact solutions to the nonlinear 
partial differential equation. One can think of the inverse scattering 
method [36], the tanh method [37], the Jacobian elliptic function 
method [38], the multilinear variable separation, homogeneous balance 
method [39], the Backlund transformation method [40] and so on. A 
uniform method to find all the solutions of nonlinear wave equations 
does not exist. The periodic wave solutions in terms of the Jacobi 
elliptic functions for the nonlinear PDEs have attracted considerable 
interest [41] because of the elegant properties of the elliptic functions. 
The main idea of this method is to take full advantage of the elliptic 
equation that Jacobi elliptic functions satisfy and we use the discrete 
Jacobian elliptic function method to obtain the special Breather-like 
solutions that govern the transport of energy in DNA chains. At the 
outset, we make transformations

( )( ) ( )
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replacing ψn in equation (10), and separating the real from the 
imaginary part we get the following set of equations: 

( )( ) ( )
2 3

1 1 1 3 1

2 2 3 3
2 1 1 3 1 1

( ) ( )( 3 )

2 (2 ) ( ) 0
n n n n n

n n n n n

q cos p P Q Q

Q cos p Q cos p
+ −

+ − + −

− ϕ ϕ +ϕ + + ϕ + ϕ

+ ϕ ϕ +ϕ + + ϕ +ϕ =
(12)

( ) ( )
2 3

1 1 1 3 1

2 2 3 3
2 1 1 3 1 1

( ) ( )( 3 )

(2 ) ( ) 0
n n n n n

n n n n n

c sin p P Q Q

Q sin p Q sin p
+ −

+ − + −

+ ϕ ϕ −ϕ + + ϕ + ϕ

+ ϕ ϕ −ϕ + ϕ +ϕ =


  (13)

With the properties of the Jacobian elliptic function, we use the 
following series expansion as a solution of Equations (12) and (13) i.e.,
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Now, we substitute the above equations into Equations (12) and 
(13), a0, a1, c and q are to be determined. We find after some calculations 
the following solutions:
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and hence the function ϕn and ψn are defined as
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(1)
na can then be written, taking the + sign:
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The general solution of Equation (4), giving the displacement of the 
base pairs, i.e., yn, take the form:
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( ) ( )( )( )

1/2

1

1 3 5 3
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(18)

Figure 1 presents the profile of the above solution of base pairs for 
different values of the modulus m of Jacobian elliptic functions. One 
can see on Figure 1a that as the modulus m of the Jacobian elliptic 
function increases, the magnitude of the base pairs through the 
DNA also increases. If the modulus of the Jacobian elliptic function 
approaches the value 1, one observe on Figure 1b that the solutions 
of the base pairs are described by the bubble soliton solution. This 
soliton solution translate the bubbles of transcription observed during 
the denaturation of the DNA as described in Davydov’s theory. Figure 
2 shows the profile of the solution as a function of twisted angle for 
different values of the modulus m of Jacobian elliptic functions. 
Through these Figures, we note that the twisted angle has an impact 
on solutions obtained, pointing the role of this parameter. The twisted 
angle is important in the process of denaturation of the DNA. Indeed, 
in a realistic DNA dynamics, the topological constraints related to the 
helicoidal structure of the molecule could not be ignored. Activation or 
repression effects caused by conformational changes and, in particular, 
prevention of transcription due to a large positive excess in twist, are 
largely investigated in biology. During all processes in which the DNA 
base-pairs open, a local open, a local unwinding of the helix follows for 
topological reasons. Consequently, a local extra-twist accumulates at 
the ends of the bubble and induce a long range elastic stress.

Figure 3 depicts the propagation of the Jacobi solution Figure 3a 
and the bubble soliton Figure 3b through the DNA molecule. One can 
remark that as the waves move along the molecule, their magnitude 
increases.

Stability analysis

In this section, we investigate the stability of the above solution. In 
doing so, we introduce the following expansion:

[ ]( ) i t
n n n t e ω= + γψ φ              (19)

Substituting Equation (19) into the MDNLS equation, we find that 
the linearized equation satisfied by γn(t) is given by
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eigen value spectrum of the matrix A. The stationary soliton solution 
is linearly stable if and only if the matrix has all its eigenvalues on the 
imaginary axis (λ=λr+iλi).

We observe through Figure 4 that for certain value of θ, solutions 
are stable. For the value of m=1, and θ=0, or θ=0.75π, the spectra plane 
(λi, λr) of the Jacobi solutions shows all the eigenvalues to be in the 
imaginary axis, so one can say that the Jacobi solutions are stable. On the 
other hand, we see on Figure 5 that the eigenvalues leave the imaginary 
axis for certain values of θ (θ=0.35π and θ=0.55π); thus, the bubble 
soliton here is unstable for the parameters used. In fact, have already 
pointed out the fact that bubbles and dark solitons are always unstable 
[36,42,43], whereas pulse and discrete breather are always stable [39]. 
Bubble solitons of the discrete cubic-quintic NLS equation are stable 
due to the presence of the quantic nonlinearity. In this work, we show 
through Figures 4a and 4c that for a certain value of the twisted angle 
(θ=0 and θ ≥ 0.56π), the bubble soliton become stable. If one introduces 
a stochastic white noise in the system, we find that the Jacobi solution 
is modified during its propagation through the molecule as depicted in 
Figure 6. The noise effect destroys the coherence of the initial solution 
[44].

Conclusion
We have considered the twisted DNA with solvent, looking for 

exact soliton solutions through the Jacobian elliptic function. Using 
Fourier transform, we shown that the twisted PBD model can be 
modelled through the MDNLS, with the parameters P, Q1, Q2 and Q3 
depending on the twisted angle θ. The solutions found here include 
the Jacobi periodic solution as well as the bubble soliton depending on 
the value of the modulus of the Jacobi function. We shown that these 
solutions depend on the twisted angle θ. The stability of the obtained 
solutions have been checked. We have found that Jacobi solutions are 
stable for certain value of twisted angle (θ=0 and θ ≥ 0.6π), and the 
bubble solitons are also stable for θ=0 and θ ≥ 0.56π.
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Expanding γn(t) in real and imaginary parts: γn(t) = un(t)+ivn(t) the 
linearized equations can be written as:
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with: 
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by using the periodic boundary conditions, we study the stability 
of exact solution Jacobi and bubble soliton (see Figure 4) through the 

Figure 1: Profile of the solution: (a) the asymptotic evolution of the solutions according to the values of m,m=0.3 (blue), 0.5 (green) and 0.6 (black); (b) the 
asymptotic evolution of the solution towards the bubble soliton, m=0.99 (blue), 0.9998 (red) and 1 (yellow) and for θ=0.25π, ωb=1, ρ=2, D=0.04 eV, α=0.35 Å-1, 
K=60 meV.Å-2, fs=0.3, and ls=3 Å.
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Figure 2: Profile of the solution according to the values of θ for n=10: (a) the asymptotic evolution of the solutions according to the values of m,m=0.3 (blue), 0.5 
(green) and 0.6 (black); (b) the asymptotic evolution of the solution towards the bubble soliton, m=0.9998 (blue), 0.99999 (red) and 1 (black), and for ωb=1, ρ=2 
D=0.04 eV, α=0.35 Å, K=60 meV.Å-2, fs=0.3, and ls=3 Å.

Figure 3: Propagation of solutions through the DNA molecule: (a) Jacobi periodic solution for m=0.6; (b) bubble soliton for m=1 for θ=0.25π, ωb=1, ρ=2 D=0.04 eV, 
α=0.35 Å, K=60 meV.Å-2, fs=0.3, and ls=3 Å.

Figure 4: Instability diagrams: eigenvalue spectrum of the bubble soliton for m=1 and (a) θ=0; (b) θ=0.35π, (c) θ=0.55π, (d)=0.75.
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Figure 5: Instability diagrams: eigenvalue spectrum of the bubble soliton for m=0.7 and (a) θ=0; (b) θ=0.35π, (c) θ=0.55π, (d)=0.75.

Figure 6: Propagation of the Jacobi solution in the presence of noise effects for m=1 and θ=0.75π.
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