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Abstract
Background: Alternative splicing of messenger RNAs provides cells with the opportunity to create protein 

isoforms of a multitude of functions from a single gene by excluding or including exons during post-transcriptional 
processing. Reconstructing the contribution of these splice variants on the total amount of gene expression remains 
difficult.

Methods: We introduced a probabilistic formulation of the alternative splicing reconstruction problem using a 
finite mixture model, and provide a solution based on the maximum likelihood principle. Our model is based on the 
assumption that the expected expression level of exons in a particular splice variant is the same for all exons in that 
variant but allows for measurement error.

In this algorithm the expression in a patient can be written as a weighted sum of the number of splice variant 
mixture multivariate Gaussian densities. We estimated the model parameter by maximizing the total likelihood using 
a Nelder and Mead optimization algorithm in R.

To evaluate our algorithm we compared the AIC/BIC values of six models: Established optimal normal mixture 
modeling method, all exons are equally transcripted, the currently known splice variants, all possible splice variants, 
the known variants aided with the high prevalent variants of the all possible variants model, and manually selected 
splice variants.

Results: We applied the models to three genes (SLC2A10, TGFβR2 and FBN1), with 25, 29 and 265 possible 
splice variants, associated with Marfan’s syndrome in gene/exon expression data of 63 patients with Marfan’s 
syndrome.

The models with the known splice variants aided with the high prevalent splice variants from the all possible 
splice variants had the best AI C/BI C values for all three genes. In SLC2A10 and FBN1 there was one, in TGFβR2 
two predominant splice variants.

Conclusion: We found four possible new splice variants in three genes associ- ated with Marfan’s syndrome.
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Background
Alternative splicing of messenger RNAs (mRNAs) provides cells 

with the opportunity to create a multitude of protein isoforms from a 
single gene by excluding or including exons during post-transcriptional 
processing [1-4]. Among multi-exon genes in the human genome, it is 
estimated that as many as 74% are alternatively spliced [3] and 15-50% 
of human disease mutations affect splice site selection [5].

There are five basic modes of alternative splicing (depicted in 
Figure 1), of which exon skipping is most common in humans [6]. 
Predicting the contribution of these modes of splicing variation on 
gene expression data is difficult, especially in microarray data which 
returns highly fragmentary information from probes targeting specific 
exons or exon-exon junctions [3,7,8]. In reconstructing splice variants, 
formulating a splice graph traversal problem can be helpful [9-11], 
especially when considering multiple traversals.

In reconstructing alternative splice variants all possible traversals 
can be considered [9,12], where in our situation the splice variants 
correspond to the different traversals. For larger genes this method 
potentially generates a very large number of random exon combinations, 
a gene with 65 exons for instance would result in 265 (3.69e19) possible 
splice variants. Another method is to use specific rules to produce a 
minimal set of splice variants to sufficiently explain the variation in 
the input data [10,13,14]. Some researchers have suggested using 

established Multivariate Normal mixture/cluster analysis methods, 
without the biological information of splice variants, but this does not 
necessary result in a mixture of splice variants. In this manuscript, 
we introduce therefore a probabilistic formulation of the alternative 
splicing reconstruction problem using a finite mixture model, and 
provide a solution based on the maximum likelihood principle.

Methods
Model

We developed a finite mixture model to predict alternative splice 
variants within one gene. Our model is based on the assumption that 
the expected expression level of exons in a particular splice variant is 
the same for all exons present in the variant but we allow for differential 
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measurement error.

The expression y in patient i is based on vector yi=(yi1 , . . . , yiE ) with 
size E, the number of exons in the gene of interest.

The finite mixture model can be written as a weighted sum of the 
number of splice variants, K, of mixture multivariate Gaussian densities 
as given by 
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= ×∑  where ( | )k i kg y θ  is a multi-variate 

probability distribution given parameters θk. Pk is the probability of 
the presence of the kth splice variant. These mixture weights satisfy 

the constraint that 0<Pk<1 and 1
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=
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be described by the vector Zk. 1, ( ,...., )k k k Ekµ µ µ µ=  with Zjk=1 or 0 
depending on if exon j is included, or excluded, from splice variant k.

In our model each component density, ( | )k i kg y θ , is a multi-variate 
normal distribution function of the form

( | ) ( , )k i k k kg y MVNθ µ= ∑                      (1)

with mean vector, 1, ( ,...., )k k k Ekµ µ µ µ=  and covariance matrix Σk. 
When splice variant k is present, the mean expression of exon j, µjk, 

is assumed to be identical for of all exons included in splice variant 
k. We also assume that the expression of an exon included in a splice 
variant is the same when the exon is included in other splice variants. 
The mean expression of one exon is thus equal to the expression of 
all exons present in a splice variant, µjk=µ1. All exons excluded from 
splice variant k are not transcribed and should have an expression of 
zero. However, in microarray data there is always background noise. 
Therefore the expected expression of exons not present in splice variant 
k is µ0. We make similar assumtions for the variances and covariances 
of yi.

Mean vector µjk , the diagonal elements of Σjk, 
2
jkσ , with the 

covariances, jlkσ are specified by 
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With the constraints; −1<ρ<1 and σ2>0. In our algorithm we 
estimated the Fisher z-transform of ρ and log (σ2). 

We estimated parameter vector 2 2
1 0 1 0 1 2{{ }, , , , , , } 1,..., ,kP k Kλ µ µ σ σ ρ ρ= =  

with (K - 1) + 6 parameters, by maximizing the total likelihood using a 
Nelder and Mead [15] optimization algorithm in R (version 3.0.2) with 
five sets of different stating parameters:
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Model extension

As dedicated cells may be more expert in creating particular 
splice variants, and less equipped in producing other splice variants, 
the observed expression values do not only depend on probability of 
transcription of the splice variant, but also on the expression of each 
splice variant. In this case the mean, variance and correlation may depend 
on splice variant 2

1 1( , )jk k kk andµ σ ρ . We assumed the role of background 
noise the same in all splice variants. In this model the parameter vector 
to be estimated is 2 2

0 1 0 1 0{{ },{ }, ,{ }, ,{ }, } 1,..., ,k k k kP k Kλ µ µ σ σ ρ ρ= =  with 
3K+(K-1)+3 parameters.

Analysis

To compare different mixture models we calculated the Akaike 
Information Criterion (AIC) and Bayesian Information Criterion (BI 
C) approximation, which adds a penalty to the log-likelihood based on 
the number of parameters. The AIC and BI C are defined as:

AIC=−2 * log(L) + 2 * number of parameters                                   (7)

BI C=−2 * log(L) + number of parameters * log(n)                          (8) 

We considered six models::

1. Established optimal normal mixture modeling method 
estimated by Mclust in R [16,17]; This is our null model, and positive 
control, because it has no constraints. Mclust has the disadvantage 
that it estimates clusters which almost surely are not corresponding 
to recognizable splice variants. The Mclust algorithm does not use 
constraints to simulate the biological process of alternative splicing. 
Mclust maximizes the likelihood using different parameter values for 
each exon in each splicing variant. Differences in expression values of 

A)

B)

C)

D)

E)

Figure 1: Five basic modes of alternative splicing.
A) Exon skipping: in this case, an exon may be spliced out of the primary 
transcript or retained. This is the most common mode in mammalian pre-
mRNAs.
B) Alternative acceptor site: An alternative 3’ splice junction is used, changing 
the
5’ boundary of the downstream exon.
C) Alternative donor site: An alternative 5’ splice junction is used, changing 
the 3’
boundary of the upstream exon.
D) Mutually exclusive exons: One of two exons is retained in mRNAs after 
splicing, but not both.
E) Intron retention: A sequence may be spliced out as an intron or simply 
retained.
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several exons in one splicing variant are highly unlikely. The amount 
of mRNA transcribed in a splicing variant should be equal for all 
transcribed exons. However we expect that this model is usually the 
best model when AIC and BIC are concerned.

2. Only one splice variant is transcribed, namely the RNA 
molecule in which all exons are always all present. With respect to AIC 
and BI C we expect that this model is usually the worst. Therefore this 
model is our negative control and is also considered a null model.

3. Only known splice variants are transcribed. The known splice 
variants are based on the splice variants presented in the Ensembl 
genome database project [18] of June 2014. These splice variants are 
modeled in:

(a) The basic model with a mean expression equal in all splice 
variants and all exons.

(b) The extended model with a varying mean expression between 
splice variants.

4. All possible splice variants are transcribed. This results in a set 
of 2E number of splice variants representing all possible variants within 
the gene. This set of splice variants is modeled in:

(a) The basic model with a mean expression equal in all splice 
variants and all exons.

(b) The extended model with a varying mean expression between 
splice variants.

For genes with less than 10 exons we estimate the model with 
all possible splice variants. For 10 exons this would result in 1024 
splice variants. For big genes the set of splice variants is too large. We 
therefore used a scenario-based method to estimate the parameters 
in this model. Each scenario consisted of a set of splice variants with 
similar exon skipping patterns, and had a fixed number of connected 
exons not present in each splice variant. The number of connected 
exons differs between scenarios. In the first scenario all splice variants 
with all exons present and skipping 1 exon are included.

0 1 1 1 0 1
1 0 1 1 0 1

1 1 1 1 0 1
1 1 1 1 1 0





  




The second scenario included skipping two connecting exons.

0 0 1 1 0 1
1 0 0 1 0 1

1 1 1 0 0 1
1 1 1 1 0 0





  





The last two scenarios consisted of only two or even one exon 
present and all other exons absent. This resulted in sets of three and 
two splice variants for the last two scenarios

1 1 0 0 0 0
1 0 0 0 0 0

1 0 0 0 0 1
0 0 0 0 0 1

0 0 0 0 1 1









These multiple scenario’s each estimated a set of different splice 
variants de- pending on the size of the gene.

5. Here we combined the known splice variants (model 3) with the 

splice variants that have a mixture proportions in model 4. For genes 
with more than 10 exons we combine the known splice variants with the 
highest mixtures proportions of all scenario’s in a set of splice variants 
identical to genes <10 exons. We expect that this model is better than 
model 3 and 4 with respect to AIC and BI C .

6. We manually selected a number of splice variants based on the 
observed pattern of exon expressions in patients.

Simulation

The primary objective of the simulation study was to validate our 
model and algorithms. The simulation was conducted using predefined 
splice variants and model parameters. We simulated variation of a set 
of two known splice variants for each of three genes existing of 5, 9 and 
65 exons, and added one unknown variant.

We estimated the parameters for the models with known splice 
variants (model 3a), all splice variants (model 4a), known splice 
variants added with the splice variants with the highest proportion 
in the model with all splice variants (model 5) and we used the 
manual model (model 6) with the simulated splice variants and their 
prevalences. For the simulation of the gene having 65 exons we did not 
estimate the all possible splice variants model and compared solely the 
known variants model to the model with the known splice variants with 
addition of the unknown splice variant, given that this would be the 
variant with the highest prevalence in the scenario’s of model 4a. We 
evaluated the models on their ability to reproduce the given parameters 
and compared the AIC and BI C. Additionally, to evaluate the models 
ability to identify the simulated splice variants, we calculated the 
fraction of times the simulated splice variant was identified using the 
various models we studied. To validate our model we have conducted 
a 7-fold cross-validation study on the simulation data of the gene with 
5 exons. We selected the model with the lowest residual sum of squares 
(RSS) values as final model.

As secondary objective we tried to find the limit of the number of 
splice variants our model could estimate at once.

Data example

Our model was applied to microarray gene expression data of 63 
patients with Marfan’s syndrome derived from a skin biopt [19]. The 
gene expression was obtained from a skin biopt taken from the upper 
thigh or upper arm with a 4.0 mm diameter punch. Gene expression 
was analyzed using Human Exon 1.0 ST Arrays and Affymetrix. The 
average RNA yield was 1.5 µg with an average RNA quality RIN value 
of 8.1. To generate the average log2 probe signal for the Affymetrix 
GeneChips, raw probe intensities without control probes were used.

We applied the mixture model to three genes, SLC2A10, TGFβR2 
and FBN1, all associated with Marfan’s syndrome.

SLC2A10 consists of 26.86 kb pairs in five exons located at 
20q13.12. Currently, there are two splice variants known (on October 
2014 [18], [1 1 1 1 1] and [1 1 0 0 0]) of the total set of 32 possible splice 
variants, where 1 resembles the exon present an 0 the exon not present 
in the splice variant.

TGβR2 consists of 87.64 kb in 9 exons located at 3p22 with two 
known splice variants ([1 1 1 1 1 0 1 1 1] and [1 0 1 1 1 0 1 1 1]) of the 
512 possible splicing variations of TGFβR2.

FBN1 is the largest gene (237.54 kb in 65 exons at 15q21.1) we 
analyzed and had 8 known splice variants of the 3.69e19 possible splice 
variants.
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algorithmic methods to identify variants (models 3-5), performance is 
less good. If we exclude unknown variants, identification of existing 
(i.e. known and high prevalent) variants is usually very good (model 3, 
variant 1). Performance of the biggest model (model 4), evaluating all 
possible variants, is clearly worse, also for the most prevalent variant. 
The performance of the more restricted model 5 seemed to be quite 
good for high prevalent variants (variant 1) and quite acceptable for 
low prevalent variants (variants 2/3).

The 7-fold cross-validation study showed similar results as our 
model.

Data example

SLC2A10: Because SLC2A10 consists of five exons with 25 possible 
traversals, we analyzed all 32 traversals as mentioned in model 4a. 
We estimated model 1, 2, 3a, 4a, 5 and 6. In addition we estimated 
the parameters for the model where we allowed for a varying mean 
between splice variants (models 3b and 4b). For model 6 we selected 
three splice variants ([1 1 1 1 0], [1 1 1 1 1], and [1 0 0 0 0]), which 
we expected could explain the variation in exon expression between 
patients. We assumed that these splice variants were equally present.

The results of the different models for SLC2A10 exon expression 
are reported in Table 3.

The optimal hierarchical clustering model (model 1) was found 
to be a model with only one cluster. The average exon expression is 
illustrated by the black line in Figure 2. This line closely followed the 
trend observed in all patients, but it did not reflect a recognizable splice 
variants. If we assumed that this gene had only one splice variant (with 
the same mean for all exons; model 2) we observed AIC/BI C values of 
1098/1105.

If we assumed that only the known splice variants were present 
(models 3a and 3b), the AIC /BI C improved considerably to 1005/1020 
or 1116/1142 depending on whether we allowed the mean expression 
to vary over splice variants (model 3b) or not (model 3a).

These results did not improve if we considered all possible splice 
variants (models 4a and 4b). However, in these models we observed 
that there were 5 variants ([0 1 1 1 1], [1 0 1 1 1], [1 1 0 1 1], [1 1 1 1 

Results
Simulation

The results from the simulation of the gene with 5 exons is presented 
in Table 1. Here the AI C and BI C values of models 5 and 6 are best. 
The mean values of the parameters and the probabilities were unbiased 
in both models where we used existing splice variants (model 5 and 6). 
These results were very similar for the genes having 9 and 65 exons. In 
the model estimating all possible splice variants the prevalences of the 
splice variants were lower than the simulated values. In this model the 
number of parameters is much larger than the number of observations 
making estimated rather unstable.

However the splice variants with the highest prevalence in the 
simulated data always had the highest estimates, so the splice variants 
were in the correct order. When only the most frequent splice variants 
were used, the estimates were similar to the simulated values.

In Table 2 we show the fraction of times the simulated splice 
variant was identified using the various models we studied. Model 
6 was the mixture model that was based on evaluating the available 
data. As may be expected, the performance of this model was perfect; 
all three variants were always identified. In practice where we do not 
know the true splicing variants, this model’s performance will be less 
good and we expect that splicing variant identified by an arbitrary 
observer will be often difficult to validate. With the models using 

Simulated data Model 3a CV 3 Model 4a CV 4 Model 5 CV 5 Model 6 CV 6
# of SV 3 2 3 32 32 3 3 3 3

log L -720.31 -882.16 -570.07 -567.24
# params 7 37 8 8

AIC 1454.61 1150.47
BIC 1477.7 1176.86
RSS 815.75 1396.51 932.92 796.93
µ1 9.5 9.5 9.5 9.52 9.53 9.47 9.52 9.5 9.5
µ0 6 7.82 7.83 8.71 6.01 6.08 6.31 6.08 6.09
σ2 0.15 0.16 0.16 0.24 0.31 0.15 0.15 0.16 0.16
σ2 0.25 3.1 2.90 2.13 0.24 0.18 0.28 0.18 0.19
ρ1 0.2 0.27 0.25 0.85 0.63 0.25 0.24 0.25 0.25
ρ0 0 0.27 0.20 0.47 0.27 0.15 0.3 0.05 0.04

1 1 1 1 1 0.85 0.843 0.836 0.11 0.28 0.842 0.75 0.85 0.85
1 0 0 0 0 0.05 0.157 0.164 0.027 0.015 0.044 0.19 0.05 0.05
1 1 1 1 0 0.1 0.091 0.066 0.114 0.059 0.1 0.1

# of SV=Number of splicing variants; log L= log likelihood;
# of params=Number of parameters; AIC =Akaike information criterion; BIC=Bayesian information criterion; RSS=Residual Sum of Squares
Model 3a=Known splice variants; Model 4a=All possible splice variants; Model 5=Known and high mixture proportions splice variants; Model 6=Manually selected splice 
variants CV= Cross-validation analysis of corresponding model

Table 1: Results on the simulation data of 5 exons and three splicing variants.

Variant 1 2 3
Model 3 98.4% 30.5% -
Model 4 32.9% 30% 66%
Model 5 88.2% 26.3% 59%
Model 6 100% 100% 100%

Model 3=Known splice variants; Model 4=All possible splice variants; Model 
5=Known and high mixture proportions splice variants; Model 6=Manually 
selected splice variants
Variant 1=[1 1 1 1 1]
variant 2=[1 0 0 0 0]
variant 3=[1 1 1 1 0]

Table 2: Percentage of correctlt identified splice variants.
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0] and [1 0 1 1 0]) present with a prevalence >0.05 varying between 
0.07 and 0.13 which were not the known variants. Therefore, we finally 
tried the model with the two known variants together with the newly 
found variants (model 5). This model did had the best AIC/BI C values 
(800/826) of all models based on splice graphs traversals, and followed 
the trend closely as presented in Figure 2.

TGFβR2: TGβR2 consists of 9 exons with 29 (512) possible 
traversals and three known splice variants. The analyzed models were 
identical to the SLC2A10 gene. Except for the model 4b and the model 
where we predetermined the splice variants (model 6). Here we selected 
four splice variants ([1 0 1 1 1 1 1 1 0], [1 1 1 0 0 0 0 0 0], [0 1 1 0 0 0 
0 0 0], [0 1 1 0 0 0 1 0 0]) with the prevalence of 20% 20% 40% 20%, 
respectively.

All results of the models for the exon expression of TGFβR2 are 
presented in Table 4.

Similar to SLC2A10 the hierarchical cluster analysis, model 1, 
found one cluster. When we assumed that there was only one splice 
variant present in this gene (model 2) we found AIC/BI C values of 
1387/1394.

The AIC/BI C improved to 1301/11316 or 1260/1286, if we assumed 
that only the known splice variants were present (model 3a and 3b), 
depending on whether we allowed the mean expression to vary over 
splice variants (model 3b) or not (model 3a).

AIC/BI C did not improve if we considered all possible splice 

variants for this gene. In these models two splice variant of the form 
[0 1 1 1 0 0 0 0 0] and [0 1 1 0 0 0 0 0 0] were present with a large 
prevalence. When we tried to improve the results of models 3a and 3b 
by adding these splice variants to the known splice variants (model 5) 
we found that this model had the best values for AIC /BI C (811/830).

FBN1: FBN1 is the largest gene we analyzed and has 8 known splice 
variants within 65 exons.

We applied our model to the 8 known splice variants of FBN1 
(model 3a). Because all possible splice variants of FBN1 would generate 
265=3.69e + 19 variants we formulated rules to systematically compare 
several scenario’s.

We formulated the following scenario’s based on consecutive 
skipping exon rules:

1. All splice variants including 64 exons, skipping 1 exon (65 splice 
variants)

2. All variants including 63 exons, skipping 2 consecutive exons (64 
splice variants)

  

63. All splice variants including 2 exons, skipping 63 consecutive 
exons (3 splice variants)

64. All splice variants including 1 exon, skipping 64 consecutive 
exons (2 splice variants)

Model 1 Model 2 Model 3a Model 3b Model 4a Model 4b Model 5 Model 6
# of SV 1 1 2 2 32 32 7 3
log L 39 -546 -496 -546 -478 -377 -388 -413
# params 20 3 7 12 37 192 12 8
AIC -39 1098 1005 1116 1030 1139 800 841
BIC 4 1105 1020 1142 1110 1550 826 858
# of SV=Number of splicing variants; log L= log likelihood;
# of params=Number of parameters; AIC=Akaike information criterion; BIC=Bayesian information criterion.
Model 1=Mclust model; Model 2=One splice variant; Model 3=Known splice variants; Model 4=All possible splice variants; Model 5=Known and high mixture proportions 
splice variants; Model 6=Manually selected splice variants the a. and b. define the normal model or the extended model respectively

Table 3: SLC2A10 model results.
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Model 6
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Figure 2: SLC2A10 exon expression for each model with individual patient exon expression.
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We started with one exon skipping in the first scenario, and ended 
with 64 consecutive skipping exons in scenario 64. For FBN1 we 
analyzed model 1, 2, 3a and 3b, 4a, 5 and 6.

Table 5 presents the results for the FBN1 gene models.

Opposite to the previous two genes the hierarchical cluster analysis 
found 8 clusters. However similar to the hierarchical cluster analysis 
of SLC2A10 and TGFβR2 non of these clusters reflected recognizable 
splice variants. The average of these clusters followed the trend of all 
observed patients. If we assumed one splice variant in this gene, we 
observed AIC /BI C values of 11957/11963. The AIC /BI C did not 
improve if we assumed the known splice variants (model 3a and 3b).

We used different scenario’s to estimate the AIC and BI C of all 
possible splice variants (model 4a). The best performing scenario, based 
on the lowest combined AIC and BI C values (12419 and 12574), was 

the scenario consisting of 67 splice variants skipping 22 consecutive 
exons.

We tried to improve the model with known splice variants (model 
3a) by adding the splice variants with the highest proportion of the 
64 different scenario’s (model 5). This optimized model consisted of 
36 splice variants. When we reduced the number of splice variants to 
the 10 splice variants with the highest prevalence in model 5 (reduced 
model 5 in Figure 4), there was a small improvement in AI C and BI C 
values.

The predominant splice variant in model 5 and the reduced model 
5 was the splice variant with 64 exons present, skipping exon 25. This 
variant is responsible for the drop in expression as presented in figure 
4. This model improved the AI C and BI C values of the known variants 
model to 11546/11634.

Exons

ex
pr

es
si

on

1 2 3 4 5 6 7 8 9

Model 1
Model 2
Model 3a
Model 3b
Model 4a
Model 5
Model 6
Pt expression

Figure 3: TGFBR2 exon expression for each model with individual patient exon expression.

Model 1 Model 2 Model 3a Model 3b Model 4a Model 5 Model 6
#of SV 1 1 2 2 512 4 4
log L 160 -691 -643 -618 -630 -397 -495
#params 54 3 7 12 517 9 9
AIC -211 1387 1301 1260 2295 811 1007
BIC 96 1394 1316 1286 3403 830 1026
# of SV=Number of splicing variants; log L=log likelihood;# of params=Number of parameters; AIC=Akaike information criterion; BIC=Bayesian information criterion. Model 
1=Mclust model; Model 2=One splice variant; Model 3=Known splice variants; Model 4=All possible splice variants; Model 5=Known and high mixture proportions splice 
variants; Model 6=Manually selected splice variants the .a and .b define the normal model or the extended model respectively.

Table 4: SLC2A10 model results.

Model 1 Model 2 Model 3a Model 3b Model 5 Model 6 reduced Model 5
# of SV 8 1 8 8 36 6 10
log L 202 -5975 -5996 -5981 -5732 -4976 -5704
# params 2746 3 13 13 41 11 15
AIC 5088 11957 12018 11988 11546 9975 11438
BIC 10973 11963 12046 12015 11634 9998 11470
# of SV=Number of splicing variants; log L=log likelihood;
# of params=Number of parameters; AIC=Akaike information criterion; BIC=Bayesian information criterion.
Model 1=Mclust model; Model 2=One splice variant; Model 3=Known splice variants; Model 5=Known and high mixture proportions splice variants; Model 6=Manually 
selected splice variants the .a and .b define normal model or the extended model respectively

Table 5: FBN1 Model results.
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We tried to manually estimate splice variants in this gene. This 
model with 6 splice variants had best AI C/BI C values. The 6 splice 
variants were new not existing variants based on the high and low 
points in exon expression.

Discussion
We based our splice variation model on the assumption that the 

mean expression is equal for all exons included in a splice variant 
and zero for exons excluded in the variant. Because we developed our 
models based on microarray data we had to deal with background 
noise existing in the data.

In contrast to the hierarchical cluster analysis (model 1) we 
assumed a single mean expression over all exons in a splice variant. 
Therefore our model is more restrictive than the hierarchical cluster 
analysis models, which allows different mean expression values for 
exons in a splice variant. We think that these restrictions are valid 
be- cause our model follows the biological process of synthesis of an 
RNA-molecule in contrast to the hierarchical cluster analysis models. 
The frequency that pre-mRNA is transcribed from the DNA is identical 
for each pre-mRNA, regardless of the splice variant. Pre-mRNA’s still 
include introns and exons and is identical for each splice variant. The 
exons to be retained in the mRNA are determined during the splicing 
process. The expression of each exon is determined by the times the 
exon is included in each splice variant and the amount of splice variant 
produced. In our model we tried to estimate these parameters.

Marfans Syndrome is a clinical defined syndrome with dilation 
of the aorta as the most serious complication. Mutations in FBN1 
are the most important criteria for the clinical Marfans Syndrome 
diagnosis [20,21]. Aorta pathology is also caused by mutations in 
other genes, including TGFβR2 and SLC2A10 [22]. Mutations in 
TGFβR2 lead to Loeys-Dietz Syndrome and mutations in SCL2A10 
to Arterial Tor- tuosity Syndrome Arterial. All of these syndromes 
are related to fibrilin-1 and the TGF-β pathway. Marfans Syndrome 
is genetically caused by misfolding of fibrillin-1. Fibrilin-1 is encoded 
by the FBN1 gene. Fibrilin-1 in turn binds a latent form of TGF-β. 
TGFβR2 is involved in the TGF-β pathway by binding TGF-β. The role 
of SLC2A10 in the TGF-β pathway is less clear but it is well known 

to be associated with upregulation of the TGF-β pathway [23,24]. 
At this moment we do not know the impact of splice variants on the 
function and/or structure of proteins. We hypothesize that the splice 
variants most common in SLC2A10 and TGFBβ2 are transcribed in 
non-functional proteins, and therefore alter expression of the TGF-β 
pathway. The most common splice variant for FBN1 in our sample 
was a variant without exon 25. Mutations in this specific exon are well 
known to be associated with neonatal Marfans Syndrome, which is the 
most severe Marfans Syndrome form, but apparently lack of exon 25 
expression is important for adult Marfans Syndrome as well.

In this manuscript we used a systematic approach to determine 
the probability of the presence of splice variants. The number of splice 
variants in our model is depending on the number of exons of the gene. 
For small genes we analyzed all possible combinations of exons. This 
resulted in a set of 2E possibilities, with E the number of exons of the 
gene. The set of splice variants included biologically highly improbable 
splice variants (e.g splice variants where only the first and the last 
exons were present). The entire set of splice variants was relatively 
small; therefore the computational implications were minor. The 
biologically unlikely splice variants were given a low prevalence in the 
analyses. When the gene-size increased, and the number of all possible 
combinations became too big to analyze, we turned to a scenario-based 
method.

In this method we systematically searched for splice variants based 
on predetermined rules. The disadvantage of this method is that we 
do not analyze all possible splice variants. In practice we can however 
often exclude a number of biologically unlikely splice variants by well 
defined splice variant selecting rules.

Conclusion
We developed a model to estimate the probability of the presence 

of specific splice variants. In this analysis we found four possible splice 
variants, not yet present in gene-databases, that might be present in 
SLC2A10, TGFβR2 and FBN1 in Marfan patients. Further research 
must be undertaken to confirm that these splice variants are actually 
present in this patient population.
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Figure 4: FBN1 exon expression for each model with individual patient exon expression.
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