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There are approximately six million people living with spinal cord 
injury (SCI)-related paralysis in the United States – nearly one in every 
50 people. Though advances in acute care resulted in greatly reduced 
co-morbidities in the initial few years following a spinal cord injury, 
there has been much less progress preventing medical complications 
associated with SCI in the long-term. Therefore, understanding the 
long-term consequences of SCI is critical to develop evidence-based 
rehabilitation programs that would provide optimal treatment for the 
reversal of co-morbidities.

Individuals with SCI are at increased risk for developing an array 
of inactivity-related health problems during the chronic stages of 
injury. Among several consequences of SCI is bone loss (osteoporosis) 
following injury, which is both rapid in onset and severe in nature. In 
motor complete SCI, the long bones of the lower extremity adapt to 
minimal mechanical strain by atrophying. Bone loss occurs rapidly in 
the acute phase of the injury and slows two to three years after injury 
[1]. While the nature and magnitude of the effects of SCI on bone vary 
by skeletal site, sex, and age [2], all individuals with motor complete SCI 
develop osteoporosis below the level of the injury [1,3,4]. Perhaps as a 
result, individuals with complete SCI are twice as likely to experience 
fractures compared to healthy controls [5], and as many as 40% of 
the individuals with chronic SCI experience fractures [5-8], with the 
most common occurrence at the metaphyses of the proximal tibia and 
distal femur [9]. Fractures are discovered after minimal trauma and are 
most commonly treated with prolonged bed-rest and bracing in many 
cases. However, the combination of the injury and extended bracing 
results in prolonged immobility, worsening disability, and serious 
medical complications, such as pressure ulcer formation, increased 
pain and spasticity, and lower extremity amputation. Thus, it is critical 
to develop rehabilitation programs that may effectively reverse the 
sequelae of prolonged lower extremity disuse and minimize the medical 
complications due to osteoporosis secondary to lower extremity 
paralysis. Unfortunately, however, physical therapy does not appear to 
have proven efficacy [10], and there are no studies that conclusively 
showed an effective pharmacologic intervention for prevention and 
treatment of osteoporosis in chronic SCI [11]. Part of the culprit may 
be that only a small number of individuals with SCI volunteer for 

long-term studies, and adequately matching individuals by the level, 
completes, and duration of lesion, as well as age is not always possible 
[7,11]. Thus long-term longitudinal randomized investigations on 
osteoporosis in individuals with SCI have been difficult. Nevertheless, 
the lack of effective rehabilitative strategies underlines the importance 
of an integrated understanding of the factors, both neural and local, 
that are involved. The purpose of this mini-review is to delineate our 
current understanding of SCI-related osteoporosis and to highlight 
recent literature towards its prevention and treatment.

Neural Denervation, Limb Unloading, and Mechanisms 
of Bone Loss Following SCI

Trabecular and cortical bone as well as the bone marrow are 
innervated by sympathetic neural fibers [12-15], and functional 
noradrenaline and various neuropeptide receptors have been identified 
on bone cells [16,17]. Thus, sympathetic innervation appears to play 
an important role in bone function. In fact, experimental sympathetic 
denervation in animal models results in reduced bone deposition and 
mineralization and increased bone resorption [18,19], suggesting a 
potential direct impact of denervation on bone function. In addition 
to its direct impact, sympathetic denervation may also have an 
indirect impact on bone metabolism via vascular dysregulation. For 
example, interruption of sympathetic signaling causes the opening 
of bone intravenous shunts, leading to venous and capillary vascular 
stasis [20,21]. Among the consequences of vascular stasis is osteoclast 
formation due to local hyper-pressure, which may accelerate bone 
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resorption [22]. Therefore, vascular dysfunction below the level of 
injury may promote and/or facilitate the development of osteoporosis. 

In addition to nervous denervation and subsequent vascular 
alterations, the rapid loss of bone due to any type of prolonged 
immobilization is also related to limb unloading and consequent 
alterations in calciotropic hormones and local messenger systems 
[23]. The general consensus is that SCI-related bone loss occurs 
in 2 phases: 1) a rapid, acute phase characterized by increased bone 
resorption that plateaus somewhere between 18-24 months post-injury 
and 2) a chronic phase, characterized by inhibition of bone formation 
with ongoing bone loss that is more gradual in nature [24-27]. Early 
studies of circulating levels of bone turnover markers in SCI subjects 
reported that bone formation is suppressed immediately following 
SCI [28]. Other reports using animal models of hind limb unloading 
have described immediate osteocyte and osteoblast apoptosis [29], 
and an increased osteoclastic bone resorption with reduced bone 
formation [30]. Thus, mechanical unloading following SCI leads to a 
rapid increase in bone resorption by osteoclasts and suppresses bone 
formation by osteoblasts, ultimately leading to bone loss.

The discovery of the role of Wnt signaling pathways in bone 
homeostasis has radically transformed our understanding of the 
cellular and molecular mechanisms responsible for the adaptation of 
bone to unloading [31,32]. While Wnt signaling pathways include a 
large family of growth factors that participate in various developmental 
events, these pathways are also implicated in adult homeostatic 
mechanisms [24,33]. For example, dysfunction of Wnt pathways have 
been implicated in a variety of degenerative diseases and abnormalities, 
including those associated with impaired bone homeostasis [34]. 
Indeed, several studies in rodents have defined the central role of 
Wnt signaling antagonists in the pathogenesis of disuse osteoporosis. 
Osteocytes, the cells responsible for mechano-transduction in bone, 
represent the first cellular response to unloading [35], and release 
sclerostin, a potent Wnt signaling antagonist [36-38]. Several studies 
have shown that sclerostin levels are inversely proportional to bone 
mass and that production of sclerostin by osteocytes is dramatically 
reduced by mechanical loading [1,37,39]. Thus, mechanical unloading 
results in up-regulation of sclerostin, which leads to reduced Wnt/β-
catenin signaling in osteoblasts and to inhibition of bone formation and 
growth. Moreover, sclerostin causes up-regulation of RANKL (a key 
factor that promotes osteoclast differentiation), and down-regulation 
of osteoprotegerin (a key inhibitor of osteoclast differentiation) 
expression by osteocytes, which leads to increased osteoclast activity 
and ultimately to bone resorption [40,41]. Thus, in addition to its anti-
anabolic role, sclerostin also appears to have catabolic effects. 

Recent work has also shown a positive relation between circulating 
sclerostin levels and bone density in chronic (>5 years) immobility in 
humans. Considering the mechanism of sclerostin-induced bone loss 
in acute SCI, this relation in the chronic phase seems paradoxical at 
first. However, though sclerostin levels may initially increase after SCI 
in response to mechanical unloading, in the long-term, circulating 
sclerostin may serve as a biomarker of osteoporosis severity and not 
a mediator of ongoing bone loss. Indeed, recent research supports this 
duality. On one hand, sclerostin levels are greatest in subjects with 
short-term SCI and decrease significantly over the first 5 years post-
injury [42]. On the other hand, in subjects with long-term (>5 years 
post-injury) SCI, sclerostin levels are positively associated with lower 
extremity bone density and bone mineral content [42]. 

Pharmacologic Strategies Toward Treatment of 
Osteoporosis Following SCI

Currently there are no clinical guidelines for the prevention or 
reversal of SCI-related osteoporosis. Traditionally, bisphosphonates 
have been considered as the most appropriate therapy to prevent 
bone loss following SCI. Bisphosphonates strongly inhibit bone 
resorption. Various reports indicate that they provide an effective 
preventive treatment strategy when initiated within 12 months of the 
injury [43-46], and early bisphosphonate administration increase ash 
weight, maximal torque capacity, maximal angle capacity and rigidity 
of the bone atrophied by immobilization [47]. However, the efficacy 
of bisphosphonate treatment appears to be limited to only within 
the acute phase (< 1 year) of injury [48]. This may be related to the 
fact that though bisphosphonates reduce bone resorption, they have 
limited effect on bone formation [49]. This is explained by the fact 
that bisphosphonates reduce coupled bone remodeling because they 
suppress osteoclastic bone resorption, which is required in order for 
osteoblastic bone formation to proceed. 

The role of sclerostin in the adaptation of bone to unloading during 
the acute phase of SCI suggests that sclerostin may provide an alternative 
therapeutic target during the acute phase of injury as a prevention 
strategy to prevent initial, rapid osteoporosis. The higher sclerostin 
levels in acute SCI and lower levels in chronic SCI strongly suggest that 
the time frame for limiting bone resorption is limited. Thus, there may 
be an optimal time frame - the “therapeutic window” - for targeting 
sclerostin and preventing bone loss following SCI [6]. Unfortunately, 
however, there is no longitudinal information that defines the kinetics 
of bone loss and its relation to circulating sclerostin in the acute phase 
of SCI (i.e., within the first year), when acute mechanical unloading 
and most bone loss occurs. 

The ongoing discussion suggests that although bone loss in 
individuals with SCI may be partially prevented via pharmacologic 
interventions, notably during the acute post-injury phase, current 
pharmacologic treatments do not appear to be capable of reversing bone 
demineralization. Thus, currently there is no effective pharmacologic 
intervention for prevention and treatment of disuse osteoporosis due 
to SCI, especially after the first year of injury. Perhaps as a consequence, 
a recent, emerging theme in the literature is the utility of novel, non-
pharmacologic paradigms that are specifically designed for individuals 
with SCI to prevent and reverse the bone loss due to prolonged 
immobility. 

Physical Exercise and Effective Reversal of Osteoporosis 
Following SCI

Bone is a dynamic organ that modulates the rate of new bone 
formation in response to varying levels of physical exercise and 
mechanical strain, and there is already ample evidence that physical 
exercise in those with SCI is broadly beneficial to health [50,51], 
improves quality of life [52], and impacts outcome after SCI [53]. 
Therefore, it would not come as a surprise that physical exercise can 
reduce, prevent, and even reverse SCI-related osteoporosis. There is 
evidence of improved circulation in bone vasculature during muscular 
work. For example, recent work has shown that resting femoral bone 
blood flow almost doubles in response to isometric exercise, although 
the increase in blood flow plateaus with increasing exercise intensities 
[54]. The blood flow response to muscular work appears to be mediated 
by a metabolically induced stimulus, rather than neural mechanisms 
[55]. Thus, physical exercise may promote bone blood flow, alleviate 
the bone vascular dysfunction due to neural denervation, and facilitate 
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bone metabolism and growth in SCI. Furthermore, mechanical loading 
of the bone during exercise may reverse the alterations in local Wnt 
signaling cascade that occur due to immobilization and unloading, 
contributing to disuse osteoporosis. Therefore, it is conceivable that 
re-introduction of mechanical loading via physical exercise may also 
reverse atrophy and bone loss in individuals with SCI. 

However, though a majority of SCI patients regard physical activity 
as important, more than half do not have access to appropriate exercise 
[56]. For the general population, physical exercise is an inexpensive, 
safe, and effective approach for avoiding health problems. However, 
a typical individual with SCI experiences many barriers to exercise 
due to their immobility, such as the inability to use a large portion 
of their muscle mass, and inability to locate appropriate facilities 
and affordable equipment. Fortunately, exercise programs based 
on functional electrical stimulation (FES) have been developed to 
overcome these barriers. FES-exercise uses electrical stimulation of the 
paralyzed muscles to cause muscle contractions. Loading the bones 
through muscular contractions initiated by FES has yielded positive 
results. For example, in both acute and chronic SCI, up-right standing 
via force feedback-controlled electrical stimulation of paralyzed 
quadriceps appears to provide sufficient loading to the paralyzed 
lower limbs closer to load levels with known osteogenic potential [57]. 
Moreover, recent adaptation of cycling and rowing exercises for FES 
provides a new and exciting opportunity to provide mechanical strain 
to the paralyzed lower limbs sufficient to stimulate bone formation in 
individuals with SCI. 

Recent research has shown that FES-cycling initiated during the 
very early stages of spinal cord injury (1 – 2 months post-injury) may 
attenuate the bone loss [58], though at least one study show that this 
may not be the case [59]. However, the attenuation of bone loss fades 
quickly, within 6 months once cycling exercise is discontinued [58,60]. 
Though the reasons for these discrepant results are unknown, one 
culprit may be the limited mechanical efficiency of cycling exercise. 
In all individuals, able-bodied or not, exercise must meet certain 
intensity and volume criteria to induce significant health benefits. 
For example, passive weight bearing of paralyzed lower extremities 
appears to be ineffective, and the intensity, frequency, and duration of 
stress to the bones appear to be important determinants of improved 
bone parameters [9]. Yet, the mechanical efficiency of FES-cycling 
is estimated as ~8% [61], less than a third of that for cycling in able-
bodied individuals. One issue may be that cycling exercise does not 
achieve high levels of aerobic work and a plateau in training effect is 
quickly reached [62]. Therefore, though promising, this modality of 
FES-exercise may not be sufficient to promote enough bone blood flow 
and mechanical strain to reliably prevent and reverse SCI-mediated 
bone loss beyond the very early stages of injury. 

In contrast to typical FES cycling exercise, it appears that 
significant benefits can be achieved via high volume FES cycling 
training. For example, in patients with chronic SCI, high-volume (five 
60-min training sessions a week for 12 months) FES cycling training 
can partially reverse the loss of bone mineral density [63]. Moreover, 
though the benefits achieved through 1 year of high volume FES 
cycling training may be lost if the training discontinues, the benefits 
appear to be maintained when reduced intensity exercise is continued 
after the initial training [64]. Recently, in an attempt to overcome the 
limitations of typical FES-cycling, rowing has been adapted for FES 
exercise to provide a better exercise modality for individuals with SCI. 
FES-rowing uses electrical stimulation of the paralyzed quadriceps 
and hamstrings to actively engage both the arms and the legs in the 
full rowing cycle. Though it is currently unknown if FES-rowing can 

prevent osteoporosis during acute phase of SCI, a recent pilot study 
from our laboratory with three individuals with chronic SCI has shown 
that the cyclical mechanical loading of the lower extremities during 
FES-rowing can promote new bone formation (up to 50%), improve 
bone strength, and may revert osteoporosis during the chronic stage of 
SCI [65]. Further studies are required to assess the utility of FES-rowing 
on effective reversal of SCI-mediated osteoporosis. Nevertheless, FES-
rowing appears to provide sufficient exercise intensity and mechanical 
strain to the paralyzed lower limbs to stimulate new bone formation. In 
addition to the improvement in musculoskeletal health, the advantages 
of FES-rowing exercise include an improvement in cardiovascular 
health more than most options currently available [66], the use of a 
relatively inexpensive ergometer, and integration into existing rowing 
programs and communities because of its similarity to rowing by the 
general population. According to participants, FES-rowing is intuitive 
and easy to learn, and a more engaging and natural exercise, similar to 
what would be used by able-bodied individuals. Moreover, FES exercise 
has been shown to be safe for participants [67], and FES-rowing 
paradigm has been used in our laboratory for exercise by more than 100 
individuals with SCI over the past 5 years without any adverse events. 
Therefore, FES-rowing is offers many new and exciting physiological, 
economic, and social opportunities for the SCI population. 

Conclusions and Future Directions for Rehabilitative 
Strategies

Chronic SCI and consequent osteoporosis have a huge impact 
on the individual, society and the economy, and thus there is need 
for scientific advances to improve the effectiveness of rehabilitative 
approaches. In rehabilitation medicine, the shortage of evidence-
based practice has been a major barrier to advancing care and 
promoting the timely identification, application, and assessment of 
advances in science and technology with the potential to improve 
rehabilitation outcomes in chronic SCI. For example, sclerostin may 
provide an alternative therapeutic target during the acute phase of 
injury as a prevention strategy to prevent initial, rapid osteoporosis, 
and to improve rehabilitation outcomes in chronic stages. However, 
future work should define the kinetics of bone loss and its relation 
to circulating sclerostin when acute mechanical unloading and most 
bone loss occur. In addition, recent advances in application of a new 
technology (functional electrical stimulation) provide an exciting new 
avenue to improve functional mobility, to foster behavioral adaptation 
to functional losses, and to further facilitate development of improved 
assistive technologies for individuals with chronic SCI. Future work 
should address both the physiologic and clinical impact of FES 
exercise and develop exercise programs that can provide loading to 
the paralyzed lower limbs sufficient not only to prevent osteoporosis 
but also to promote osteogenesis to ensure effective reversal of SCI-
mediated osteoporosis.
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