
Volume 4 • Issue 1 • 1000115
J Mol Imag Dynamic
ISSN: 2155-9937 JMID, an open access journal

Research Article Open Access

Wang et al., J Mol Imag Dynamic 2014, 4:1
DOI: 10.4172/2155-9937.1000115

Research Article Open Access

Speeding up the Analysis of Neuron Morphology using Parallel Processing
Wang DD*, Bourke D, Domanski L and Vallotton P

Quantitative Imaging, CSIRO Mathematics, Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia

*Corresponding author: Wang DD, Quantitative Imaging, CSIRO Mathematics,
Informatics and Statistics, Locked Bag 17, North Ryde, NSW 1670, Australia, Tel:
+61395452176, E-mail: dadong.wang@csiro.au

Received June 26, 2014; Accepted August 21, 2014; Published October 10,
2014

Citation: Wang DD, Bourke D, Domanski L, Vallotton P (2014) Speeding up the
Analysis of Neuron Morphology using Parallel Processing. J Mol Imag Dynamic 4:
115. doi:10.4172/2155-9937.1000115

Copyright: © 2014 Wang DD, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
Researchers using High Content Screening systems generate thousands of fluorescently labeled cell images

from which they measure subtle but important phenotypic changes summarized by dozens of parameters. Large im-
age datasets and fast turnaround requirement have made the efficient High Content Analysis a challenging task. This
paper studies multi-core based high performance image analysis and its application to data and compute-intensive
High Content Analyses. A vertical parallelization strategy is employed and an automated parallelization framework
is implemented to automatically dispatch image processing tasks. The strategy is based on allocation of different
images to separate processors so that each image is analyzed sequentially on a single processor and multiple im-
ages are processed by separate processors in parallel. Experiments demonstrate that this approach, of a generic
character, considerably increases throughput.

Keywords: Cell image analysis; Batch processing; High content
screening; High content analysis; High performance computing

Introduction
Automated image analysis is used by pharmaceutical companies to

measure changes in cell morphology, both rapidly and accurately. The
field itself, dubbed High Content Analysis (HCA) is emerging as one
of the fastest growing sectors in drug discovery and development. It
represents the convergence between cell-based assays, high-resolution
imaging, and advanced quantitative image analysis [1]. There is no
hard dividing line between High Content Screening (HCS) and HCA
though the former is generally higher-throughput while the latter has
an emphasis on gaining the maximum information from an assay,
typically based on images. HCS systems achieve high throughput by
rapidly capturing and processing data from entire micro-well plates.
Each well in these plates contains cells or biochemical samples, which
have been labeled to detect the changes induced by perturbations,
such as addition of a candidate drug compound or a gene knockout.
The images can be very dense, with hundreds of cells and complex
cell morphology. It may take several hours or even days to process
the images generated from a single experiment, which may be
unacceptable in practice. The ideal image processing time lies within
the same time frame as the image capturing. However, the reality is that
the image processing time still tends to be much longer than industry’s
expectations, even on a high-end computer. Therefore, strategies bases
on High Performance Computing (HPC) are necessary.

HPC comes from parallelism, fast-dense circuitry, and packaging
technology [2]. Over the last decade, several studies have been
conducted in the application of HPC to image processing [3-6]. Most
of these studies focus on the use of HPC infrastructure or distributed
processing in an application driven research environment. The
solutions presented in these studies are based on supercomputers and
computer clusters. With the enormous progress in computing power,
computers with multi-core CPUs are now standard. The multi-core
shift presents unprecedented opportunities for researchers to deal
with large datasets efficiently. It has triggered some efforts towards
developing parallel image analysis algorithms that take advantage of
these powerful processors. Trease et al. introduced a high-performance
hybrid multi-core processing framework for processing videos and
images [7]. Hartley et al. illustrated a cooperative parallelization
approach where multiple CPU sockets, multiple Graphical Processing
Units (GPUs) and multiple cluster nodes coexist. Literature reviews

have revealed few studies that explore multi-core based HCA systems.
In general, high performance image analysis algorithms have not been
sufficiently developed and investigated so far in the drug screening
context. As most of HCA systems are not based on supercomputing
facilities, studies on high performance HCA solutions based on multi-
core computers appear more practical, and have potential to make a
difference in terms of cost and quality in drug discovery.

In this paper, we present an enabling solution that makes the
most of one’s multi-core computer to achieve high throughput image
processing.

Methods
Researchers attempt to make sense of massive amount of image

data through HCA. For example, to identify compounds that affect
neurite outgrowths, several micro-well-plate experiments need to be
carried out. Eventually, hundreds of thousands of microscope images
may be generated. Well-based and cell-based features are extracted
from the images using HCA software packages. As some dense images
may have over 1000 cells featuring complicated structures, processing
large amounts of such images in a timely manner is difficult. This
section outlines the case of neurite outgrowth analysis to provide some
background information on the challenge.

Large image datasets

When screening for neurite outgrowth, multiple plates of images
are typically produced. Each micro-well plate may have 384 wells, and
12 images may be sampled from each well. This will produce 4608
images from each plate. If 5 plates of images are generated, there will be
23040 images to be processed. If each image has three channels (RGB),

Jo
ur

na
l o

f M
ole

cular Imaging & Dynam
ics

ISSN: 2155-9937

Journal of Molecular Imaging &
Dynamics

Citation: Wang DD, Bourke D, Domanski L, Vallotton P (2014) Speeding up the Analysis of Neuron Morphology using Parallel Processing. J Mol Imag
Dynamic 4: 115. doi:10.4172/2155-9937.1000115

Volume 4 • Issue 1 • 1000115
J Mol Imag Dynamic
ISSN: 2155-9937 JMID, an open access journal

Page 2 of 6

with one channel showing the labeled nuclei, one showing the labeled
neurons and neurites, and one showing additional information such
as labeled proteins in some sub-cellular compartments, the number of
images to be processed will be 69120. A typical image has a dimension
of 1280×1280 pixels. It turns out that the HCA for neurite outgrowth
analysis is a data intensive computation process.

Compute-intensive analysis

In neurite analysis, some images may be very “dense”, containing
over 1000 neurons. As shown in Figure 1, many neurons may be
clumped together, and some neurons may have complicated neurite
structures. This increases the complexity of analysis. From Figure 1,
one can see that many neurite branches overlap. De-clumping neurons
and generating neurite branch-level features and assigning the correct
neurites to the corresponding neurons become a challenging task
(Figure 1).

Neurite analysis deals with quantitative measures and statistics of
neuron and neurite structures on both a cell-by-cell and image-by-
image basis. Some definitions of neurite segments are illustrated in
Figure 2. They are listed below:

Neurite segments: S1 to S8; Roots: R1 to R2; Extremities: E1 to E5;
Branching points: B1 to B3; Longest neurite segment: S6 + S7; Neurite
field area: area of convex hull, i.e. the area enclosed by dotted lines;
Primary neurite: neurite shown in red; Secondary neurite: neurite
shown in cyan; Tertiary neurite: neurite shown in blue; Branch layers:
layer 1 is for primary; 2 for secondary, and 3 for tertiary.

To analyze neurite outgrowth, the following measurements
are required

Cell based measurements: The cell-based measurement includes
34 parameters such as cell area and perimeter, maximum and mean
intensity, total neurite length, max neurite length, max and mean
branch layer, number of branch points, number of roots, number of
segments, number of extremities, neurite field area, neurite area, max
and mean intensity of neurite etc.

Image-wide summary statistics: This includes the number of cells

in the image, total and average neurite length, total and average number
of segments, average longest neurite from a cell, total and average
number of roots, total and average number of extreme neurites, total
and average number of branch points, average branching layers etc.

Well-based summary for each plate: The plate summary is
comprised of normalized features for each well. All features extracted
from the images sampled from the same well are averaged to produce
the well based normalized statistics.

To produce the above measurements, considerable computation is
demanded in the image analysis. Therefore, batch processing thousands
of images is a computation intensive task, taking hours even days for a
single experiment.

High performance image computing

This section will address how to speed up the batch processing with
multi-core based high performance image computing.

Multi-core computers have a CPU with multiple cores combining
two or more independent processors into a single package composed of
a single integrated circuit (IC). However, disposing of two processors
does not speedup one’s application automatically. According to
Amdahl’s law, the amount of performance gain from using a multi-core
processor depends on the problem being solved and the algorithms
used, as well as how they are implemented in software. Most application
software packages rely on only a single core and see very limited speed
improvements when run on a multi-core machine. This is because they
have not been designed to take advantage of the available parallelism.
In fact, developing parallel image analysis algorithms is still a challenge.
In this section, a multi-core based high performance solution for
neurite analysis will be described. The solution can take advantage
of multiple processors and enable the conventional HCA software to
process images in parallel to achieve significant performance gain.

Sequential neurite analysis procedure for a single image

Neurite analysis procedure is highly sequential, it involves three

Figure 1: A typical dense image with many “clumped” neurons and
overlapped neurite structures. Image acquired with IN Cell Analyzer 3000
shows a high degree of neurite branching complexity. Image courtesy of
Marjo Götte, Novartis Institutes for BioMedical Research.

 R2

R1

B1

B3

B2

E1

S1

E2

E3

E4

E5

S2 S3

S8 S6

S7

S4

S5

Segmented Image

Figure 2: Segmented neurite outgrowth image.

Citation: Wang DD, Bourke D, Domanski L, Vallotton P (2014) Speeding up the Analysis of Neuron Morphology using Parallel Processing. J Mol Imag
Dynamic 4: 115. doi:10.4172/2155-9937.1000115

Volume 4 • Issue 1 • 1000115
J Mol Imag Dynamic
ISSN: 2155-9937 JMID, an open access journal

Page 3 of 6

steps: (1) neuron body detection, (2) neurite detection, and (3) neurite
analysis (Figure 3).

Neuron body detection

The neuron body detection aims at identifying and marking the
neuron bodies. This includes smoothing the raw image to distribute the
intensity more evenly within the neuron bodies; background correction
to remove global trends in the background intensity; suppressing small
structures such as neurites; intensity thresholding to detect neuron
bodies; detecting nuclei to be used as masks to split touching neuron
bodies; filtering neuron bodies when mixed cell types exist or applying
certain cell selection criteria; producing neuron body detection label
image and cell based measurements [8] (Figure 4a-4g).

Neurite detection

The neurite detection aims at detecting neurite structures [9]. The

detection procedure includes image smoothing to remove noise within
the image; linear feature detection to segment neurite structures;
removing small objects which are not of interest; closing gaps between
detected neurite endpoints; and generating neurite skeleton image [10]
(Figure 5a-5f).

Neurite analysis

Performing a neurite analysis is to trace neurites and to associate
neurites with the corresponding neurons. The tracing consists of
debarbing small neurites; thickening neuron bodies to connect
neighboring neurites which would otherwise be disconnected from
the neuron bodies and be removed as orphan neurites; removing small
neurite trees if they are not of interest; neurite tracing to generate tree
statistics such as branching layers, primary, secondary and tertiary
layer structures; and producing all tree analysis measurements [11]
(Figure 6a-6e).

Upon completion of neurite analysis for an image, all measurements
are piped into a structured database for further investigation. The
whole procedure, from loading the input image to saving results in the
database, is highly sequential. In the processing sequence, the input
image for each processing step is the result image of its previous step.
The following section will discuss how to speed up this sequential
process.

Automatic parallel batch processing

In drug discovery, HCA usually involves batch processing of tens
of thousands of cell images, which relies fundamentally on automation
[12].

When batch processing neurite outgrowth images, the sequential
procedure is repeated until all images have been processed. As the
neurite analysis is highly data dependent, it is not an easy matter to
parallelize the processing for each image across multi-core processors.
This is because the image data is large in size, coordinating access to the
intermediate result images generated from the intermediate processing
steps and other shared resources, and notifying progress of the
individual image processing steps across different processors require

Input
Image

Image
Smoothing

Background
Correction

Remove Small
Neurite Trees

Thicken
Neuron
Bodies

Neurite Tree
Analysis

Debarb Small
Neurites

Generate
Neurite

Skeleton
Gap ClosingRemove Small

Objects

Generate
Neuron Body

Detection
Result

Additional
Measurements

(Nucleus, Cytoplasm,
Membrane)

Cell Splitting
(Watershed,

Nucleus Mask)
Cell FilteringIntensity

Thresholding

Suppression
of Neurites

Linear Feature
Detetion

Generate Result
Images and All
Measurements

Storing Results
in Database

Neuron Body Detection

Neurite Detection

Neurite Analysis

Figure 3: Sequential procedure of neurite analysis routine for a single image.

(a) (b) (c)

 (d) (e) (f) (g)

Figure 4: Neuron body detection images produced using CSIRO HCA-Vision
software package. (a) The three-channel raw image, (b) Neurite channel
image after smoothing, (c) Neurite image after background correction, (d)
Neurite image after suppressing neuritis, (e) neurite image after thresholding,
(f) segmented nucleus image in which the nuclei have been declumped and
will be used as seeds for touching neuron body splitting, (g) segmented and
labeled neuron bodies.

Citation: Wang DD, Bourke D, Domanski L, Vallotton P (2014) Speeding up the Analysis of Neuron Morphology using Parallel Processing. J Mol Imag
Dynamic 4: 115. doi:10.4172/2155-9937.1000115

Volume 4 • Issue 1 • 1000115
J Mol Imag Dynamic
ISSN: 2155-9937 JMID, an open access journal

Page 4 of 6

significant amount of communications and result in heavy overhead.

Given the large problem sizes contributed by the number of images
and complexity of image analysis, a vertical task partition strategy
is employed to simplify the parallelization work. The main idea of
the strategy is to allocate one image to a single processor at a time;
therefore, each image is processed sequentially on a processor; multiple
images are allocated to multi-cores and are processed in parallel.

With the proposed solution, the number of processors available on
the computer on which our High Content Analysis (HCA) software
runs is automatically detected, and the equal number of work threads
is created to process images in parallel. The time spent in processing an
image on a processor depends on the complexity of individual images.
Upon completion of image processing on a processor, a new image will
be automatically assigned to the processor. This process continues until
all images are processed. To coordinate the access to shared resources
such as the database and Graphical User Interface (GUI) components
by individual threads, flow control is employed in the parallel batch
processing.

In Figure 7, a 4-core computer is used as an example to illustrate
the flowchart of the proposed mechanism for automatic parallel batch
processing. It shows the image allocation, data management, and the
batch processing loops. The batch processing starts with preparing an
image processing list, then loads image processing parameter profiles.
The job scheduler allocates different images in the list to separate
processors. Upon completion of processing each image, the features
extracted from the image are saved into the database and the batch
processing progress is refreshed in the GUI to notify a user of the batch
processing progress. A new image will be allocated to the processor on
which the image processing is just completed. This iteration continues
until all images in the list are processed.

The job scheduler is a robust, efficient, and scalable engine designed
to use cooperative scheduling and work-stealing algorithms to achieve
fast, efficient, and maximum CPU utilization. It can scale well on
multiple processors and dynamically adapt and distribute images over
the separate processors.

To implement the automatic parallelization, a parallel programming
tool for data and task parallelism is adopted [13]. The tool enables
software developers to build multi-core capable applications using
existing code and compilers. It provides library based support for
building parallel version of an application using existing code.

Optimization of database operations

The batch processing results for individual images are eventually
piped into the database. When parallelizing the batch processing, we
also identified that the database manipulation represented a bottleneck.
As multi-processors cannot access the database at the same time, flow
control is incorporated in the parallel processing. When a processor
is accessing the database, a “lock” is obtained and released when the
database operation is completed. To minimize the lock time, the
database operation is optimized to reduce the number of locks.

As aforementioned, some images have over 1000 neurons. At the
end of the processing of each image, all cell-based measurements are
grouped into cell-based records and saved into the database. Each
record has 34 fields representing 34 cell based features. Inserting these
cell-based records individually is very slow and consumes considerable
CPU time. We have conducted some experiments on two high end
computers to optimize the database operation performance. The
computers include Dell T7400 with 4-cores and 4GB RAM, and a high
end Dell Xeon computer with 4 Intel® XeonTM 3.2 Ghz processors and
8GB of RAM. The experimental results in Figure 8 show that inserting
different numbers of cell based records using one insert statement takes
different amounts of time. The database operation time is optimal for
the two high end computers when saving about 25 records per insert
statement. This is due to the fact that database connection, sending and
parsing a query takes 5-7 times of the actual data insertion, depending
on the record size (Figure 8).

(a) (b) (c)

(d) (e) (f)
Figure 5: Neurite detection images produced using CSIRO HCA-Vision
software package. (a) The three-channel raw image, (b) Neurite channel
image after smoothing, (c) Neurite image after applying linear feature detection
algorithms, (d) Neurite image after removing small neurites, (e) neurite image
after closing gaps between neurites, (f) detected neurites overlaid on the raw
image.

(a) (b) (c)

(d) (e)
Figure 6: Neurite analysis images produced using CSIRO HCA-Vision
software. (a) The three-channel raw image, (b) Neurite channel image after
debarbing small neurites, (c) Neurite image after thickening neuron bodies,
(d) The segmented neurons and neurite trees labeled by the neuron body to
which they are deemed to belong, (e) The segmented neurons and neurite
trees labeled with different branching levels.

Citation: Wang DD, Bourke D, Domanski L, Vallotton P (2014) Speeding up the Analysis of Neuron Morphology using Parallel Processing. J Mol Imag
Dynamic 4: 115. doi:10.4172/2155-9937.1000115

Volume 4 • Issue 1 • 1000115
J Mol Imag Dynamic
ISSN: 2155-9937 JMID, an open access journal

Page 5 of 6

Results
To evaluate the performance of the parallel batch processing,

experiments have been carried out on the high end Dell Xeon
computer. Both neuron body detection and neurite analysis were
tested for a 96-well plate of images with 6 images per well, altogether,
396 images. These images have a dimension of 1280×1280, and two
channels. The first is the neuron body and neurite channel, and the
other is the nucleus channel.

The test was conducted three times for both sequential and parallel
processing. With the proposed parallel batch processing, significant
performance improvement has been achieved. Overall, the execution
time of the parallel batch processing has been reduced to 38% of the

Start
Load Image

Analysis
Parameters

Process
Image i

Process
Image i+1

Process
Image i+3

Process
Image i+4

Preparing
Image

Processing
List

Data
Manager

Job
Scheduler End

Acknowledge
Batch

Processing
Progress

Figure 7: Flowchart of the Proposed Parallel batch processing.

Optimisation of Database Operations

0

500

1000

1500

2000

2500

3000

0 20 40 60 80 100 120
No. of Inserts in a Query

 reP)s
m(e

miT noitarep
O esabata

D
Im

ag
e

Xeon
T7400

Figure 8: Experimental results of multiple cell records per query on different
computers.

Performance comparison of sequential and parallel
batch processing (Neuron Body Detection)

0

10

20

30

40

50

60

70

80

1 2 3

Batch processing No

Ti
m

e
(m

in
ut

es
)

Sequential Batch
Processing
Parallel Batch Processing

Figure 9: Execution time comparison of sequential and parallel batch
processing for neuron body detection.

original sequential batch processing for neuron body detection, and
46% for neurite analysis. Figures 9 and 10 shows the performance
comparison of the sequential and parallel batch processing for the
neuron body detection and neurite analysis, respectively. The time
difference among three different executions for parallel and sequential
batch processing may be caused by other background Operating
System tasks running on the computer.

Discussion and Conclusions
In this paper, we have presented a multi-core based batch

Citation: Wang DD, Bourke D, Domanski L, Vallotton P (2014) Speeding up the Analysis of Neuron Morphology using Parallel Processing. J Mol Imag
Dynamic 4: 115. doi:10.4172/2155-9937.1000115

Volume 4 • Issue 1 • 1000115
J Mol Imag Dynamic
ISSN: 2155-9937 JMID, an open access journal

Page 6 of 6

processing solution that can significantly improve the drug discovery
efficiency. The solution provides an efficient way to process large image
datasets. The solution can automatically scale to additional cores and
future multi-core processors. By identifying the bottleneck of the batch
processing and implementing a parallel image analysis procedure, we
have established a solid and efficient HCA framework.

The proposed solution employs an automatic parallelization
engine that automatically dispatches the batch processing tasks. The
one-image-per-processor protocol can simplify the parallelization for data
dependent computation problems and minimize the development effort in
migrating sequential image analysis algorithms to a parallel form.

All statistical features extracted from the image are piped into a
structured database for more sophisticated data analysis. To improve
the database operation performance, some database manipulations,
such as multiple data records insertion, have been optimized to
maximize the batch processing throughput.

To verify the proposed solution, a full plate of images, with 96 wells
and 6 images per well, have been screened. The experimental results
are validated and evaluated by comparing the performance of the
proposed approach with the conventional batch processing. With the
proposed approach on a quad-core machine, the batch processing time
for neuron body detection has been reduced to 38% of the original, and
46% for neurite analysis.

The parallelization strategy and subsequent optimizations have
yielded considerable speedup and excellent resource utilization. There
is no doubt that the proposed solution has potential to increase the
throughput of High Content Screening, improve the workflow in HCS
laboratories and reduce the cost in drug development.

The multi-core based solution has some limitations and conditions.
First of all, all image processing routines have to be made thread safe.
No global or static variables can be used in the routines, which depend
only on the arguments passed in. No logical and data dependence is
allowed among different work threads running on different cores.
Flow control shall be applied when accessing shared resources such
as file I/O, GUI components and databases. The amount of speedup
achieved depends on how many cores are available, but is not strictly
proportional to the number of cores.

Performance comparison of sequential and parallel
batch processing (Neurite Analysis)

0

20

40

60

80

100

120

140

1 2 3

Batch processing No

Ti
m

e
(m

in
ut

es
)

Sequential Batch
processing
Parallel Batch Processing

Figure 10: Execution time comparison of sequential and parallel batch
processing for neurite analysis.

The proposed approach can be applied in other data and compute-
intensive applications as well. This can bring high performance to a
single desktop computer and has the potential to make significant
difference in the cost and quality of scientific computations and
simulations.

Acknowledgement

The authors would like to thank Marjo Götte, Novartis Institutes for Bio Medical
Research, for permission to use the neurite outgrowth images presented in this
paper.

References

1. Sun C, Vallotton P (2009) Fast Linear Feature Detection Using Multiple
Directional Non-Maximum Suppression. J Microsc 234: 147-157.

2. Lewis T, El-Rewini H (1992) Introduction to Parallel Computing, Prentice-Hall,
Inc.

3. Beynon MD, Catalyurek U, Chang C, Sussman A, Saltz J (2001) Distributed
Processing of Very Large Datasets with DataCutter. Parallel Computing 27:
1457-1478.

4. Blumofe R, Leiserson C (1994) Scheduling Multithreaded Computations by
Work Stealing .Proceedings of the 35th Annual Symposium on Foundations of
Computer Science: 356-368.

5. Cambazoglu B, Sertel O, Kong J, Saltz J, Gurcan M, et al. (2007) Efficient
Processing of Pathological Images using the Grid: Computer-Aided Prognosis
on Neuronblastoma. Proceedings of the 5th IEE Workshop on Challenges of
large Applications in distributed environments: 35-41.

6. Wang D, Lagerstrom R, Sun C, Bischof, Vallotton P, et al. (2010) HCA-Vision:
Automated Neurite Outgrowth Analysis. J Biomol Screen 15: 1165-1170.

7. Rao A, Cecchi G, Magnasco M (2007) High performance computing
environment for multidimensional image analysis. BMC Cell Biology 8: 1471-
2121.

8. Hartley T, Catalyurek U, Ruiz A, Francisco Igual, Rafael Mayo, et al. (2008)
Biomedical Image Analysis on a Cooperative Cluster of GPUs and Multicores.
Proceedings of the 22nd annual international conference on Supercomputing:
15-25.

9. CSIRO HCA-Vision website: http://www.hca-vision.com.

10. Vallotton P, Lagerstrom R, Sun C, Buckley M, Wang D, et al. (2008) Automated
analysis of neurite branching in cultured cortical neurons using HCA-Vision.
Cytometry A 71: 889-895.

11. Wang D, Bourke D, Domanski L, Vallotton P (2009) Multicore-Based High
Performance Image Analysis for Batch Processing in Drug Discovery, 18th
World IMACS/MODSIM Congress, Cairns, Australia: 1080-1086.

12. Kikinis R, Warfield S, Westin C (1998) High Performance Computing(HPC)in
Medical Image Analysis (MIA) at the Surgical Planning Laboratory (SPL). High
Performance Computing Asia 98: 290-297.

13. Trease H, Farber R, Wynne A, Trease L (2008) High-Performance Video
Content Analysis using Hybrid, Multi-Core Processors. IASTED Proceedings of
Signal and Image Processing: 632-636.

http://www.ncbi.nlm.nih.gov/pubmed/19397744
http://www.ncbi.nlm.nih.gov/pubmed/19397744
http://dl.acm.org/citation.cfm?id=128877
http://dl.acm.org/citation.cfm?id=128877
http://www.sciencedirect.com/science/article/pii/S0167819101000990
http://www.sciencedirect.com/science/article/pii/S0167819101000990
http://www.sciencedirect.com/science/article/pii/S0167819101000990
http://supertech.csail.mit.edu/papers/steal.pdf
http://supertech.csail.mit.edu/papers/steal.pdf
http://supertech.csail.mit.edu/papers/steal.pdf
http://dl.acm.org/citation.cfm?id=1273408
http://dl.acm.org/citation.cfm?id=1273408
http://dl.acm.org/citation.cfm?id=1273408
http://dl.acm.org/citation.cfm?id=1273408
http://www.researchgate.net/publication/255420200_Multicore-Based_High_Performance_Image_Analysis_for_Batch_Processing_in_Drug_Discovery
http://www.researchgate.net/publication/255420200_Multicore-Based_High_Performance_Image_Analysis_for_Batch_Processing_in_Drug_Discovery
http://www.biomedcentral.com/1471-2121/8/S1/S9
http://www.biomedcentral.com/1471-2121/8/S1/S9
http://www.biomedcentral.com/1471-2121/8/S1/S9
http://dl.acm.org/citation.cfm?id=1375533
http://dl.acm.org/citation.cfm?id=1375533
http://dl.acm.org/citation.cfm?id=1375533
http://dl.acm.org/citation.cfm?id=1375533
C:\Users\bhushanam-t\Desktop\JMID-13053\CSIRO HCA-Vision website: http:\www.hca-vision.com
http://www.ncbi.nlm.nih.gov/pubmed/17868085
http://www.ncbi.nlm.nih.gov/pubmed/17868085
http://www.ncbi.nlm.nih.gov/pubmed/17868085
http://www.researchgate.net/publication/255420200_Multicore-Based_High_Performance_Image_Analysis_for_Batch_Processing_in_Drug_Discovery
http://www.researchgate.net/publication/255420200_Multicore-Based_High_Performance_Image_Analysis_for_Batch_Processing_in_Drug_Discovery
http://www.researchgate.net/publication/255420200_Multicore-Based_High_Performance_Image_Analysis_for_Batch_Processing_in_Drug_Discovery
http://snr.spl.harvard.edu/publications/item/view/984
http://snr.spl.harvard.edu/publications/item/view/984
http://snr.spl.harvard.edu/publications/item/view/984
https://www.actapress.com/Abstract.aspx?paperId=33720
https://www.actapress.com/Abstract.aspx?paperId=33720
https://www.actapress.com/Abstract.aspx?paperId=33720

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Methods
	Large image datasets
	Compute-intensive analysis
	To analyze neurite outgrowth, the following measurements are required
	High performance image computing
	Sequential neurite analysis procedure for a single image
	Neuron body detection
	Neurite detection
	Neurite analysis
	Automatic parallel batch processing
	Optimization of database operations

	Results
	Discussion and Conclusions
	Acknowledgement
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	References

