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Abstract
Researchers using High Content Screening systems generate thousands of fluorescently labeled cell images 

from which they measure subtle but important phenotypic changes summarized by dozens of parameters. Large im-
age datasets and fast turnaround requirement have made the efficient High Content Analysis a challenging task. This 
paper studies multi-core based high performance image analysis and its application to data and compute-intensive 
High Content Analyses. A vertical parallelization strategy is employed and an automated parallelization framework 
is implemented to automatically dispatch image processing tasks. The strategy is based on allocation of different 
images to separate processors so that each image is analyzed sequentially on a single processor and multiple im-
ages are processed by separate processors in parallel. Experiments demonstrate that this approach, of a generic 
character, considerably increases throughput.

Keywords: Cell image analysis; Batch processing; High content
screening; High content analysis; High performance computing

Introduction
Automated image analysis is used by pharmaceutical companies to 

measure changes in cell morphology, both rapidly and accurately. The 
field itself, dubbed High Content Analysis (HCA) is emerging as one 
of the fastest growing sectors in drug discovery and development. It 
represents the convergence between cell-based assays, high-resolution 
imaging, and advanced quantitative image analysis [1]. There is no 
hard dividing line between High Content Screening (HCS) and HCA 
though the former is generally higher-throughput while the latter has 
an emphasis on gaining the maximum information from an assay, 
typically based on images. HCS systems achieve high throughput by 
rapidly capturing and processing data from entire micro-well plates. 
Each well in these plates contains cells or biochemical samples, which 
have been labeled to detect the changes induced by perturbations, 
such as addition of a candidate drug compound or a gene knockout. 
The images can be very dense, with hundreds of cells and complex 
cell morphology. It may take several hours or even days to process 
the images generated from a single experiment, which may be 
unacceptable in practice. The ideal image processing time lies within 
the same time frame as the image capturing. However, the reality is that 
the image processing time still tends to be much longer than industry’s 
expectations, even on a high-end computer. Therefore, strategies bases 
on High Performance Computing (HPC) are necessary.

HPC comes from parallelism, fast-dense circuitry, and packaging 
technology [2]. Over the last decade, several studies have been 
conducted in the application of HPC to image processing [3-6]. Most 
of these studies focus on the use of HPC infrastructure or distributed 
processing in an application driven research environment. The 
solutions presented in these studies are based on supercomputers and 
computer clusters. With the enormous progress in computing power, 
computers with multi-core CPUs are now standard. The multi-core 
shift presents unprecedented opportunities for researchers to deal 
with large datasets efficiently. It has triggered some efforts towards 
developing parallel image analysis algorithms that take advantage of 
these powerful processors. Trease et al. introduced a high-performance 
hybrid multi-core processing framework for processing videos and 
images [7]. Hartley et al. illustrated a cooperative parallelization 
approach where multiple CPU sockets, multiple Graphical Processing 
Units (GPUs) and multiple cluster nodes coexist. Literature reviews 

have revealed few studies that explore multi-core based HCA systems. 
In general, high performance image analysis algorithms have not been 
sufficiently developed and investigated so far in the drug screening 
context. As most of HCA systems are not based on supercomputing 
facilities, studies on high performance HCA solutions based on multi-
core computers appear more practical, and have potential to make a 
difference in terms of cost and quality in drug discovery.

In this paper, we present an enabling solution that makes the 
most of one’s multi-core computer to achieve high throughput image 
processing.

Methods
Researchers attempt to make sense of massive amount of image 

data through HCA. For example, to identify compounds that affect 
neurite outgrowths, several micro-well-plate experiments need to be 
carried out. Eventually, hundreds of thousands of microscope images 
may be generated. Well-based and cell-based features are extracted 
from the images using HCA software packages. As some dense images 
may have over 1000 cells featuring complicated structures, processing 
large amounts of such images in a timely manner is difficult. This 
section outlines the case of neurite outgrowth analysis to provide some 
background information on the challenge.

Large image datasets

When screening for neurite outgrowth, multiple plates of images 
are typically produced. Each micro-well plate may have 384 wells, and 
12 images may be sampled from each well. This will produce 4608 
images from each plate. If 5 plates of images are generated, there will be 
23040 images to be processed. If each image has three channels (RGB), 
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with one channel showing the labeled nuclei, one showing the labeled 
neurons and neurites, and one showing additional information such 
as labeled proteins in some sub-cellular compartments, the number of 
images to be processed will be 69120. A typical image has a dimension 
of 1280×1280 pixels. It turns out that the HCA for neurite outgrowth 
analysis is a data intensive computation process.

Compute-intensive analysis

In neurite analysis, some images may be very “dense”, containing 
over 1000 neurons. As shown in Figure 1, many neurons may be 
clumped together, and some neurons may have complicated neurite 
structures. This increases the complexity of analysis. From Figure 1, 
one can see that many neurite branches overlap. De-clumping neurons 
and generating neurite branch-level features and assigning the correct 
neurites to the corresponding neurons become a challenging task 
(Figure 1).

Neurite analysis deals with quantitative measures and statistics of 
neuron and neurite structures on both a cell-by-cell and image-by-
image basis. Some definitions of neurite segments are illustrated in 
Figure 2. They are listed below:

Neurite segments: S1 to S8; Roots: R1 to R2; Extremities: E1 to E5; 
Branching points: B1 to B3; Longest neurite segment: S6 + S7; Neurite 
field area: area of convex hull, i.e. the area enclosed by dotted lines; 
Primary neurite: neurite shown in red; Secondary neurite: neurite 
shown in cyan; Tertiary neurite: neurite shown in blue; Branch layers: 
layer 1 is for primary; 2 for secondary, and 3 for tertiary.

To analyze neurite outgrowth, the following measurements 
are required

Cell based measurements: The cell-based measurement includes 
34 parameters such as cell area and perimeter, maximum and mean 
intensity, total neurite length, max neurite length, max and mean 
branch layer, number of branch points, number of roots, number of 
segments, number of extremities, neurite field area, neurite area, max 
and mean intensity of neurite etc.

Image-wide summary statistics: This includes the number of cells 

in the image, total and average neurite length, total and average number 
of segments, average longest neurite from a cell, total and average 
number of roots, total and average number of extreme neurites, total 
and average number of branch points, average branching layers etc.

Well-based summary for each plate: The plate summary is 
comprised of normalized features for each well. All features extracted 
from the images sampled from the same well are averaged to produce 
the well based normalized statistics.

To produce the above measurements, considerable computation is 
demanded in the image analysis. Therefore, batch processing thousands 
of images is a computation intensive task, taking hours even days for a 
single experiment.

High performance image computing

This section will address how to speed up the batch processing with 
multi-core based high performance image computing.

Multi-core computers have a CPU with multiple cores combining 
two or more independent processors into a single package composed of 
a single integrated circuit (IC). However, disposing of two processors 
does not speedup one’s application automatically. According to 
Amdahl’s law, the amount of performance gain from using a multi-core 
processor depends on the problem being solved and the algorithms 
used, as well as how they are implemented in software. Most application 
software packages rely on only a single core and see very limited speed 
improvements when run on a multi-core machine. This is because they 
have not been designed to take advantage of the available parallelism. 
In fact, developing parallel image analysis algorithms is still a challenge. 
In this section, a multi-core based high performance solution for 
neurite analysis will be described. The solution can take advantage 
of multiple processors and enable the conventional HCA software to 
process images in parallel to achieve significant performance gain.

Sequential neurite analysis procedure for a single image

Neurite analysis procedure is highly sequential, it involves three 

 
Figure 1: A typical dense image with many “clumped” neurons and 
overlapped neurite structures. Image acquired with IN Cell Analyzer 3000 
shows a high degree of neurite branching complexity. Image courtesy of 
Marjo Götte, Novartis Institutes for BioMedical Research.
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Figure 2: Segmented neurite outgrowth image.
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steps: (1) neuron body detection, (2) neurite detection, and (3) neurite 
analysis (Figure 3).

Neuron body detection

The neuron body detection aims at identifying and marking the 
neuron bodies. This includes smoothing the raw image to distribute the 
intensity more evenly within the neuron bodies; background correction 
to remove global trends in the background intensity; suppressing small 
structures such as neurites; intensity thresholding to detect neuron 
bodies; detecting nuclei to be used as masks to split touching neuron 
bodies; filtering neuron bodies when mixed cell types exist or applying 
certain cell selection criteria; producing neuron body detection label 
image and cell based measurements [8] (Figure 4a-4g).

Neurite detection

The neurite detection aims at detecting neurite structures [9]. The 

detection procedure includes image smoothing to remove noise within 
the image; linear feature detection to segment neurite structures; 
removing small objects which are not of interest; closing gaps between 
detected neurite endpoints; and generating neurite skeleton image [10] 
(Figure 5a-5f).

Neurite analysis

Performing a neurite analysis is to trace neurites and to associate 
neurites with the corresponding neurons. The tracing consists of 
debarbing small neurites; thickening neuron bodies to connect 
neighboring neurites which would otherwise be disconnected from 
the neuron bodies and be removed as orphan neurites; removing small 
neurite trees if they are not of interest; neurite tracing to generate tree 
statistics such as branching layers, primary, secondary and tertiary 
layer structures; and producing all tree analysis measurements [11] 
(Figure 6a-6e).

Upon completion of neurite analysis for an image, all measurements 
are piped into a structured database for further investigation. The 
whole procedure, from loading the input image to saving results in the 
database, is highly sequential. In the processing sequence, the input 
image for each processing step is the result image of its previous step. 
The following section will discuss how to speed up this sequential 
process.

Automatic parallel batch processing

In drug discovery, HCA usually involves batch processing of tens 
of thousands of cell images, which relies fundamentally on automation 
[12].

When batch processing neurite outgrowth images, the sequential 
procedure is repeated until all images have been processed. As the 
neurite analysis is highly data dependent, it is not an easy matter to 
parallelize the processing for each image across multi-core processors. 
This is because the image data is large in size, coordinating access to the 
intermediate result images generated from the intermediate processing 
steps and other shared resources, and notifying progress of the 
individual image processing steps across different processors require 
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Figure 3: Sequential procedure of neurite analysis routine for a single image.
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Figure 4: Neuron body detection images produced using CSIRO HCA-Vision 
software package. (a) The three-channel raw image, (b) Neurite channel 
image after smoothing, (c) Neurite image after background correction, (d) 
Neurite image after suppressing neuritis, (e) neurite image after thresholding, 
(f) segmented nucleus image in which the nuclei have been declumped and 
will be used as seeds for touching neuron body splitting, (g) segmented and 
labeled neuron bodies.
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significant amount of communications and result in heavy overhead.

Given the large problem sizes contributed by the number of images 
and complexity of image analysis, a vertical task partition strategy 
is employed to simplify the parallelization work. The main idea of 
the strategy is to allocate one image to a single processor at a time; 
therefore, each image is processed sequentially on a processor; multiple 
images are allocated to multi-cores and are processed in parallel.

With the proposed solution, the number of processors available on 
the computer on which our High Content Analysis (HCA) software 
runs is automatically detected, and the equal number of work threads 
is created to process images in parallel. The time spent in processing an 
image on a processor depends on the complexity of individual images. 
Upon completion of image processing on a processor, a new image will 
be automatically assigned to the processor. This process continues until 
all images are processed. To coordinate the access to shared resources 
such as the database and Graphical User Interface (GUI) components 
by individual threads, flow control is employed in the parallel batch 
processing.

In Figure 7, a 4-core computer is used as an example to illustrate 
the flowchart of the proposed mechanism for automatic parallel batch 
processing. It shows the image allocation, data management, and the 
batch processing loops. The batch processing starts with preparing an 
image processing list, then loads image processing parameter profiles. 
The job scheduler allocates different images in the list to separate 
processors. Upon completion of processing each image, the features 
extracted from the image are saved into the database and the batch 
processing progress is refreshed in the GUI to notify a user of the batch 
processing progress. A new image will be allocated to the processor on 
which the image processing is just completed. This iteration continues 
until all images in the list are processed.

The job scheduler is a robust, efficient, and scalable engine designed 
to use cooperative scheduling and work-stealing algorithms to achieve 
fast, efficient, and maximum CPU utilization. It can scale well on 
multiple processors and dynamically adapt and distribute images over 
the separate processors.

To implement the automatic parallelization, a parallel programming 
tool for data and task parallelism is adopted [13]. The tool enables 
software developers to build multi-core capable applications using 
existing code and compilers. It provides library based support for 
building parallel version of an application using existing code.

Optimization of database operations

The batch processing results for individual images are eventually 
piped into the database. When parallelizing the batch processing, we 
also identified that the database manipulation represented a bottleneck. 
As multi-processors cannot access the database at the same time, flow 
control is incorporated in the parallel processing. When a processor 
is accessing the database, a “lock” is obtained and released when the 
database operation is completed. To minimize the lock time, the 
database operation is optimized to reduce the number of locks.

As aforementioned, some images have over 1000 neurons. At the 
end of the processing of each image, all cell-based measurements are 
grouped into cell-based records and saved into the database. Each 
record has 34 fields representing 34 cell based features. Inserting these 
cell-based records individually is very slow and consumes considerable 
CPU time. We have conducted some experiments on two high end 
computers to optimize the database operation performance. The 
computers include Dell T7400 with 4-cores and 4GB RAM, and a high 
end Dell Xeon computer with 4 Intel® XeonTM 3.2 Ghz processors and 
8GB of RAM. The experimental results in Figure 8 show that inserting 
different numbers of cell based records using one insert statement takes 
different amounts of time. The database operation time is optimal for 
the two high end computers when saving about 25 records per insert 
statement. This is due to the fact that database connection, sending and 
parsing a query takes 5-7 times of the actual data insertion, depending 
on the record size (Figure 8).

   

(a)   (b)   (c) 

   

(d)   (e)         (f) 
Figure 5: Neurite detection images produced using CSIRO HCA-Vision 
software package. (a) The three-channel raw image, (b) Neurite channel 
image after smoothing, (c) Neurite image after applying linear feature detection 
algorithms, (d) Neurite image after removing small neurites, (e) neurite image 
after closing gaps between neurites, (f) detected neurites overlaid on the raw 
image.

   

(a)   (b)   (c) 

  

(d)   (e) 
Figure 6: Neurite analysis images produced using CSIRO HCA-Vision 
software. (a) The three-channel raw image, (b) Neurite channel image after 
debarbing small neurites, (c) Neurite image after thickening neuron bodies, 
(d) The segmented neurons and neurite trees labeled by the neuron body to 
which they are deemed to belong, (e) The segmented neurons and neurite 
trees labeled with different branching levels.
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Results
To evaluate the performance of the parallel batch processing, 

experiments have been carried out on the high end Dell Xeon 
computer. Both neuron body detection and neurite analysis were 
tested for a 96-well plate of images with 6 images per well, altogether, 
396 images. These images have a dimension of 1280×1280, and two 
channels. The first is the neuron body and neurite channel, and the 
other is the nucleus channel. 

The test was conducted three times for both sequential and parallel 
processing. With the proposed parallel batch processing, significant 
performance improvement has been achieved. Overall, the execution 
time of the parallel batch processing has been reduced to 38% of the 
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Figure 7: Flowchart of the Proposed Parallel batch processing.
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Figure 8: Experimental results of multiple cell records per query on different 
computers.
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Figure 9: Execution time comparison of sequential and parallel batch 
processing for neuron body detection.

original sequential batch processing for neuron body detection, and 
46% for neurite analysis. Figures 9 and 10 shows the performance 
comparison of the sequential and parallel batch processing for the 
neuron body detection and neurite analysis, respectively. The time 
difference among three different executions for parallel and sequential 
batch processing may be caused by other background Operating 
System tasks running on the computer.

Discussion and Conclusions
In this paper, we have presented a multi-core based batch 
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processing solution that can significantly improve the drug discovery 
efficiency. The solution provides an efficient way to process large image 
datasets. The solution can automatically scale to additional cores and 
future multi-core processors. By identifying the bottleneck of the batch 
processing and implementing a parallel image analysis procedure, we 
have established a solid and efficient HCA framework.

The proposed solution employs an automatic parallelization 
engine that automatically dispatches the batch processing tasks. The 
one-image-per-processor protocol can simplify the parallelization for data 
dependent computation problems and minimize the development effort in 
migrating sequential image analysis algorithms to a parallel form.

All statistical features extracted from the image are piped into a 
structured database for more sophisticated data analysis. To improve 
the database operation performance, some database manipulations, 
such as multiple data records insertion, have been optimized to 
maximize the batch processing throughput.

To verify the proposed solution, a full plate of images, with 96 wells 
and 6 images per well, have been screened. The experimental results 
are validated and evaluated by comparing the performance of the 
proposed approach with the conventional batch processing. With the 
proposed approach on a quad-core machine, the batch processing time 
for neuron body detection has been reduced to 38% of the original, and 
46% for neurite analysis.

The parallelization strategy and subsequent optimizations have 
yielded considerable speedup and excellent resource utilization. There 
is no doubt that the proposed solution has potential to increase the 
throughput of High Content Screening, improve the workflow in HCS 
laboratories and reduce the cost in drug development.

The multi-core based solution has some limitations and conditions. 
First of all, all image processing routines have to be made thread safe. 
No global or static variables can be used in the routines, which depend 
only on the arguments passed in. No logical and data dependence is 
allowed among different work threads running on different cores. 
Flow control shall be applied when accessing shared resources such 
as file I/O, GUI components and databases. The amount of speedup 
achieved depends on how many cores are available, but is not strictly 
proportional to the number of cores.

Performance comparison of sequential and parallel 
batch processing (Neurite Analysis)
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Figure 10: Execution time comparison of sequential and parallel batch 
processing for neurite analysis.

The proposed approach can be applied in other data and compute-
intensive applications as well. This can bring high performance to a 
single desktop computer and has the potential to make significant 
difference in the cost and quality of scientific computations and 
simulations.
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