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Introduction
In recent years, the topic of continuous-variable entanglement has 

received a significant amount of attention as it plays an important role 
in all branches of quantum information processing [1]. The efficiency 
of quantum information schemes highly depends on the degree of 
entanglement. A non-degenerate parametric amplifier at and above 
threshold has been theoretically predicted to be a source of light in 
an entangled state [2,3]. Recently, the experimental realization of 
the entanglement in non-degenerate parametric amplifier has been 
demonstrated by Zhang et al. [4]. In a non-degenerate parametric 
amplifier, a pump photon of frequency ωc is down converted into highly 
correlated signal and idler photons with frequencies ωa and ωb such that 
ωc= ωa + ωb [5]. A detailed analysis of the quadrature squeezing and 
photon statistics of the light produced by a non-degenerate parametric 
amplification has been made by a number of authors [1,6-8]. It has been 
shown theoretically [9-12] and subsequently confirmed experimentally 
[13,14] that parametric amplification produces a light that has a 
maximum of 50 % squeezing below the coherent state level.

On the other hand, Xiong et al. [15] have recently proposed a 
scheme for an entanglement based on a non-degenerate three-level 
laser when the three level atoms are injected at the lower level and 
the top and bottom levels are coupled by a strong coherent light. They 
have found that a non-degenerate three-level laser can generate light 
in entangled state employing the entanglement criteria for bipartite 
continuous-variable states [15].

Moreover, Tan et al. [16] have extended the work of Xiong et al. and 
examined the generation and evolution of the entangled light in the 
Wigner representation using the sufficient and necessary in separability 
criteria for a two-mode Gaussian state proposed by Dual et al. [15] and 
Simon [17]. Tesfa [18] has considered a similar system when the atomic 
coherence is induced by superposi-tion of atomic states and analyzed 
the entanglement at steady-state. Furthermore, Ooi [19] has studied 
the steady-state entanglement in a two-mode laser. More recently, Eyob 
[20] has studied continuous-variable entanglement in a non-degenerate 
three-level laser with a parametric amplifier.

Even though Einstein, along with Podolsky and Rosen, was first to 
recognize the criterion for analyzing global entanglement condition for 
a two-mode light beams [21-24], a significant number of works have 
not been devoted on spectrum of entanglement fluctuations and local 
entanglement condition for two-mode cavity light.

In this paper, we present new definitions of power spectrum, 
spectrum of intensity fluctuations, spectrum of quadrature fluctuations, 
and spectrum of entanglement fluctuations. Moreover, we also analyze 
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the local quadrature squeezing and the local photon statistics for the 
two-mode cavity light.

c-number Langevin Equations
In this section, we first obtain c-number Langevin equations with 

the aid of the master equation (Figure 1).

We then determine the solutions of the resulting differential 
equations. With the pump mode represented by a real and constant 
c-number, the process of non-degenerate parametric amplification can 
be described by the Hamiltonian.

† †ˆ ˆˆ ˆ ˆ( )H i ab a bε= −                (1)
Where â  and b̂  are respectively the annihilation operators for the 

signal and idler modes and ε = λμ, with λ being the coupling constant. 
Applying Equation 1 and taking into account the interaction of the 
signal-idler modes with a two-mode vacuum reservoir via a single-port 
mirror, the master equation for the cavity modes can be written as

( ) ( ) ( )† † † † † † † † † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ2 2
2 2

dp k kab ab a b a b a a a a a a b b b b b b
dt

ε ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ= − + − + − − + − −    (2)

 in which the cavity damping constant k is assumed to be the same for both 
the signal and idler modes. Now employing the commutation relations

† †ˆ ˆˆ ˆ, , 1a a b b   = =                  (3)      

and
† †ˆ ˆˆ ˆ, , 0a b a b   = =   

              (4)

together with Equation 2, we readily obtain
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( ) ( ) ( )†1 ˆˆ ˆ
2

d a t k a t k b t
dt

ε= − −
         

                                     (5)

( ) ( ) ( )†1ˆ ˆ ˆ
2

d b t k b t k a t
dt

ε= − −                                                                                                         (6)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )† †ˆ ˆ ˆ ˆˆ ˆ ˆ ˆd a t b t k a t b t a t a t b t b t
dt

ε ε ε= − − − −   (7)

( ) ( ) ( ) ( ) ( )2 †ˆˆ ˆ ˆ ˆ2d a t a t k a t a t b t
dt

ε= − −
                                   (8)

( ) ( ) ( ) ( ) ( )2 †ˆ ˆ ˆ ˆ ˆ2d b t b t k b t b t a t
dt

ε= − −                           (9)

We note that the c-number equations corresponding to Equations 
5, 6, 7, 8 and 9 are

( ) ( ) ( )1
2

d t k t k t
dt

α α ε β ∗= − −                                            (10)

( ) ( ) ( )1
2

d t k t k t
dt

β β ε α∗= − −                                            (11)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d t t k t t t t t t
dt

α β α β ε α α ε β β ε∗ ∗= − − − −     (12)

                                                                                                              (13)

( ) ( ) ( ) ( ) ( )2 2d t t k t t t
dt

β β β ε β α∗= − −
                       (14)

On the basis of Equations 10 and 11, one can write

( ) ( ) ( ) ( )1
2

d t k t t f t
dt αα α εβ ∗= − − +                        (15)

( ) ( ) ( ) ( )1
2

d t k t t f t
dt ββ β εα∗= − − +

                                           (16)

where fα(t) and fβ(t) are noise forces corresponding to the two-
modes . Moreover, one can readily check that

( ) ( ) 0f t f tα β= =                                                                                                                                          (17)

( ) ( ) ( ) ( ) ( )' ' 'f t f t f t f t t tα β β α εδ= = − −                                 (18)

( ) ( ) ( ) ( ) ( ) ( )' ' ' 0f t f t f t f t f t f tα α β β α β
∗ ∗ ∗= = =                                               (19)

( ) ( ) ( ) ( ) ( ) ( )' ' ' 0f t f t f t f t f t f tα α β β α β
∗ ∗ ∗= = =           (20)

Applying Equation 15 along with the complex conjugate of Equation 
16, we readily obtain

1 ( ) ( )
2

d x x f t f t
dt α βξ ∗

± ± ±= − + +                                    (21)

in which

x α β ∗
± = ±                                                                                      (22)

And

2kξ ε± = ±                                                                                    (23)

According to Equations 21 and 22, the equation of evolution of α- 
does not have a well behaved solution for k < 2ε. We then identify k = 
2ε as a threshold condition. For 2ε < k, the solution of Equation 21 can 
be put in the form 

( ) ( )( )
( ')

2 2

0

( ) (0) ' ' '
tt t t

x t x e e f t f t dt
ξ ξ

α β

± ± −
− − ∗

± = ± + −∫
                   

(24)

It then follows that

+ - +(t) = A (t) (0) + A (t) (0) + B (t) + B (t)α α β ∗
−

                            (25)

+ - +(t) = A (t) (0) + A (t) (0) + B (t) + B (t)β β α∗ ∗ ∗
−

                                  (26)

Where

2 21A (t)=
2

t t

e e
ξ ξ+ −

− −

±

 
± 

                                                                                                                                        
(27)

( )
( ')
2

0

1B (t)= ( ') ( ') '
2

t t t

e f t f t dt
ξ

α β

± −
− ∗

± ±∫                                                                                                           
(28)

Power Spectrum

In nearly of two-mode light is is some variation about the central 
frequencerr We wish here to obtain the spectrum of the mean photon 
number, usually know as the power spectrum of a light modes 
represented by the operators ĉ and ĉ ϯ . We would like to mention that ĉ 
and ĉ ϯ can be cavity mode operators. We define the power spectrum of 
two-mode light with central frequency Ω0 by 

0( )†

0

1 ˆ ˆ( ) ( ) ( ) i T

s s

P Re c t c t T e dT
π

∞
Ω−ΩΩ = +∫

                  

                                                                                
(29)

in which

( ) ( ) ˆ )ˆ (ˆ tc t ta b= +
                                                                                                                                                   (30)

ˆˆ( ) ( ) ( )ˆt T tc a bT t T+ = + + +                                                (31)

and Ω0= (ωa + ωb), with ωa and ωb being the central frequencies 
of the signal and idler modes and the power spectrum is Lorentzian 
centered at Ω = Ω0  as well as Ω′=-λ and Ω0=+λ  are the lower and upper 
frequency limits with the band width of 2λ. Then the power spectrum 
is found to be 

( )
( ) ( ) ( ) ( )

2 2
†

2 2 2 2
0 0

4 1 1ˆ ˆP( )= ( ) ( )
4 2 2ss

k
c t c t

k k

ε

πε ε ε

     −  Ω −       Ω −Ω + − Ω−Ω + +       
                

(32)
where

Figure 1:   Non-degenerate parametric amplifier.

( ) ( ) ( ) ( ) ( )2 2d t t k t t t
dt

α α α ε α β ∗= − −
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( )
†

2 2

4ˆ ˆ( ) ( )
4ss

c t c t
k

πε
ε

=
−

                                                                                                                                   
(33)

being the steady-state mean photon number of the signal-idler 
modes. Upon integrating both sides of Equation 32 over , we readily get

( ) †ˆ ˆ( ) ( )
ss

P d c t c t
∞

−∞

Ω Ω =∫
                                                                                                                            

(34)

On the basis of Equation 34, we observe that P(Ω)dΩ represents 
the steady-state mean photon number for the signal-idler modes in the 
interval between Ω and Ω+dΩ. We thus realize that the steady-state 
local mean photon number in the interval between Ω′= -λ and Ω′= λ 
can be written as

( )†ˆ ˆ( ) ( ) ' 'c t c t P d
λ

λ
λ

±
−

= Ω Ω∫
                                                                                                                       

(35)

where Ω′ = Ω- Ω0. Therefore, using Equation 32 and the fact that
1

2 2

' 2
'
d tan

d d d

λ

λ

λ+
−

−

Ω  =  Ω +  ∫
                                                                                                                             

(36)

we readily obtain

† †ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )c t c t c t c t z
λ

λ
±
=                                       (37)

Where

1 11( ) ( 2 ) tan ( 2 ) tan
2 2 2

z k k
e k k

λ λλ ε ε
π ε ε

− −    = + − −    − +                                                             
(38)

One can easily get from Figure 2 that z(0.5) = 0.9019, z(1) = 0.9496,

 
z(2) = 0.9713, and z(3) = 0.9815. Then combination of this results with 
Equation 37 yields 0.5n±  = 0.9019 n, 1n±  = 0.9496 n, 2n±   = 0.9713n 
and 3n±  = 0.9815 n. We immediately see that a large part of the total 
mean photon number is confined in a relatively small frequency 
interval. 

Spectrum of Intensity Fluctuation
We seek to determine the local variance of the photon number 

in a given frequency interval employing the spectrum of intensity 
fluctuations. The spectrum of intensity fluctuations for a two-mode 
cavity light with central frequency Ω0 is expressible as

0( )

0

1 ˆ ˆI( )= Re ( ), ( ) Ti
ss

dT n t n t T e
π

∞
Ω−ΩΩ +∫

                               
(39)

Where
†ˆ ˆ ˆ( ) ( ) ( )n t c t c t=                                                                                                                                                  (40)

And

†ˆ ˆ ˆ( ) ( ) ( )n t T c t T c t T+ = + +                                                (41)

Then which follows

( )
2 2

2
3 2 2 2 2

0 0

1 ( 2 ) ( 2 )( ) ( 2 ) ( 2 )( )I( )=
2 ( ) ( 2 ) ( ) ( 2 )ss

k k k k k kn
k k k

ε ε ε ε ε ε
π ε ε

    + − − − + +  Ω ∆ +      Ω −Ω + + Ω−Ω + −       
   

(42)

Where
( )

4 2 2 2
2

2 2 2 2 2 2 2 2

16 4 8
( 4 ) ( 4 ) 4ss

kn
k k k

ε ε ε
ε ε ε

∆ = + +
− − −

                    
(43)

is the global photon-number variance of the signal-idler modes. 
Upon integrating both sides of Equation 42 over Ω, one easily obtains

( )2( ) ( )
ss

I d n t
∞

−∞

Ω Ω = ∆∫                                                                                                                                 
(44)

Moreover, on the basis of Equation 44, we observe that I(Ω)dΩ 
represents the steady-state variance of the photon number for the two-
mode cavity light in the interval between  Ω and  Ω+dΩ. We thus realize 
that the photon number variance for the cavity light in the interval 
between Ω′= -λ and Ω′= λ can be written as (Figure 3)

( )2 ( ') 'n I d
λ

λ
λ

±
−

∆ = Ω Ω∫
                                                                                                                                  

(45)

where Ω′ =  Ω-Ω0. Therefore, employing Equations 36 and 42, we 
readily obtain

( ) ( )2 2( ) ( ) ( )n t n t Zλ λ±∆ = ∆
                                              (46)

where

2 1 2 1
3

1( ) ( 2 ) ( ) tan ( 2 ) ( ) tan
2 2

Z k k k k
k k k

λ λλ ε ε ε ε
π ε ε

− −    = − + + + −    + −                   
(47)

From the plot in Figure 3, we easily find z(0.5)=0.856, z(1)=0.932, 
z(2)=0.960, z(3)=0.974. Then combination of this results with Equation 
46 yields (∆n±0.5)

2=0.856 (∆n)2, (∆n±1)
2=0.932 (∆n)2, (∆n±2)

2=0.960 
(∆n)2, (∆n±3)

2=0.974(∆n)2. We immediately see that a large part of the 
photon number variance is confined in a relatively small frequency 
interval.

Spectrum of Quadrature Fluctuations
Here we seek to obtain the local quadrature squeezing of the signal-

idler modes employing the spectrum of quadrature fluctuations. We 
first define the spectrum of quadrature fluctuations for a given two-
mode cavity light with central frequency Ω0 by

0( )

0

1 ˆ ˆ( ) Re ( ), ( ) i T

ss

S c t c t T e dT
π

∞
Ω−Ω

± ± ±Ω = +∫
                                      

(48)

in which

Figure 2: A plot of z(λ) [Equation 38] versus λ for k=0.8 and ε = 0.35. 
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in which

12 2( ) tan
2

z
k

λλ
π ε

−
±

 =  ±                                                    
(56)

We easily obtain from Figure 4 that z(+5)=0.906, z(+15)=0.968, 
z(+25)=0.981, and z(+50)=0.990. Then combination of this results 
with Equation 55 yields (∆c±5)

2=0.906 (∆c+)2, (∆c±15)
2=0.968 (∆c+)2, 

(∆c±25)
2=0.981 (∆c+)2, and (∆c±50)

2=0.990 (∆c+)2. We immediately see 
that a large part of the quadrature variance of the signal-idler modes is 
confined in a relatively small frequency interval. 

Moreover, in view of Equation 52 and 56, Equation 55 can be 
rewritten as

( )2 12 2 22(1 ) tan
2 2

c
k kλ

ε λ
ε π ε

−
±

  ∆ =   ± ±  


                              
(57)

We note that the quadrature variance of the two-mode vacuum 
state in the interval between ω′= -λ and ω′= λ can be obtained by setting 
ε = 0 in Equation 57. We then get Figures 4 and 5.

( ) ( )2 2 ( )vv v
c c zλ λ λ± ±∆ = ∆

                                                                                                                                   (58)
where

12 2( ) tanvz
k
λλ

π
−  =  
                                                                                                                                          

(59)

and

( )2 2
v

c λ±∆ =                                                                                  (60)

The plot in Figure 5 shows as λ increases, zv(λ) approaches to 1.

We next calculate the local quadrature squeezing of the signal-idler 
modes relative to the local quadrature variance of vacuum state. We 
then define the local quadrature squeezing of the twomode cavity light 
in the interval between Ω′= -λ and Ω′= λ by

2 2

2

( ) ( )
( )

v

v

c cS
c

λ λ
λ

λ

± ±
±

±

∆ − ∆
=

∆                                                                                                                                   
(61)

†ˆ ˆ ˆ( ) ( ( ) ( ))c t T c t T c t T+ + = + + +                                     (49)

and

†ˆ ˆ ˆ( ) ( ( ) ( ))c t T c t T c t T− + = + − +                                                   (50)

Then, the spectrum of the quadrature fluctuations for the signal-
idler modes is found to be

( )

( )

2
2

2
0

2
2( ) ( )

2
2

k

S c
k

ε
π

ε
± ±

 +
 
 Ω = ∆
 ± Ω−Ω +                                                                      

(51)

where

( ) ( )
2 2( ) 2 1

2
c t

k
ε
ε±

 
∆ =  ± 



                                               
(52)

is the quadrature variance of the signal-idler modes at steady-state. 
We observe that the signalidler modes are in a squeezed state and the 
squeezing occurs in the plus quadrature. Upon integrating both sides of 
Equation 51 over, we get

( ) 2( )
ss

S d c
∞

± ±
−∞

Ω Ω = ∆∫                                                                                                                                          
(53)

On the basis of Equation 53, we observe that S ± (Ω) dΩ is the 
quadrature variance of the two-mode cavity light in the interval between 
Ω and Ω + dΩ. Now the local quadrature variance in the interval Ω′= -λ 
and Ω′= λ can then be written as

( )2 ( ') 'c S d
λ

λ
λ

± ±
−

∆ = Ω Ω∫                                                                                                                                      
(54)

in which Ω′ =  Ω-Ω0. 

Furthermore, upon integrating Equation 51 in the interval between 
ω′= -λ and ω′= λ, using the relation described by Equation 36, we 
readily get

( ) ( )2 2 ( )c c zλ λ± ± ±∆ = ∆
                                                                                                                                      (55)

Figure 3: A plot of z(λ) [Equation 47] versus λ for k=0.8 and ε = 0.35.

Figure 4: A plot of z+(λ) [Equation 56] versus λ for k=0.8 and ε = 0.35.
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Then combination of Equations 57, 58 and 61 leads to

1

1

2tan
21

22 tan

k kS
k

k

λ

λ
ε

λε

−

±
−

 
 +   = −  +   
 
                                                                                                              

(62)

We immediately see that the quadrature squeezing of the two-mode 
cavity light in a given frequency interval is not equal to that of the cavity 
light in the entire frequency interval. We see from the plot in Figure 6 
that the maximum local quadrature squeezing is 75% and occurs in the 
±0:01 frequency interval. In addition, we note that the local quadrature 
squeezing approaches to the global quadrature squeezing as λ increases. 
We also realize that as the quadrature squeezing increases, the mean 
photon number decreases.

Spectrum of Entanglement Fluctuations
In this section we seek to study the local entanglement fluctuations 

for a two-mode cavity light employing the entanglement spectrum. We 
first define the spectrum of entanglement fluctuations of the two EPR-
like operators û  and v̂  for a given two-mode cavity light with central 
frequency Ω0 by 

( ) 0( )

0

1 ˆ ˆRe ( ), ( ) i T
u

ss

E u t u t T e dT
π

∞
Ω−ΩΩ = +∫

                               
(63)

in which

( )1 ˆˆ ˆ( ) ( ) ( )
2

u t a t b t+ += −
                                                     

(64)

( )1 ˆˆ ˆ( ) ( ) ( )
2

u t T a t T b t T+ ++ = + − +                             
(65)

And

( ) 0( )

0

1 ˆ ˆRe ( ), ( ) i T
v

ss

E v t v t T e dT
π

∞
Ω−ΩΩ = +∫                        

(66)

in which

( )1 ˆˆ ˆ( ) ( ) ( )
2

v t a t b t− −= +
                                                      

(67)

( )1 ˆˆ ˆ( ) ( ) ( )
2

v t T a t T b t T− −+ = + + +
                             

(68)

with â  and b̂ are the plus and minus quadrature operators of the 
signal and idler modes, respectively. Then we can readily find

( ) ( )
( )

( )

2
2

2
0

2
2

2
2

u ss

k

E a
k

ε
π

ε
+

 +
 
 Ω = ∆
 + Ω−Ω +    

                                                                                                   

(69)where

( ) ( )
2 2( ) 1

2
a t

k
ε
ε+

 
∆ = − + 

                                                           
(70)

is the quadrature variance of the signal mode at steady-state. And

( ) ( )
( )

( )

2
2

2
0

2
2

2
2

v ss

k

E a
k

ε
π

ε
+

 +
 
 Ω = ∆
 + Ω−Ω +    

                                                                                                   

(71)

Where

( ) ( )
2 2( ) 1

2
b t

k
ε
ε+

 
∆ = − +                                                                                                                                    

(72)

is the quadrature variance of the idler mode at steady-state. 
Therefore, the spectrum of entanglement fluctuations for the signal-
idler modes can be written as (Figure 7).

( )
( )

2
2

0
2

2

k

E
k

π
ε

Ω =
+ Ω−Ω +                                                       

(73)

Where ( ) ( ) ( )2 2 2

ss ss ss
c a b+ + +∆ = ∆ + ∆

.
we observe that the spectrum of 

entanglement fluctuation is a Lorentzian centered at Ω-Ω0 and with a 
half width of k. Upon integrating both sides of Equation 73 over Ω, we 
get Figure 5: A plot of zv(λ) [Equation 59] versus λ for k = 0.8.

Figure 6: A plot of S±λ [Equation 62] versus λ for k =0.8 and ε = 0.4.
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( ) ( )2

ss
E d c

∞

±
−∞

Ω Ω = ∆∫                                                           
(74)

Thus we realize that the local entanglement fluctuations in the interval 
Ω′= -λ and Ω′= λ can then be written as

( ) ( )2 ' 'uu E d
λ

λ
λ

±
−

∆ = Ω Ω∫
                                                   

(75)
And

( ) ( )2 ' 'vv E d
λ

λ
λ

±
−

∆ = Ω Ω∫                                                      
(76)

in which Ω′ =  Ω-Ω0

Furthermore, upon integrating Equations 69 and 71 in the interval 
between Ω′= -λ and Ω′= λ we readily find 

( ) ( )2 2 ( )u a zλ λ± + +∆ = ∆                                                         (77)

( ) ( )2 2 ( )v a zλ λ± + +∆ = ∆                                                                                                                                        (78)

in which
12 2( ) tan

2
z

k
λλ

π ε
−

+
 =  +                                                     

(79)

Hence on the basis of the criteria stated in [5], a two-mode cavity 
light is said to be locally entangled if the sum of the local variance of 
the two EPR-like operators û and v̂  satisfies the inequality (Figure 8). 

( ) ( ) ( )2 2 2 vu v zλ λ λ± ±∆ + ∆ <                                             (80)

For instance, the sum of the local variance of the two EPR-like 
operators for the system under consideration to be

( ) ( ) ( ) ( )2 2 2u v c zλ λ λ± ± + +∆ + ∆ = ∆                                (81)

Moreover, the sum of the local variance of the two EPR-like 

Figure 7: A plot of E(Ω) [Equation 73] versus  Ω- Ω0 for k =0.8 and ε = 0.35. Figure 8: A plot of D(λ) [Equation 62] versus λ for k=0.8.

operators, at steady-state and threshold, is found to be

( ) ( )2 2 12 tanu v
kλ λ
λ

π
−

± ±
 ∆ + ∆ =  
 

                                 
(82)

With the aid of Equation 80, we clearly see that a signal-idler 

modes are locally entangled when the light operating at steady-state 
and threshold.

On the other hand, we can define the degree of local entanglement 
as in the form

( ) ( )2 2

( )
2 ( )v

u v
D

z
λ λλ

λ
± ±∆ + ∆

=
                                                

(83)

then it leads to

1

1

tan
1( )

22 tan

kD

k

λ

λ
λ

−

−

 
 
 =
 
 
                                                                                                                                           

(84)

The plot in Figure 8 shows that 50% maximum degree of local 
entanglement is turned out be observed in the squeezed photons for 
the given frequency interval. 

Conclusion
We have analyzed a slightly modified definitions for the power 

spectrum, the spectrum of intensity fluctuations, the spectrum of 
quadrature fluctuations, and the spectrum of entanglement fluctuations 
that holds true for a two-mode photon system. We have also presented 
a new definition for local entanglement fluctuations. In order to carry 
out our analysis, we considered a quantum system with a Gaussian 
variables with zero mean. It is found that the local mean photon number 
of the signal-idler light beams to be the sum of the local mean photon 
numbers of the constituent light beam. And the local photon number 
variance of the signal-idler light beams happens to be the sum of the 
local photon number variances of the separate light beam.
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Furthermore, applying a slightly modified definition of the local 
quadrature variance, we have obtained that the local quadrature 
variance of the signal-idler modes to be the sum of the local quadrature 
variances of the individual light beams and the signal-idler light beams 
are in a squeezed state and the squeezing occurs in the plus quadrature. 
Moreover, the global quadrature squeezing turned out to be the average 
of the quadrature squeezing of the  component light beams. Besides, 
our analysis shows that at steady state and at threshold, the signal-
idler modes have a maximum squeezing of 75% below the two-mode 
vacuum-states level in the given frequency interval. We have also clearly 
shown that two-mode light beams are locally entangled at steady-state 
and the entanglement turned out to be observed in the highly correlated 
squeezed photons with 50% degree of local entanglement.

To this end, we would like to mention that the predictions made 
in this paper concerning the local entanglement and local quadrature 
squeezing to be experimentally verified.
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