Perspective

Spatial Proteomics of Tumour Microenvironment in Pancreatic Ductal Adenocarcinoma

Matteo Ricci

Department of Translational Medicine, University of Milan, Milan, Italy

DESCRIPTION

Pancreatic Ductal Adenocarcinoma (PDAC) remains one of the most lethal malignancies, characterized by aggressive progression, late-stage diagnosis, and profound resistance to conventional therapies. Despite advances in surgical techniques, chemotherapy, and targeted therapies, the five-year survival rate for PDAC remains below 12%. A major contributing factor is the unique and complex Tumor Microenvironment (TME), which fosters immune evasion, therapeutic resistance, and tumor progression. Understanding the spatial organization of cellular and molecular components within the TME is crucial to uncovering mechanisms of PDAC aggressiveness and identifying actionable therapeutic targets. Recent developments in spatial proteomics offer unprecedented insights into TME architecture by enabling multiplexed, high-resolution mapping of protein expression within intact tumor tissue.

Spatial proteomics refers to the combination of high-throughput proteomic technologies with spatial resolution, allowing researchers to profile protein abundance, modifications, and interactions while preserving tissue context. Unlike bulk proteomics, which homogenizes tumor tissue and obscures regional heterogeneity, spatial proteomics retains information about cellular localization, cell-cell interactions, and niche-specific signaling. Techniques such as Imaging Mass Cytometry (IMC), Multiplexed Ion Beam Imaging (MIBI), Co-Detection by Indexing (CODEX), and spatially resolved proteomic mass spectrometry provide comprehensive characterization of immune, stromal, and tumor compartments in PDAC. This approach is particularly relevant for PDAC, where desmoplastic stroma, hypovascular regions, and immunosuppressive niches define disease progression.

One hallmark of PDAC is its dense desmoplastic stroma, composed of Cancer-Associated Fibroblasts (CAFs), extracellular matrix components, and immunosuppressive myeloid populations. Spatial proteomic studies have revealed that CAF subtypes are spatially organized, with myofibroblastic CAFs (myCAFs) residing near tumor nests and inflammatory CAFs (iCAFs) predominantly located in stromal regions distal to

tumor cells. These distinct CAF populations secrete unique signaling molecules that modulate immune cell infiltration, angiogenesis, and drug penetration. Mapping protein expression in situ enables identification of spatially defined niches where CAF-mediated immune suppression and chemoresistance are most pronounced, providing potential targets for stromal modulation.

Immune landscapes in PDAC are highly heterogeneous and immunosuppressive, limiting the immunotherapies. Spatial proteomics has enabled detailed profiling of tumor-infiltrating lymphocytes, myeloid-derived suppressor cells, and regulatory T cells, highlighting their spatial relationship with tumor cells and stromal elements. For example, studies using IMC have shown that cytotoxic CD8+ T cells are frequently excluded from tumor nests by surrounding CAFs and myeloid populations, creating "immune-excluded" regions. Conversely, pockets of tertiary lymphoid structures enriched with B cells and helper T cells correlate with improved prognosis. By quantifying both the abundance and localization of immune markers, spatial proteomics allows identification of immune cold and hot regions within the tumor, providing insights into mechanisms of immune evasion and potential strategies for combination immunotherapy.

Integrating spatial proteomics with clinical outcomes and multiomics data has demonstrated prognostic and predictive potential. Tumors exhibiting dense CAF-tumor interfaces, immune exclusion zones, or specific stromal signaling signatures are associated with poor survival and reduced chemotherapy response. Conversely, tumors with interspersed immune infiltration and reduced stromal barriers show better outcomes. By linking spatial protein patterns to patient response data, predictive models can be developed to guide personalized therapy, such as selecting patients for immune checkpoint inhibitors, stromal-targeting agents, or combination regimens.

Challenges in spatial proteomics include technical complexity, high-dimensional data analysis, and standardization across platforms. Multiplexed imaging generates vast datasets that require advanced computational pipelines for feature extraction, cell segmentation, and spatial neighborhood analysis.

Correspondence to: Matteo Ricci, Department of Translational Medicine, University of Milan, Milan, Italy, E-mail: matteo.ric45@unimi.it

Received: 02-May-2025, Manuscript No. JCSR-25-38995; Editor assigned: 16-May-2025, PreQC No. JCSR-25-38995 (PQ); Reviewed: 23-May-2025, QC No. JCSR-25-38995; Revised: 30-May-2025, Manuscript No. JCSR-25-38995 (R); Published: 06-Jun-2025, DOI: 10.35248/2576-1447.25.10.633

Citation: Ricci M (2025). Spatial Proteomics of Tumour Microenvironment in Pancreatic Ductal Adenocarcinoma. J Can Sci Res. 10:633.

Copyright: © 2025 Ricci M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Reproducibility and cross-institutional validation are essential for clinical translation. Despite these hurdles, the field is rapidly advancing, and integration with single-cell transcriptomics, metabolomics, and imaging modalities promises a comprehensive multi-dimensional understanding of PDAC biology.

Therapeutic implications of spatial proteomics are profound. By identifying spatially organized immunosuppressive niches and signaling hotspots, therapies can be rationally designed to overcome stromal barriers, enhance immune infiltration, or target specific tumor-stroma interactions. For example, CAF-depleting agents, $TGF-\beta$ inhibitors, and immune checkpoint blockade can be tailored based on the spatial context of tumor architecture. Furthermore, spatial proteomics enables monitoring of dynamic changes in the TME during treatment, providing early indicators of therapeutic response or resistance.

CONCLUSION

Spatial proteomics represents a transformative approach to dissect the complex tumor microenvironment of pancreatic ductal adenocarcinoma. By mapping cellular, molecular, and signaling landscapes with high spatial resolution, this technology provides insights into immune evasion, stromal-mediated therapy resistance, and tumor progression. The integration of spatial proteomics with clinical, genomic, and transcriptomic data offers the potential to develop predictive biomarkers, guide personalized therapies, and identify novel therapeutic targets. As technological and computational approaches continue to advance, spatial proteomics is poised to play a central role in unraveling the biology of PDAC and improving patient outcomes.