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ABSTRACT
Background: Malaria is a significant health challenge in Africa. However, studies on the spatial dynamics 
of malaria transmission in Ghana using a geospatial analysis approach, have received little attention. 
This study used geospatial analysis and Geographic Information System (GIS) technology to examine the 
spatial intricacies of malaria transmission, focusing on how proximity to dumpsites and stagnant waters 
affects disease prevalence.

Materials and methods: We employed spatial analysis techniques such as buffer and overlay analyses, 
spatial autocorrelation Getis-Ord G statistics, geo-statistical modeling and correlation analysis, to explore 
the spatial relationships between dumpsites, stagnant waters, households and malaria incidence. 

Results: The study revealed persistent difficulties associated with malaria, despite global attempts to 
eradicate and highlights the importance of environmental factors. Malaria transmission is higher near 
dumpsites and stagnant waters, where mosquitoes breed. The study also revealed the seasonal variation in 
malaria cases, with more in the rainy season and less in the dry season. The study suggests specific waste 
management strategies, vector control measures and public health interventions to reduce transmission 
risks.

Conclusion: Geospatial analysis and GIS technology provide valuable insights for evidence-based 
policymaking, enabling more effective malaria control and preventive measures. Collaboration involving 
health authorities, communities and stakeholders are essential for implementing these suggested 
interventions and lowering the malaria burden in endemic areas.
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INTRODUCTION

Malaria remains a significant and persistent global health 
challenge, particularly in sub-Saharan Africa, where it exerts a 
disproportionately heavy burden on public health and socio-
economic development. According to the World Health 
Organization (WHO), malaria caused 229 million infections and 
409,000 deaths worldwide in 2019, with Africa suffering the most 
from this disease, accounting for 94% of cases and fatalities. Despite 
significant efforts to combat this deadly disease, malaria remains 
a pressing concern for both global and local health authorities. 
Within the WHO’s African region, Ghana, a West African 
nation, grapples with the ongoing and substantial public health 
challenge posed by malaria [1]. The Tano North municipality, 
located in the Brong Ahafo region of Ghana, represents one of 
the endemic regions where malaria transmission continues to 
be a major issue. The significant number of reported malaria 
cases and hospital admissions in this municipality presents a 
formidable obstacle to achieving Sustainable Development Goal 
3 (SDG 3) ensuring good health and well-being for all. In 2016 
alone, the Tano North municipality reported a staggering 27,982 
cases of malaria, with a concerning 73.5% of these cases testing 
positive, despite global declines in malaria rates. Additionally, 
a case fatality rate of 7.2% underscores the severity of malaria-
related hospitalizations and morbidity. Malaria transmission in 
the Tano North municipality is influenced by a complex interplay 
of factors. These include climatic conditions, socio-economic 
status, environmental factors and human behaviors, all of which 
affect the propagation of the disease [2]. Environmental factors, 
especially those that favour the breeding and survival of female 
Anopheles mosquitoes, the primary malaria vectors, are crucial. 
These factors are stagnant water bodies, temperature, humidity 
and proximity to densely populated areas [3,4]. A comprehensive 
understanding of these geographical and temporal dynamics is 
imperative for developing effective malaria control measures.

Malaria remains a significant public health threat in Ghana, 
despite numerous interventions aimed at reducing its incidence. 
These interventions include the distribution of insecticide-
treated bed nets, indoor residual spraying and improved access 
to antimalarial drugs [5,6]. The Tano North municipality, like 
many other regions in Ghana, faces persistent challenges in 
effectively combating malaria. A complex interplay of factors, 
such as climate change, environmental modifications, human 
mobility patterns and emerging drug resistance, contributes to 
the resilience of malaria in this region [7].

Previous research has provided valuable insights into the general 
malaria situation in Ghana and Africa, but a significant research 
gap remains, especially regarding the localized spatial dynamics 
of malaria transmission at the community level in high-risk 
areas like the Tano North municipality [8]. To assess and design 
targeted and effective malaria control strategies that address the 
research gap, a nuanced and in-depth understanding of the local 
epidemiological and environmental factors driving transmission 
is essential [9,10]. Hence, this study sought to address this 
critical research gap by applying a comprehensive geospatial 
analysis approach to investigate the spatial dynamics of malaria 
transmission in the Tano North municipality of Ghana.

Geographic Information System (GIS) technology offers a 
powerful tool to decipher the intricate interactions between 
environmental factors and malaria transmission. By integrating 
geographic data such as topography, climate, land use and socio-
economic characteristics, GIS enables the visualization, analysis 
and modelling of spatial patterns and processes. Leveraging 
GIS has the potential to significantly enhance malaria control 
programmes by guiding the direction of interventions, optimizing 
resource allocation and informing decision-making processes. 
However, the application of GIS in malaria research and control 
is still limited in many malaria-endemic regions, especially in sub-
Saharan Africa.

This research, therefore, bridges a critical gap in the existing 
literature by utilizing advanced GIS and spatial statistical 
methods to examine the interplay between environmental factors 
and malaria transmission in the Tano North municipality, 
located in the Brong Ahafo region of Ghana. Given Ghana’s 
high malaria burden, particularly among children under five, 
this study provides valuable insights. The findings also promise 
to inform evidence-based, precisely targeted malaria control and 
prevention policy initiatives. This research helps to improve our 
understanding of the spatial dynamics of malaria by using GIS 
and spatial analysis. It, thus, offers the potential to optimize 
public health interventions and practices in the Tano North 
municipality and to serve as a possible model for malaria-endemic 
regions in Ghana and across Africa.

Malaria, a mosquito-borne disease caused by Plasmodium parasites, 
remains a serious global health threat, especially in endemic 
areas such as the Tano North municipality in Ghana’s Brong 
Ahafo region. The complex dynamics of malaria transmission 
are influenced by various environmental factors that affect the 
suitability of habitats for mosquito vectors and the development 
of the parasite within them. According to Hutchinson concept 
of ecological niche, each species has a specific set of ecological 
requirements for its survival and reproduction. This concept 
highlights the importance of different environmental factors 
in determining the spatial distribution of malaria, such as 
temperature, humidity and vegetation cover [11].

Temperature has a significant impact on the development of the 
parasite inside the mosquito as well as the mosquito’s survival 
and biting behavior. Warmer temperatures can accelerate the 
growth of the parasite during the extrinsic incubation period 
of Plasmodium in mosquitoes. Temperature-driven changes in 
mosquito behavior, such as increased activity and shorter feeding 
intervals, can also enhance transmission rates [12].

Humidity and rainfall patterns also play a crucial role in the 
dynamics of malaria transmission. High humidity and favorable 
precipitation patterns facilitate mosquito development in 
places like stagnant water bodies [13]. Conversely, changes 
in precipitation can affect mosquito populations and disease 
transmission. These ecological factors interact to create the 
geographical variation of malaria transmission, with different 
levels of disease prevalence occurring in different geographic 
regions.

Human modifications of the environment and land use also 
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influence malaria transmission. Yasuoka, et al. suggest that 
deforestation, urbanization and changes in land cover can alter 
local microclimates and create new mosquito breeding sites [14]. 
Tusting argues that there may be more breeding sites in urban 
areas with poor drainage and sanitation systems, increasing the 
risk of malaria transmission. On the other hand, agricultural 
practices and changes in land use may change the availability of 
breeding sites, affecting the dynamics of mosquito populations.

GIS technology provides a powerful tool for integrating and 
analyzing spatial data to model malaria transmission. GIS can 
visualize spatial associations between environmental factors 
and disease outcomes. Spatial analytical techniques such as 
interpolation, clustering and overlay analysis can help researchers 
identify malaria hotspots and estimate disease risk based on 
ecological factors. The use of GIS for health-related spatial 
analyses is becoming more widely recognized as a way to effectively 
target interventions and resources [15].

MATERIALS AND METHODS

Research philosophy and design

This study adopted a positivist research philosophy, which 
assumes that objective and measurable data can reveal the 
truth about the natural phenomena [16]. The descriptive cross-
sectional research design employed in this study is to analyse 
the spatial dynamics of malaria transmission in the Tano 
North municipality, Ghana. The research design follows a 
quantitative approach, using geospatial analysis techniques and 
Geographic Information System (GIS) technology to investigate 
the relationships between environmental factors, proximity to 
dumpsites and stagnant waters and malaria prevalence. The 
study uses spatial autocorrelation measures, overlay analysis, geo-
statistical modelling and correlation analysis to reveal patterns 
and associations between variables, aiming to provide evidence-
based insights for malaria control strategies [17-19].

Spatial analysis techniques

Data preparation and processing in ArcGIS: We utilize a 
systematic analytical method with GIS software to thoroughly 
evaluate the impact of proximity to waste disposal sites on the 
spread of malaria. Here are the datasets we have acquired for this 
purpose.

•  House positions: A dataset comprising the geographical 
coordinates (positions) of residences within the designated 
study region.

•    Dumpsites positions: A dataset consisting of the geographical 
coordinates (positions) of waste disposal sites within the 
study area.

•  Malaria occurrence data: Data pertaining to documented 
instances of malaria within the study area.

•  The data related to malaria, stagnant water, dumpsites 
and households were additionally referenced to a shared 
coordinate system, ensuring that they are now synchronized 
spatially.

Buffering analysis to evaluate proximity effects
We utilize GIS software to perform a buffer operation on the 

dumpsites and stagnant waters layer multiple times, creating 
buffer zones at distances defined by the function.

1 ( 1)qf f q c= + −   

Here, fq represents the distance for the qth term f1 is the first term, 
q is the term number and c is the common difference. This 
approach allows us to systematically determine the sequential 
proximity of dumpsites and stagnant waters to households, 
which in turn supports subsequent analysis.

The analysis utilized multiple ring buffering techniques within 
ArcGIS 10.8. Multiple ring buffering, as a spatial analysis 
method, generates concentric zones around geographic 
elements (in this case, dumpsites) using defined distances or 
ranges. The buffering operation in ArcGIS plays a pivotal role 
in examining proximity, spatial connections and service areas 
related to specific features. Ring buffers are instrumental in 
creating visually insightful maps that highlight areas of interest 
and their connections with neighboring elements. This tool 
has diverse applications for examining spatial connections, 
performing proximity analyses and guiding decision-making 
processes rooted in spatial patterns and the distances between 
geographic features.

Overlay analysis

Overlay analysis represents a fundamental spatial technique 
within Geographic Information Systems (GIS), where multiple 
geographical datasets or layers are merged to generate fresh 
information or glean insights based on their spatial connections. It 
serves as a potent tool for comprehending how distinct geographic 
elements interact and exert influence upon one another, thereby 
supplying valuable intelligence for decision-making, planning 
and spatial scrutiny. The primary notion underpinning overlay 
analysis revolves around the amalgamation of spatial attributes 
rooted in their spatial proximity or intersection. This analytical 
process takes into account both the geographic placement and 
characteristics of each element to produce novel datasets or 
discern particular spatial trends. In the context of identifying 
houses within buffer zones, overlay analysis becomes 
instrumental. This undertaking allows for the identification 
of residences situated at specified distances from dumpsites, 
offering a comprehensive view of their spatial distribution.

Malaria incidents and hotspots

A map illustrating the spatial distribution of malaria cases 
was crafted through ArcMap. The process of pinpointing 
malaria hotspots using the Inverse Distance Weighting (IDW) 
technique within ArcMap encompasses a geospatial analysis 
approach that enables the visualization and evaluation of 
regions with elevated concentrations of malaria cases.

In this methodology, IDW comes into play as a tool for 
interpolating values from established data points, which in 
this case are the recorded instances of malaria. The outcome 
is the generation of a seamless surface, which serves as a 
representation of the probability or magnitude of malaria 
occurrences across the entire study area. This approach aids 
in identifying clusters or areas where malaria is more likely to 
be prevalent, offering valuable insights for further analysis and 
public health interventions.
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Statistical analysis

Three consecutive measurements were taken for each participant 
and their average values were calculated for data analysis.

Spatial autocorrelation using global Moran’s I: Spatial 
autocorrelation in count data, such as disease cases, is assessed 
through various statistical indices like Moran’s I, Geary’s C and 
the Getis-Ord G statistic. These indices can be calculated as 
either global or local measures, depending on the analytical focus. 
Global spatial autocorrelation provides an overall measure of 
spatial dependency across the entire study area, summarizing the 
similarity or dissimilarity of count values throughout the dataset. 
In contrast, local spatial autocorrelation examines individual 
features, revealing specific spatial patterns and relationships 
among neighboring elements. By considering the relationships 
between these elements, it uncovers localized variations in spatial 
patterns, such as identifying hotspots or coldspots within the 
study area. These indices, rooted in the concept of the Gamma 
(γ) index, serve as valuable tools for understanding the spatial 
structure and dependencies within count data, assisting in the 
analysis of various phenomena, including disease distribution 
and spatial clustering.

The Global r index, equation consists of the sum of the cross 
products of the elements yao and zao in two matrices of similarity, 
using spatial similarity in one matrix and value similarity in the 
other matrix, such that

a o ao aor y z= ∑ ∑

Using different value similarity result in different indices. For 
example, setting

ao a oy p p=

would result in Moran’s I statistic and setting  would result in 
Geary’ C index given as

2
1 1

2
1 1 1

1 ( )
2( ) ( )

q q
a o af a o

q q q
a o af i i

q R p p
c

R p σ
= =

= = =

− ∑ ∑ −
=

∑ ∑ ∑ −

Where, q=number of spatial units, p=variable, σ=mean, 2R
af
= 

matrix of spatial weights with Raa=0, Rff=0.

The global gamma index equals the sum of local gamma indices 
within the study area.

Moran’s I statistics: The Moran’s I statistical tool is employed 
in spatial analysis to evaluate how a variable (such as dumpsites/
stagnant waters versus households) is distributed across a 
geographic area, indicating whether it tends to cluster together 
(positive spatial autocorrelation) or disperse (negative spatial 
autocorrelation) in nearby regions, as described in equations. 
Although Moran’s I is one of the earliest measures of spatial 
autocorrelation, it can be applied to assess both global and 
local spatial autocorrelation in continuous data. This involves 
calculating the mean (σ) of any continuous variable, denoted 
as p

a
 and determining the deviation (φ) of an observation from 

that mean based on the differences in values from the mean. The 
statistic then compares the value of the variable at one location to 
its values at all other locations. For q observations on a variable 
p at locations a, o, global Moran’s I can be calculated as follows:

2

( )( )
( )

q q
a o ao a a

q
o a a

R p pqI
k p

σ σ
σ

∑ ∑ − −
=

∑ −

Where; σ=mean value of p, pa=value variable of p at location 
m, p

a
=value variable of p at location o, R

ao
=elements of the 

weight matrix, q=number of observations and ko=the sum of the 
elements of the weight matrix such that 

q q
o a o aok R= ∑ ∑

The local Moran’s I for location m can be calculated as

12 ( )qa
o o ao o

a

pI R p
K

σ σ=

−
= ∑ −

2
2 21( )

1

q
o o

a
pK

q
σ σ=∑ −

= −
−

The values for this index usually fall within the range of -1.0 to 
+1.0. A value of -1.0 signifies negative spatial autocorrelation, 
while a value of +1.0 indicates positive spatial autocorrelation. 
When neighboring points exhibit similar Moran’s values, their 
cross product is high. Conversely, when nearby points have 
dissimilar Moran’s values, as described in equation, their cross-
product is low. The expectation of Moran’s I statistic is

1( )
1

E I
o
−

=
−

When the Moran’s I value exceeds E(I), it signifies positive 
spatial autocorrelation, whereas if Moran’s I is lower than E(I), 
it indicates negative spatial autocorrelation. In Moran’s original 
equation, the weight variable, denoted as R

ao
, represented a 

contiguity matrix. Consequently, when zone o is adjacent to zone 
a, the product is assigned a weight of 1.0; otherwise, it receives a 
weight of 0.0. A study generalized these definitions to include any 
type of weight and in a wider term, Rao, is a distance-based weight 
which is the inverse distance between locations m and n (1/d

ao
).

The z-score of Moran’s I can also be computed:
( )

( )a
I E IZ

J I
−

=

Where E(I) is the expected value of I and J(I) is the variance of I, 
as shown below

2 2( ) ( ) ( )J I E I E I= −

To compute a single statistic for the entire study area with respect 
to the specified threshold distance as defined, the Getis-Ord Gi 
statistic is deployed. The Global G statistic computes a single 
statistic for the entire study area whereas the G

i
 statistic is an 

indicator for local spatial autocorrelation for each data point. 
The Global G statistic can be calculated as:

a a o ao a o

a a o a o

R p pG
p p

≠

≠

∑ ∑
=

∑ ∑

where, p
m
 is the value of variable p at location o, p

o
 is the value 

of variable p at location o and Rao are the elements of the weight 
matrix.

There are two types of local Gi statistics, although almost the 
two types produce identical results. The first one, Gi, does not 

includes the interaction of a zone with itself (Gi statistic does 
include the autocorrelation of a zone with itself, whereas the Gi

*  
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not include the value of pa

values, but   includes p
a
 as well as the neighborhood values) and 

both can be computed by the formulae:

(d)
q
a o ao o

i q
a o o

R PG
P

≠

≠

∑
=

∑

* 1

1

(d)
q
o ao o

i q
o o

R PG
P

=

=

∑
=

∑

In the above equations, d represents the neighborhood threshold 
distance denoted as a, while Rao is the weight matrix that takes 
on values of 1.0 if o is within a distance d of o and 0.0 if it’s 
beyond that distance. These formulas demonstrate that the cross-
product of the value of P at location m and another location o 
is adjusted by a distance weight, Rao, which is defined as 1.0 if 
the two locations are closer to or equal to a threshold distance, 
d and 0.0 otherwise. The G statistic can range from 0.0 to 1.0. 
The statistical significance of the local autocorrelation between 
each p

o
int and its neighbors is evaluated using the Z-score test 

and the associated p-value. ArcGIS uses the following formulae 
to calculate the local Getis-Ord *

iG ;

1 1*

2 2
1 1

(d)
( )
1

q q
o ao o j ao

i q q
o ao o aok

R P R
G

q R R
q

σ= =

= =

∑ − ∑
=

∑ − ∑
−

0 1
q

oP
q

σ =∑
=

2
21

q
o oPK
q

σ=∑
= −

Where, P
a
 is the value of variable P at location a, P

o
 is the value of 

variable P at location o, R
ao

 is the elements of the weight matrix 
and q is the number of observations.

The expected G value for a threshold distance, d, is defined as:

[ ( )]
( 1)

RE G d
q q

=
−

Where, R is the sum of weights for all pairs of locations 

( )q q
a o aoW R= ∑ ∑  and q is the number of observations. For normal 

distribution, the variance of G(d) is defined as:
2 2[ ( )] ( ) ( )ar G d E G E Gν = = −

The Standard Deviation (SD) of G(d) is the square root of the 
Variance (V) of G. Therefore, a Z-test can be computed by: 

[ ( )] [ ( )]SD G d ar G dν=

( ) E[G(d)]Z [ ( )]
[ ( )]

G dG d
SD G d

−
= =

Geo-statistics: This study utilized a conventional geo-statistical 
model as outlined by Collins in 2006. Various vital components 
were allocated to variables. In this context, xi represents distinct 
locations within a study region, denoted by G, C and R2, 
R

o
:l=1……., q signifies individuals at risk in each community, 

following equation. The data pertaining to the disease under 

study included records indicating whether each test yielded a 
positive or negative result and this data was analyzed. Y

a
 denotes 

positive malaria Rapid Diagnostic Test (RDT) occurrence out of 
R

n
 individuals in x

i
 regions of interest G C R2 and a vector of 

associated covariance ( ) p
id x R∈ . This assumes binomial function 

as y ~ Binomial (Ro, p(xi)), where p(xi) measures the disease 
prevalence at locations (distance between dumpsites/stagnant 
waters and households). 

Logistic function was adopted to further assume that

log{ } ( ) ' ( )
{1 p( )}

px a d x S x
x

β= + +
−

Where, a=intercept, S(x)=unobserved random effect with zero 
mean as applied in Gaussian process with a constant variance, 
d(x)’=observed vector associated with the response Y, β =vector of 
the spatial regression coefficient for the covariates.

This helped analyzed malaria cases of residents who are not 
targeted in the research to compute the correctness between the 
targeted communities. 

The empirical logit transform is defined as below:

( 0.5)Y log{ }
( 0.5)

ao
ao

ao ao

y
a y

+
=

− +

The assumption to this equation is that

Y ( ) ' S( ) Zao ao i ia d x xβ= + + +  

Where, Za
 is a mutually independent zero-mean Gaussian 

random variable with variance. The indexes a and o represent 
an individual household and a member within the household 
respectively. Equation was used to check the dependencies of 
malaria cases and variables of unknown predictors.

Correlation analysis: The study evaluated the average malaria 
incidence for houses located within different buffer zones. The 
level of malaria transmission varied depending on the proximity 
of households to the dumpsites. To identify any statistically 
significant trends or patterns, the study further examined the 
relationship between the proximity of households to dumpsites 
and reported cases of malaria, as described by Okrah, et al. [20]. 
Regression analysis was employed to assess the strength of the 
relationship between the distance from dumpsites and malaria 
incidence. This analysis helped quantify the impact of proximity 
to dumpsites on malaria transmission. Additionally, Pearson’s 
correlation coefficient (denoted as R in equation) was used to 
determine the correlation between proximity to dumpsites and 
malaria transmission.

2 2

( )( )
( _ ) ( )

i i

i

x yR
x i y

µ δ
µ δ

∑ − −
=

∑ − ∑ −

Where, R=correlation coefficient xi =values of the x-variable in 
the sample, µ =average values of the x-variable, yi=values of the 
y-variable in the sample, δ =average values of the y-variable.

A regression heatmap was utilized to visually represent the 
relationships among various variables within the dataset. 
This heatmap offers a graphical depiction of the correlation 
coefficients (denoted as R) between pairs of variables, aiding 
in the identification of patterns, trends and interdependencies. 
Correlation coefficients help in swiftly determining whether 

 itself, but Gi* only the neighborhood 
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variables exhibit positive or negative correlations. Positive 
correlations, with values close to 1, suggest that two variables tend 
to rise or fall together, whereas negative correlations, with values 
close to -1, indicate that as one variable increases, the other tends to 
decrease.

RESULTS

Statistical inferences

Spatial distribution of dumpsites, stagnant waters and households: 
The Moran I index values for each town reveal varying degrees of 
spatial autocorrelation in the distribution of dumpsites, stagnant 
waters and households, as depicted in Figures 1-3. A positive Moran 
I index (close to +1) indicates the clustering of similar values, while a 
negative Moran I index (close to -1) suggests the dispersion of values. 
The associated p-values for each Moran I test convey the level of 
statistical significance. A p-value below 0.05 (at a 95% confidence 
interval) signifies statistically significant spatial autocorrelation.

From the results illustrated in Figures 1-3, it becomes evident that 
stagnant waters (0.945), dumpsites (0.765) and malaria cases (0.945) 
in Tano North tend to cluster together. Consequently, areas with 
a high concentration of stagnant waters and dumpsites, such as 
Duayaw Nkwanta, Yamfo, Bomaa, Tanoso and others, exhibit 
elevated malaria cases. In contrast, regions with low malaria cases 
are located in areas with a lower concentration of stagnant waters 
and dumpsites, including Mensukrom, Akokoaman and Binkyem, 
among others (Figures 1-3).

Malaria incidents hotspots and proximity: The results of the buffer 
analysis for each town, as depicted in Figures 4 and 5, reveal distinct 
patterns related to malaria cases and their proximity to dumpsites. 
Duayaw Nkwanta, Yamfo, Bomaa and Tanoso consistently display 

elevated malaria cases across various buffer distances, indicating 
a strong correlation between proximity to dumpsites/stagnant 
water and the incidence of malaria. Conversely, Akokoaman and 
Mensukrom record the lowest malaria cases as the distance from 
dumpsites increases, with the highest cases occurring at a distance 
of 200 meters. This analysis supports the hypothesis that improper 
waste disposal sites can serve as breeding grounds for disease vectors, 
leading to a heightened risk of disease transmission (Figures 4 and 5).

The results of the standard geo-statistical model provide valuable 
insights into the spatial distribution of malaria cases among residents 
who are not the primary targets, considering their proximity to 
dumpsites and stagnant waters. These findings showcase variations 
across different towns, underscoring the potential health risks 
associated with their proximity to such sites. They underscore the 
urgent necessity for tailored waste management practices and health 
interventions to mitigate adverse health effects in these communities.

The model’s conclusions emphasize the critical importance of 
customized interventions, enhanced waste management procedures 
and effective vector control strategies in reducing malaria risks in 
areas close to dumpsites and stagnant waters. The diagrams in Figure 
6 vividly illustrate that households located closer to dumpsites and 
stagnant waters consistently report higher incidences of malaria 
cases compared to those situated farther away from these locations. 
For example, Duayaw Nkwanta, Yamfo, Bomaa, Tanoso and others 
consistently report elevated malaria cases due to a significant portion 
of their households being in close proximity to dumpsites and 
stagnant waters. Conversely, areas like Mensukrom, Akokoaman 
and Binkyem often experience lower malaria cases, primarily 
because the majority of households are situated at a greater 
distance from dumpsites and stagnant waters (Figure 6).

Figure 1: Spatial autocorrelation distribution in stagnant water. Note: (  ): p-value: 0.01, z:score: <-2.58; (  ): p-value: 0.05, z-score: -2.58 
to -1.96; (  ): p-value: 0.1, z-score: -1.96 to -1.65; (  ): p-value: 0, z-score: -1.65 to 1.65; (  ): p-value: 0.1, z-score: 1.65 to 1.96; (  ): 
p-value: 0.05, z-score: 1.96 to 2.58; (  ): p-value: 0.01, z-score: >2.58.
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Figure 2: Spatial autocorrelation distribution in dumping site. Note: (  ): p-value: 0.01, z:score: <-2.58; (  ): p-value: 0.05, z-score: -2.58 
to -1.96; (  ): p-value: 0.1, z-score: -1.96 to -1.65; (  ): p-value: 0, z-score: -1.65 to 1.65; (  ): p-value: 0.1, z-score: 1.65 to 1.96; (  ): 
p-value: 0.05, z-score: 1.96 to 2.58; (  ): p-value: 0.01, z-score: >2.58.

Figure 3: Spatial autocorrelation distribution in households with malaria. Note: (  ): p-value: 0.01, z:score: <-2.58; (  ): p-value: 0.05, 
z-score: -2.58 to -1.96; (  ): p-value: 0.1, z-score: -1.96 to -1.65; (  ): p-value: 0, z-score: -1.65 to 1.65; (  ): p-value: 0.1, z-score: 1.65 to 
1.96; (  ): p-value: 0.05, z-score: 1.96 to 2.58; (  ): p-value: 0.01, z-score: >2.58.
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Figure 4: Area infected with malaria incidence. Note: (*): Malaria cases; (  ): 0-142; (  ): 143-308; (  ): 309-545; (  ): 546-853; (  ): 
854-1173; (  ): 1174-1517; (  ): 1518-1884; (  ): 1885-2299; (  ): 2300-2774; (  ): 2775-3023.

Figure 5: Malaria risk category. Note: (  ): High risk area; (  ): Medium risk area; (  ): Low risk area.
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number of cases tends to decline during this season (Figures 7A 
and 7B).

It is important to note that while these are general patterns, 
there can be local variations and some areas in Tano North may 
experience malaria transmission throughout the year, especially 
in areas with stable, year-round transmission. The distribution 
of bed nets sprayed with insecticide, indoor residual spraying 
and the administration of antimalarial drugs are some of the 
methods used to manage and prevent malaria in Tano North. 
The Ghana Health Service (GHS) and various international 
organizations work together to implement malaria control 
programs and raise awareness about prevention measures. 
For the most current and region-specific information on 
seasonal variations of malaria cases in the municipality, it is 
recommended to consult the Ghana Health Service (GHS) or 
the WHO, as they monitor and report on malaria trends and 
control initiatives in the municipality.

Seasonal variation of malaria cases: Malaria is endemic in the 
Tano North municipality and the country experiences seasonal 
variations in malaria cases. The patterns of malaria transmission 
can vary by region within the municipality, but generally, there 
are two main seasons that influence the prevalence of malaria.

(a) High transmission season (rainy season): This typically occurs 
during the rainy season, which in the municipality is from May 
to October as shown in Figure 7A. During this period, increased 
rainfall creates breeding sites for mosquitoes, which are the 
primary vectors for transmitting malaria. The higher humidity 
and increased mosquito populations lead to a surge in malaria 
cases. This is often referred to as the peak malaria season.

(b) Low transmission season (dry season): The dry season in the 
municipality typically runs from November to April as shown 
in Figure 7B. During this time, there is a decrease in mosquito 
populations and breeding sites due to reduced rainfall and drier 
conditions. As a result, malaria transmission is lower and the 

Figure 6: Distance covered from dumpsite/stagnant (meters) water to household. Note: (  ): Households; (  ): Dumpsites; (  ): Stagnant 
water; (  ): 1-200, (  ): 201-400; (  ): 401-600; (  ): 601-800; (  ): 801-1000; (  ): 1001-1200; (  ): 1201-1400; (  ): 1401-1600; 
(  ):1601-1800; (  ):1801-2000.
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Failure to account for spatial autocorrelation can lead to biased 
estimates and inaccurate assessments of disease risk. Therefore, 
our study’s recognition of spatial autocorrelation in the 
distribution of environmental risk factors highlights the need 
for spatially explicit and context-specific interventions in malaria 
control. It implies that targeting interventions solely based on 
overall averages may not be as effective as focusing on areas with 
high Moran I index values where risk factors cluster. This insight 
can guide public health authorities in prioritizing resources and 
interventions to address the specific areas at the highest risk of 
malaria transmission, ultimately leading to more efficient and 
targeted disease control efforts.

Malaria incident hotspots and proximity to dumpsites

The results of our buffer analysis strengthened the idea that 
the proximity of dumpsites and stagnant water to certain towns 
was linked to malaria cases. For example, in towns like Duayaw 
Nkwanta, Yamfo, Bomaa and Tanoso, we consistently found 
malaria cases, even at varying distances from these environmental 
factors. This suggests a strong connection between environmental 
factors and the occurrence of malaria in these areas. Our findings 
support earlier studies who used spatial methods to study diseases 
and found that identifying specific geographic areas to disease 
spread was effective [21,22]. So, our results align with their work 
and add to the evidence that spatial approaches are valuable 
in understanding disease transmission. However, something 
interesting emerged in the cases of town like Akokoaman and 
Mensukrom. We noticed that as you moved farther away from 
dumpsites, there was a decrease in malaria cases, but this decrease 
peaked at a distance of 200 meters. At first, this might seem a 

DISCUSSION

This study provides valuable insights into how the spatial 
distribution of dumpsites, stagnant waters and households affects 
malaria incidence. Using various spatial statistical methods, the 
analysis explores the relationships between environmental factors 
and disease transmission risks.

Spatial distribution of dumpsites, stagnant waters and 
households

The positive Moran I index values indicated that there was 
clustering or aggregation of similar values for the environmental 
factors in localized areas within the study area. This clustering 
or aggregation of environmental risk factors is a crucial, as 
it suggests that certain areas within the study area may be at a 
higher risk for malaria transmission due to the concentration 
of the risk factors. In other words, areas with a high Moran I 
index value for dumpsites, stagnant waters or households 
were more prone to malaria transmission because they have a 
higher density of the risk factors. The significance of the spatial 
autocorrelation, as indicated by the p-values, suggest that the 
observed clustering of environmental risk factors is not random 
but rather a statistically significant pattern. This means that there 
is a spatial structure to the distribution of these risk factors and 
this structure has implications for disease transmission. Our 
findings align with the results of Wimberly, which emphasized 
the importance of considering spatial autocorrelation when 
estimating disease distribution. Spatial autocorrelation indicates 
that neighboring locations tend to have similar values, which is 
a common phenomenon in geospatial data related to diseases. 

Figure 7: (A): Malaria cases in rainy season; (B): Malaria cases in dry season. Note: (  ): 0-41, rainy season malaria cases; (  ): 42-85, rainy 
season malaria cases; (  ): 86-239, rainy season malaria cases; (  ): 240-406, rainy season malaria cases; (  ): 407-2149, rainy season malaria 
cases; (  ): 0-28, dry season malaria cases; (  ): 29-62, dry season malaria cases; (  ): 63-215, dry season malaria cases; (  ): 216-399, dry 
season malaria cases; (  ): 400-738, dry season malaria cases.

check size of the indicators
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the distribution of mosquito nets, indoor residual spraying and 
community-based education on malaria prevention. We also 
recommended the incorporation of geospatial techniques and 
GIS mapping in disease surveillance and intervention planning 
to create accurate and up-to-date georeferenced data for real-time 
monitoring and timely outbreak responses. Adaptive strategies 
that account for seasonal variations in malaria cases, especially 
the peak incidence during the rainy season, were proposed. 
These strategies include allocating additional resources and 
strengthening healthcare infrastructure during high transmission 
seasons and using the dry season for reinforcing healthcare systems, 
conducting research and preparing for potential outbreaks. 
Context-specific interventions that consider local factors 
influencing disease transmission in different towns in the region 
were advised, with a call for future research to delve deeper into 
these nuances to inform tailored interventions. Interdisciplinary 
collaboration between epidemiologists, environmental scientists 
and geospatial experts was encouraged to achieve a comprehensive 
understanding of disease transmission and develop effective 
control strategies. Community engagement initiatives and public 
health campaigns were recommended to be adapted to local 
contexts and seasonal variations, with continuous education to 
raise awareness about malaria prevention and early treatment-
seeking behavior. Long-term surveillance and year-round data 
collection were stressed as vital for monitoring changing disease 
dynamics, especially in the context of seasonal variations, to 
identify trends and predict potential outbreaks. Lastly, assessing 
the potential impact of climate change on rainfall patterns and 
malaria transmission was proposed as a critical focus for future 
research.
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