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Abstract

During the natural event of fertilization highly differentiated spermatozoa may revert to the totipotency of early
embryonic stages. Such cells have the capacity to develop into a whole organism or to differentiate into any of its
cells or tissues. Reversion is driven by the cytoplasm of the mature oocyte which is capable of reprogramming the
donor nucleus. It is likely that the idea of using the laboratory technique of somatic cell nuclear transfer (SCNT) for
creating an ovum with a donor nucleus stemmed from this observation. Many attempts have been made to
determine the underlying mechanism of reprogramming and to improve nuclear transfer procedures in order to
optimize the outcomes of SCNT. Although numerous reports have demonstrated the proof of principle of using
SCNT technology to clone fertile offspring in several different mammalian species, success rates remain low. Most
failures appear to result from incomplete reprogramming of the donor nucleus in an enucleated oocyte. The pressing
need to improve the efficiency of SCNT may require a modified or entirely novel methodology to be established. This
brief review discusses the mechanism responsible for reprogramming and considers several areas for research into
SCNT in mammals that could yield beneficial outcomes.
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Introduction
It is apparent that advancements in reproductive technologies such

as artificial insemination, embryo transfer and cloning by somatic cell
nuclear transfer (SCNT) have played important roles in both human
fertility clinics and the livestock industry. For the latter, nuclear
transfer has been used to produce a large number of genetically
identical valuable offspring. Hence, this technology has been proven to
enhance breeding of domesticated animals [1]. Consequently, the
production of cloned mammals by SCNT is a field of study attractive
to many researchers. Dolly the sheep, born in 1997, represented the
first successful cloned offspring produced using adult mammary
somatic cells [2]. Since then, it has also proved possible to produce
newborn young from SCNT-derived embryos in a wide range of
mammal species, for example mice [3], rabbits [4,5], goats [6], pigs
[7,8], water buffalo [9], cattle [10,11] and camels [12]. Moreover, in
order to facilitate routine production of live offspring, the capacity has
developed to freeze nuclear transfer embryos long-term by the
vitrification method [13].

Despite these noted accomplishments, however, the pace of
progress of nuclear transfer in mammals has appeared slow, mainly
because of extremely low success rates with regard to SCNT embryo
production and pregnancy. Furthermore, a number of abnormalities
occur with SCNT offspring such as increased birth weight [14,15] and
respiratory problems [16]. This may also be explained by inaccuracies
in the reprogramming of the nucleus in enucleated oocytes. However,
Mizutani et al. [17] claim that the failure of reconstructed embryos to

develop to term is a result of cytogenetic abnormalities that occur
during the early cleavage stages of those embryos.

Nuclear transfer is based on the unique ability of metaphase II-
arrested oocyte cytoplasts to convert transplanted somatic cell nuclei
by electrofusion to become capable of completely reversing from
differentiated stages to totipotency [18]. Interestingly, a recent study
by Guan et al. demonstrated that goat oocytes can reprogram human
skin cells [19]; although there was a high level of abnormal
chromosomes, this provides proof of principle that reconstructed
embryos from interspecies sources can develop to blastocyst stages.

To date, the mechanism of reprogramming, or how genomic
reprogramming occurs, remains largely elusive [3,18]. However,
recent reviews have identified in part the underlying mechanism of
reprogramming in host egg cells [20-22]. Although the efficiency of
SCNT has improved, efforts to improve the success rate further are
continuing in an attempt to make this technology of increased
commercial interest to livestock breeders. Nuclear transfer is a
technically demanding task, with practitioners only improving their
skills through experimentation and experience [3]. Development of
nuclear transfer has advanced through the availability of protocols
including simplified manipulation of recipient oocytes and nucleation
using handmade cloning methods [8,23-25], and modification of the
in vitro culture system [26].

The published literature covers many aspects of the application of
SCNT in mammals. This review focuses on the process of
reprogramming of the donated somatic nucleus in the recipient
enucleated oocyte. In addition to this underlying mechanism, the
importance of certain factors which affect the success of nuclear
transfer is discussed.
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Reprogramming

Definition of Reprogramming of Donor Nucleus
There are several different definitions of nuclear reprogramming.

Dean et al. [27] contended that successful cloning by use of somatic
cells requires the reprogramming of a somatic nucleus to a stage of
restored totipotency. Niemann et al. [22] stated that nuclear
reprogramming is a process in which a differentiated somatic nucleus
reverts back to a totipotent stage. While agreeing with these views,
Nguyen et al. [28] proposed that both completely differentiated cells
and partially undifferentiated cells can be returned to totipotency. At
the molecular level, Gurdon and Melton [20] defined nuclear
reprogramming as “a switch in gene expression of one kind of cell to
that of another unrelated to cell type”. In addition, Han and Sidhu [21]
maintained that nuclear reprogramming or epigenetic modification is
regarded as the alternation in gene expression pattern but not in DNA
sequences. However, Whitworth and Prather [29] claimed that it is
important to distinguish between reprogramming and remodeling.
According to these authors, when transferred into the cytoplasm of a
mature enucleated oocyte, the donor nucleus is remodeled to resemble
the nucleus of a zygote, leading to changes in chromatin structure, and
reprogramming is a result of this change.

Reprogramming Mechanism
Gurdon and Melton [20] showed that reprogramming somatic cells

to pluripotent stages may take place in each of three ways: involving
SCNT; nuclear transfer to an amphibian oocyte; and cell fusion. In
SCNT technology, Jullien et al. [30] pointed out that this may include
egg-NT and oocyte-NT. Egg-NT is the transplantation of an individual
somatic nucleus to an unfertilized enucleated oocyte, resulting in cell
division. In contrast, oocyte-NT is the transfer of multiple somatic
nuclei into the germinal vesicle of an immature amphibian oocyte, and
there is no cell division.

Abnormalities may potentially result from incomplete
reprogramming of the donor nucleus in enucleated oocytes. In
addition, Dean et al. [27] asserted that successful cloning by SCNT is
dependent on reprogramming of a somatic nucleus to the totipotent
stage, a mechanism that is recognized to be very complicated.
Consistent with this idea, Han and Sidhu [21] argued that the
mechanism of reprogramming somatic cells remains unclear due to
the nature of the complex cellular changes involved. Nevertheless,
understanding of the reprogramming process has recently improved.
Of note, Gurdon and Melton [20] described general principles relating
to the mechanism of reprogramming in somatic cells which involve
three successive steps: the increase in volume of nuclei; the removal of
differentiated marks; and the exchange of chromatin. Moreover,
Jullien et al. [30] added that this process occurs in an ordered manner,
not randomly. This is a consequence of epigenetic modifications that
are considered as alterations in gene expression patterns but not in
DNA sequences, including genomic imprinting, DNA methylation
and histone modification [21]. The efficiency of reprogramming is
dependent on the type of cell providing the donor nucleus [18]. The
success of nuclear reprogramming increases when the embryo nucleus
is used as the nucleus donor rather than differentiated cells, such as
adult somatic cells [20]. Furthermore, Nguyen et al. [28], in attempting
to construct giant mouse oocytes by the electrofusion of enucleated
oocytes, showed that these oocytes do not promote the development of
cloned mice. Hence, it is important to recognize that an enhanced

understanding of epigenetic reprogramming is a key factor for the
future improved outcomes of SCNT technology.

Factors affecting Success of SCNT
Several factors contribute to the success of SCNT technology. These

include the intrinsic features of donor and recipient cells, cell cycle
synchrony, and artificial interventions such as oocyte enucleation
methods and the enhancement of in vitro culture media for SCNT
embryos. Each of these factors is discussed below.

Donor Cells
It is clear that the type of cell donating the nucleus which is used in

nuclear transfer has a critical influence on the level of success. Gurdon
and Melton [20] maintained that the efficiency of SCNT is strongly
affected by the donor cell type. A decade previously, Stice et al. [31]
had also noted that both the identity of donor cells and the synchrony
of the cell cycle greatly influence nuclear reprogramming.
Zakhartchenko et al. [32], who evaluated the efficiency of nuclear
transfer when using morulae, early stage embryos and blastocysts to
provide donated nuclei, concluded that there is a decrease in the
development in vitro of embryos derived from blastocyst donor cells.
Takano et al. [33], on the other hand, stated that only 1-6% of
blastomeres that originate from 8-16 stage embryos develop to
blastocysts.

It is interesting to note that if nuclear transplanted embryos serve as
the source of donor cells, unlimited genetically identical embryos may
be produced [31]. However, only one cloned embryo can be recloned
to produce more embryos. This assertion is supported by Ectors et al.
[34], who performed a trial using in vitro-derived morulae after one or
two cycles of nuclear transfer and successfully obtained offspring from
those embryos. However, their results varied in the blastocyst
percentages between the first and the second cycle of nuclear transfer.
It is reasonable to claim that the next generation of cloned embryos is
likely to have decreased developmental potential due to extended
exposure to improper conditions such as low temperature and
microsurgery [31,35].

In accordance with the utilization of embryonic donor cells in
nuclear transfer, somatic cells are also used but success rates vary. For
example, Yin et al. [36], using cumulus cells from rabbits as donor
cells, failed to generate offspring. In contrast, Wakayama et al. [37]
succeeded in producing live young using murine cumulus cells. In a
prior study, Du et al. [38] used porcine fetal fibroblasts but obtained a
low blastocyst yield of only 3%. Zakhartchenko et al. [39] noted that
nuclei from bovine mammary gland cells are able to enhance the early
development of nuclear transferred embryos to the blastocyst stage.
Additionally, Wells et al. [11] showed that using mural granulosa cells
as the cell donor can save endangered breeds of cattle, especially when
the animal is so old that ovum pick-up and IVF obtain poor quality
eggs. Furthermore, Shiga et al. [40] reported that nuclear
transplantation of somatic cells from aged, infertile bulls led to the
birth and development of normal fertile bulls. Wakayama and
Yanagimachi [3] noted that Sertoli cell and neuron nuclei from mice
can develop well in vitro, but they do not develop to term. In short, the
success rate of cloned embryos is greatly dependent on donor cell
types; using non-specialized cells such as embryonic cells as donor
cells achieves combined higher yields and better outcomes than the
utilization of differentiated cells like somatic cells.
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Recipient Oocytes
The quality of recipient oocytes may contribute to the success of

SCNT. The unfertilized oocytes used for SCNT may originate from in
vivo or in vitro sources. However, reviewing many reports, Whitworth
and Prather [29] stated that there is superior development of SCNT
embryos derived in vivo than those matured in vitro. They further
noted that oocytes from sexually mature animals are better than
oocytes from immature ones. It is possible that in vivo-derived oocytes
may supply essential elements that assist the somatic cell nucleus when
the donor cell is transferred into enucleated cytoplasm. This concept is
supported by Tang et al. [41] who found that pretreating donor cells
with mature oocyte extracts enhances the potential development of
cloned embryos in vitro. However, Nguyen et al. [28] claimed that a
huge oocyte constructed experimentally does not improve the
development of cloned embryos in mice.

In addition to the origin of enucleated oocytes, the age of these cells
has a crucial role in the development of nuclear transfer embryos.
Typically, oocytes collected either from slaughterhouses or from live
cows via the ovum pick-up technique are cultured in vitro in M199
medium supplemented with 10% calf serum for between 22-24 hours.
As a result, recipient oocytes used for enucleation are used after this
period of maturation. The study of Takano et al. [33] showed that in
vitro 22-24 h is the optimal maturation time for recipient oocytes. This
also revealed that either shorter (12-14 h) or longer (28-30 h or 42-44
h) incubation of oocytes has a negative impact on the success levels of
nuclear transfer. On the contrary, Wakayama et al. [42] utilized aged
oocytes in mice to demonstrate that even use of fertilization-failure
oocytes as recipients may produce offspring.

In summary, the intrinsic properties of recipient oocytes have
positive effects on their ability to reprogram successfully the donor
nucleus.

Cell Cycle Synchrony
It is worth noting that synchronization of the cycles of donor and

recipient cells has a strong effect on the success of nuclear transfer in
mammals. As discussed, Stice et al. [31] highlighted that nuclear
reprogramming is influenced greatly by not only the type of donor
cells but also synchrony of the cell division cycle. In support of this
notion, Wells et al. [43] submitted that there is a need for coordination
between donor and recipient cells. These authors further stated that
nuclear transfer embryos, which receive nuclei cells at the gap (G)1
stage, ready for DNA synthesis, develop to term dramatically in
comparison to those in the quiescent G0 phase. Similarly, Verma et al.
[44], experimenting with nuclear transfer in pigs, indicated that the
success rate using karyoplasts at G1 is higher than that for similar cells
in either metaphase (M) or synthesis (S) stages of the cell cycle.
Furthermore, the results of Wakayama and Yanagimachi [3] in mice
demonstrated that donor cells such as Sertoli and neuron nuclei at G0
phase do not enable development to live offspring. However, Galat et
al. [5] argued that in rabbits the nuclei donor at G0 has more
developmental competence than that of others stages. In general, it is
reasonable to assume that recipient oocytes are mature; therefore, G1
and M phase are synchronized. Also, somatic donor cells often
proliferate at different speeds. Consequently, they must be at a resting
stage in which quiescent somatic donor cells may be reprogrammed
fully following nuclear transfer [45]. Ideta et al. [46] reported that
although development to the blastocyst stage does not differentiate
between G1 and G0/G1 SCNT bovine embryos, the further

development in vivo of G1 cloned blastocysts is higher than those at
G0/G1 stage. This was exemplified by conversion rates of 83% and
33%, respectively, to day 50 of gestation.

Oocyte Enucleation
When introducing oocyte enucleation technology, Wakayama and

Yanagimachi [3] stressed that this protocol is technically very
demanding and requires considerable practice in order to achieve
consistently good outcomes. These authors acknowledged that when
using a piezo-micropipette-driving unit there is only a relatively small
hole in the zona pellucida that may not affect the potential
development of nuclear transfer embryos. However, Vajta [24] and
Vajta and Callesen [25] highlighted that, in contrast, the handmade
cloning technique is rather simple but very efficient. Moreover, they
stated that the role of zona pellucidae is not important. This is
supported by a previous study conducted by Westhusin et al. [35], who
showed that removal of 1/2 or 1/20 cytoplasm during oocyte
enucleation has no discernable effect on the timing of differentiation,
so producing the same number of embryonic cells of the resulting
blastocyst. Additionally, Lagutina et al. [23] reported that zona-free
nuclear transfer could result in favorable outcomes, but they
maintained that a disadvantage of handmade cloning is the
requirement to culture nuclear transfer embryos individually to avoid
cell aggregation in vitro. Working with rabbits, Yin et al. [36], on the
other hand, emphasized the role of zona pellucidae to this species.

Enhancement of Media
A contribution to the success of SCNT involves improvements in

culture media by supplementing with defined factors, as chemical
treatment enhances the genomic reprogramming of somatic cell nuclei
[28].

In IVF technology, the in vitro culture system for embryos has been
optimized and is of commercial value [47]. For SCNT, this
methodology has been modified in order to promote the development
of cloned embryos. Kishigami et al. [26] reported that the addition of
Trichostatin A (TSA) - an inhibitor of histone deacethylase - can
increase significantly the yield of mouse cloned embryos. TSA alters
gene expression by interfering with the removal of acetyl groups from
histones and therefore affects the ability of DNA transcription factors
to access DNA molecules inside chromatin. Treatment of cloned
embryos in activation phase with TSA-containing culture medium
increases 5-fold the success rate of mouse cloning from cumulus cells
without abnormality [26]. In corroboration, Luo et al. [48] obtained
high buffalo SCNT blastocyst yields after treatment with TSA.
Furthermore, Ding et al. [49] showed the effectiveness of
combinations of TSA and 5-aza-2’-deoxycytidine in boosting the early
development of bovine cloned embryos. In accord with these findings,
Diao et al. [50] demonstrated that high SCNT porcine blastocyst yields
follow combined treatment with these two chemicals. Huang et al. [51]
reported that the addition of 50µg/ml vitamin C 15 hours after
activation promotes the development of pig cloned embryos both in
vivo and in vitro by enhancing cellular reprogramming due to an
increase in acetylation levels of histone H4. In contrast, Lee et al. [52]
argued that vitamin C does not enhance the reprogramming of nuclei
cells. Furthermore, Bang et al. [7], experimenting with cloning in pigs
by SCNT, suggested that artificial activation of the cell cycle, followed
5 hours later by supplementation with colcemid and cytochalasin B,
which arrest cells in M phase, does not have an effect on the
development rate of porcine reconstructed embryos.
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Conclusion
It is evident that nuclear transfer technology in mammals has

improved considerably since its introduction in the 1990s. Although
the success rate remains appreciably low, many attempts have been
made in a range of species to improve the number of cloned embryos
and viable offspring. Resolution of the underlying mechanism of
reprogramming of the somatic cell nucleus in enucleated mature
oocytes is critical to escalating the success of SCNT in the future. In
addition, determining factors affecting the success of nuclear transfer
is necessary to promote the potential development of cloned embryos
and viable offspring, leading to advancements in this technology. As a
consequence of such experimentation, it is feasible that SCNT will be
made available for widespread use in agriculture and clinical medicine
in the not too distant future.
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