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Abstract 

This article demonstrates effective techniques for component/part family formation 

problem in the vicinity of Cellular Manufacturing Systems (CMS). Past investigations reported 

that part family formation techniques are typically grounded on production flow analysis (PFA) 

which largely considers operational requirements, sequences and time. Part coding analysis 

(PCA) is merely counted in cellular manufacturing which is assumed to be the most competent 

method to identify the part families. In present study different clustering techniques are 

quantified to develop proficient part families by utilizing Opitz part coding scheme and the 

techniques are tested on 5 different datasets of size (5×9) to (27×9) and the obtained results are 

compared with each other. The experimental results reported that the C-Linkage method is 

more effective in terms of the quality of the solution obtained, has outperformed SLCA and K-

means techniques. 

 

Keywords: part family formation, group technology, opitz coding, cellular manufacturing, 

similarity metric, clustering algorithms. 

 

1. Introduction 

Group technology (GT) in cellular manufacturing systems (CMS) is substantial in 

improving productivity for the manufacturing companies. Group technology (GT) might be 

considered as a simplified methodology which groups standardized similar entities  such as 

parts, assemblies, process plans, tools, instructions, etc. to minimize the time and effort and to 

improve the overall productivity for batch type production [1]. As reported in the literature [2] 

a successful implementation of GT could eventually minimize the engineering costs, facilitate 

cellular manufacturing, quicken product development, enhance costing accuracy, simplify 

process planning, minimize tooling cost and simplify the overall purchasing process. A major 

prerequisite in implementing GT is the identification of part families [3]. A part family is a 

group of parts sharing homogeneous design and manufacturing attributes. Early research in this 

domain has been dedicated primarily on the formation of production-oriented part families in 

which similarities amongst the parts are principally recognized on the fact of their processing 
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requirements, operation time and operation sequences. Though, these methodologies are 

inadequate in achieving the needs of other extents of manufacturing. For example, parts with 

homogeneous shape, size, dimension or other design characteristics are believed to be clustered 

in a single family for design justification and elimination of part varieties, however parts which 

are clustered on the fact of homogeneous routing and the tooling needs are convenient to 

resolve the process planning issues. 

Therefore the scope of this domain of research is believed to be expanded and 

examined to a wider span of part similarities. Part similarities are believed to be identified 

sooner than the formation of part families. Part attributes such as shape, length/diameter ratio, 

material type, part function, dimensions, tolerances, surface finishing, process, operations, 

machine tool, operation sequence, annual production quantity, fixtures needed, lot sizes have 

been considered as the basis for similarity utilization [4]. The complexity remains in acquiring 

an appropriate technique which provides an identifying competence of human being, such as 

identifying patterns in groups, and forming part families with the aid of intelligence [5]. 

This article depicts three different part family identification techniques based on 

Complete Linkage (C-Linkage), Single Linkage (SLCA) and K-means clustering algorithms to 

investigate the nature of similarities and to describe the effectiveness of the techniques in 

solving the problem in hand. 

 

2. Literature Survey 

Two different approaches are traced in past literature in order to form part families, first 

is production flow analysis (PFA) which deals with processing requirements of parts, 

operational sequences and operational time of the parts on the machines [6]. Second approach 

is the part coding analysis (PCA) which utilizes predefined coding schemes to facilitate the 

process using several attributes of parts such as geometrical shapes, materials, design features 

and functional requirements etc. [7]. 

PCA is exposed in this study as an essential and effective tool for successful 

implementation of GT concept. A code may be numbers (numerical) or alphabets (alphabetical) 

or a hybridization of numbers and alphabets (alphanumerical) which are allotted to the parts to 

process the information [8]. Parts are categorized based on significant attributes such as 

dimensions, type of material, tolerance, operations required, basic shapes, surface finishing etc. 

In this approach, each part is assigned a code which is a string of numerical digits that store 

information about the part. Study of coding systems which depicts either hierarchical structure 

(monocode), or chain structure (polycode) or hybrid mode structure mixed with monocode and 

polycode [9]. 

Several coding systems have been developed, e.g. Opitz [10], MICLASS [11], 

DCLASS [12] and FORCOD [13]. Han and Ham [14] have claimed that part families could be 

established more realistically by practicing the PCA due to the advantage of using the 

manufacturing and design attributes concurrently. Offodile [15] reported a similarity metric 
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based on the numeric codes for any pair of parts which could be utilized to an appropriate 

clustering method such as agglomerative clustering algorithm to form efficient part families.  

Clustering analysis is practiced in Cellular Manufacturing System (CMS) as a 

competent methodology to facilitate the machine/part grouping problems. Various 

machine/part grouping techniques are developed to solve manufacturing cell formation 

problems since last forty years, these include similarity coefficient methods, clustering analysis, 

array based techniques, graph partitioning methods etc. The similarity coefficient approach 

was first suggested by McAuley [16]. The basis of similarity coefficient methods is to calculate 

the similarity between each pair of machines and then to group the machines into cells based 

on their similarity measurements. Few studies have been proposed to measure dissimilarity 

coefficients instead of similarity coefficient for machine-part grouping problems [17]. Most of 

the similarity coefficient methods utilized machine–part mapping chart. Few of them are 

Single linkage clustering algorithm [16], Average linkage clustering algorithm [18] etc.  

Array based methods consider the rows and columns of the machine-part incidence 

matrix as binary patterns and reconfigure them to obtain a block diagonal cluster formation. 

The rank order clustering algorithm is the most familiar array-based technique for cell 

formation [19]. Substantial alterations and enhancements over rank order clustering algorithm 

have been described by King and Nakornchai [20] and Chandrasekharan and Rajagopalan [21]. 

The direct clustering analysis has been stated by Chan and Milner [22], and bond energy 

analysis is performed by McCornick et al. [23]. 

Graph Theoretic Approach depicts the machines as vertices and the similarity between 

machines as the weights on the arcs to form machine cells [24]. Chandrasekharan and 

Rajagopalan [21] proposed an ideal seed nonhierarchical clustering algorithm for cellular 

manufacturing. Graph searching algorithms was developed to select a crucial machine or part 

according to a pre-fixed criterion [25]. A non-heuristic network method was stated by Vohra et 

al. [26] to construct manufacturing cells with minimum inter-cell moves. Srinivasan [27] 

implemented a method using minimum spanning tree (MST) for the machine-part cell 

formation problem. 

During past few decades soft computing techniques are exhaustively practiced by 

researchers in the vicinity of CMS.  Lee-Post [28] proposed that GT coding system (DCLASS) 

could be efficiently used with simple GA method to cluster part families which is well suited 

for part design and process planning in production. A hybrid methodology based on Boltzmann 

function from simulated annealing and mutation operator from GA was proposed by Wu et al. 

[29] to optimize the initial cluster obtained from similarity coefficient method (SCM) and rank 

order clustering (ROC). Arkat et al. [30] developed a sequential model based on SA for large-

scale problems and compared their method with GA. Ateme-Nguema and Dao [31] 

investigated an ACO based TS heuristic for cellular system design problem (CSDP) and the 

methodology proved to be much quicker than traditional methods when considering 

operational sequence, time and cost. These Authors further proposed quantized Hopfield 

network for CFP to find optimal or near-optimal solution and TS was employed to improve the 

performance and the quality of solution of the network [32]. Durán et al. [33] reported a 

modified PSO with proportional likelihood instead of using velocity vector on CF problems 
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where the objectives are the minimization of cell load variation and inter cellular parts 

movement and reported the stability of the  method with low variability. A similar study was 

also performed by Anvari et al. [34] where a hybrid particle swarm optimization technique for 

CFP was reported. The initial solutions generated either randomly or using a diversification 

generation method and the technique also utilized mutation operator embedded in velocity 

update equation to avoid reaching local optimal solutions. Thereafter with due consideration, a 

wide variety of machine/part matrices were effectively solved by this approach. 

A detailed study on metaheuristic based approaches in CMS could be obtained from 

recent review works [35, 36]. These studies report that PCA has merely been adopted to form 

part families using the stated methodologies. Therefore this article would explore an 

unexplored area based on PCA in CMS by employing different clustering techniques. 

3. Problem  Definition 

Opitz classification and coding system is used in this article which was developed by 

Opitz [10] at Aachen Technology University in West Germany. The basic code comprises of 

nine digits that can be extended by additional four digits. The general interpretations of the 

nine digits are as indicated in Fig. 1.The first 5 digits are called the form code and designate 

the design or the general form of the part and hence aid in design retrieval. Later, 4 more digits 

were added to the coding scheme in order to enhance the manufacturing information of the 

specific work part. These last four digits are also called supplementary code. All four digits are 

integers, and respectively represent: Dimensions, Material, Original shape of raw stock, and 

Accuracy of the work part. The extra four digits, A, B, C, and D (not shown in Fig. 1) called 

the secondary code, are practiced by the particular organization to include those features that 

are specific to their organization.  
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Fig. 1: Opitz part Coding system 
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The interpretation of first 9 digits are, 

Digit 1: General shape of workpiece, otherwise called „part-class‟. This is further subdivided 

into rotational and non-rotational classes and further divided by size (length/diameter 

or length/width ratio.) 

Digit 2: External shapes and relevant form. Features are recognized as stepped, conical, 

straight contours. Threads and grooves are also important. 

Digit 3: Internal shapes. Features are solid, bored, straight or bored in stepped diameter. 

Threads and grooves are integral part. 

Digit 4: Surface plane machining, such as internal or external curved surfaces, slots, splines. 

Digit 5: Auxiliary holes and gear teeth. 

Digit 6: Diameter or length of workpiece. 

Digit 7: Material Used. 

Digit 8: Shape of raw materials, such as round bar, sheet metal, casting, tubing etc. 

Digit 9: Workpiece accuracy. 

 

All the 9 digits are interpreted numerically (0-9). Examples of a mild steel forged round 

bar is further demonstrated in Fig. 2. The Opitz codes of the round rod is 11103 2302 [8]. The 

attributes are denoted as a1-a9 for the round bar, 

 

a1=1 (Rotational parts, 0.5<L/D<3.) 

a2=1 (External shape element, stepped to one end.) 

a3=1 (Internal Shape element, smooth or stepped to one end.) 

a4=0 (No surface machining.) 
 

 
 

Fig. 2: Mild Steel Forged Round Rod 

 

a5=5 (Auxiliary holes, radial.) 

a6=2 (50 mm. < diameter <=100 mm.) 
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a7=3 (material is mild steel.) 

a8=0 (Internal form: Round bar.) 

a9=2 (Accuracy in coding digit.) 

 

The part family formation problem stated in this research can be formulated using a 

part-attribute incidence matrix B=[bij], of size m×n, where m is the number of parts and n is 

the number of attributes of that part. bij represents the coding value (0-9) of j
th

 attribute of i
th

 

part. A (10×9) example problem based on Opitz coding system is shown in Fig. 3. 
 

a1 a2 a3 a4 a5 a6 a7 a8 a9

p1 0 0 1 0 0 9 1 3 6

p2 0 0 1 0 1 2 6 5 6

p3 0 0 2 0 0 6 2 1 7

p4 0 0 2 3 0 4 1 6 9

p5 0 0 3 0 0 8 0 3 5

p6 0 1 1 0 0 7 7 8 9

p7 0 1 1 0 2 4 4 8 1

p8 0 1 2 3 0 0 9 5 9

p9 0 2 1 0 4 8 4 4 2

p10 0 2 1 3 0 4 4 8 2  
 

Fig. 3: Problem #2 (10×9) dataset 

 

According to Opitz coding scheme every part of Fig. 3 shows different attributes. First 

5 columns are form codes and rest of the 4 columns represent supplementary codes. 

The solution to the problem is to form the families of parts in such a way that the sum of 

similarities among each pair of parts in a same family would be maximized. Therefore 

clustering methods are used in this article which groups the parts into families. 

4. Research  Methodology 

Dissimilarity coefficient based techniques are massively practiced in formation of 

manufacturing cells [37]. In this article a dissimilarity/distance measure method based on part 

family identification technique is utilized [15]. It is presented as, 

 

 
Where 

     
Where 

 

dijk is dissimilarity measured between part i and part j on attribute k, 

K is total number of attributes considered, 

bik is part coding for part i on attribute k, 

bjk is part coding for part j on attribute k, 

Rk is range of possible part codings for all parts on attribute k. 

Therefore sum of similarities is derived using the formula, 
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Where 

                              
 

                               
 

where Sij = similarity measure between part i and part j 

C2
Pn

= Number of pair-wise combinations formed in part family n, and Pn is the number of parts 

in family n (in the denominator a small value of 0.001 is added to avoid the division by zero 

rule). Complete Linkage Clustering Algorithm (C-Linkage), Single Linkage Clustering 

Algorithm (SLCA) and K-means algorithm are adopted in this study as the solution 

methodologies. 

This abovementioned dissimilarity metric technique is utilized in this study to calculate 

the dissimilarities/distances between pair of parts presented as rows of part-attribute mapping 

matrix as given in Fig. 3. Therefore the dissimilarity matrix generated for (10×9) part-attribute 

mapping matrix using equation (1) is presented in Fig. 4. 

4.1. Linkage Clustering Techniques 

C-Linkage and SLCA are theoretically and mathematically simple algorithm practiced 

in hierarchical clustering analysis of data [38]. It delivers informative descriptions and 

visualization of possible data clustering structures. When there exists hierarchical relationship 

in data this approach can be more competent. Complete linkage also known as furthest 

neighbor method which uses the distance between two clusters. The distance between cluster i 

and another cluster j is defined as: 

 

 
 

Single linkage also known as nearest neighbor method which uses the distance between two 

clusters. The distance between cluster i and another cluster j is defined as: 
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Fig. 4: Dissimilarity matrix obtained from (10×9) part-attribute mapping matrix of Fig. 3 

 

 

Using equation (6) and (7), an intermediate matrix could be obtained which is a (p-

1)×3 matrix, where p is the number of parts in the original dataset. Columns of the matrix 

contain cluster indices linked in pairs to form a binary tree. The leaf nodes are numbered from 

1 to p. Leaf nodes are the singleton clusters from which all higher clusters are built. Further the 

dendrogram could be obtained from the matrix which indicates a tree of potential solutions. An 

example dendrogram structure obtained for the parts using C-Linkage method is shown in Fig. 

5, which shows the clear cluster information of part families. Similar dendrogram could be 

produced using SLCA method (not shown in the article). From Figure 6 it can be stated that 3 

part families are obtained using the hierarchical notations. The part families are, Family 1 

{7,9,10}, Family 2 {1,3,4,5}, Family 3 {2,6,8}.  Similarly using the SLCA approach 7 part 

families could be achieved as, Family 1 {22}, Family 2 {23}, Family 3 {25}, Family 4 

{1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,26}, Family 5 {24}, Family 6 {21}, 

Family 7 {27}. 
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Fig. 5: Dendrogram of part clusters of example problem (10×9) 

 

 

This pseudocode would explain both the hierarchical method SLCA and C-Linkage: 
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Input: part-attribute incidence matrix A 

1. Procedure dissimilarity() 

1.1. Compute dissimilarity values between pair of machines using equation (1) 

1.2. Compute the dissimilarity matrix of the parts 

1.3. End 

2. Procedure Cluster() 

2.1. loop 

2.2. Compute the smallest Euclidian distance between two clusters for SLCA method 

2.3. Compute the furthest Euclidian distance between two clusters for C-Linkage method 

2.4. Construct matrices of size (m-1)×3 to from the hierarchical tree structure for both SLCA 

and C-Linkage method 

2.5. Construct dendrograms for SLCA and C-Linkage using matrices obtained from 2.2 and 

2.3 

2.6. loop 

2.7. create part families for the minimum level of dissimilarity coefficient 

2.8. Compute the sum of similarities using equation (5) for SLCA and C-Linkage method 

2.9. End 

Output: Part family Configurations for SLCA and C-Linkage method 

4.2. The K-means clustering algorithms 

K-means clustering is an algorithm to classify objects based on attributes into K 

number of groups [39]. The grouping is done by minimizing the sum of squares of distances 

between data and the corresponding cluster centroid. Thus the purpose of K-mean clustering is 

to classify the data exploiting the Euclidean distance metric between the data-points. The basic 

steps of k-means clustering are simple. Number of clusters K is fixed and the centroid of these 

clusters is assumed randomly or the first K objects in sequence could also be chosen as the 

initial centroids. Thereafter the K-means algorithm would follow three steps, (i) Iterate until no 

object is left to be clustered,  (ii) Determine the centroid coordinate, (iii) Determine the 

Euclidean distance of each object to the centroids, (iv) Group the object based on minimum 

distance. The pseudocode of K-means is given as, 
 

Input: part-attribute incidence matrix, number of clusters ‘K’ 

Procedure k-means() 

1.1. Loop 

1.2. First K parts are marked as K centroids 

1.3. flag = false 

1.5. loop 

1.6. For each cluster calculate minimum distance dk between each part and cluster centroids 

(k=1,2,3,…,K) 

1.7. Find minimum of dk, marked as ‘min’ 

1.8. assign the part to k
th

 cluster 

1.9. flag = true 

1.10. stop until all parts are assigned to K clusters 

1.11. stop until maximum number of iterations reached 
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5. Results And Discussion 

The proposed techniques are tested on 5 different problem datasets of size (5×9) to 

(27×9). The largest dataset has been obtained from Haworth [40] using Opitz coding system. 

Remaining 4 problems are designed using the aforestated coding system. Problem datasets are 

provided in Fig. 3 and Fig. 6 to 9. The algorithms are coded in Matlab 7.0 environment and 

executed on PIV laptop computer. The obtained results are compared and shown in Table 1. 
 

 

a1 a2 a3 a4 a5 a6 a7 a8 a9

p1 0 0 1 0 0 9 1 3 6

p2 0 0 1 0 1 2 6 5 6

p3 0 0 2 0 0 6 2 1 7

p4 0 0 2 3 0 4 1 6 9

p5 0 0 3 0 0 8 0 3 5  
 

Fig. 6: Problem #1 (5×9) dataset 

 

 

 

 

a1 a2 a3 a4 a5 a6 a7 a8 a9

p1 0 0 1 0 0 9 1 3 6

p2 0 0 1 0 1 2 6 5 6

p3 0 0 2 0 0 6 2 1 7

p4 0 0 2 3 0 4 1 6 9

p5 0 0 3 0 0 8 0 3 5

p6 0 1 1 0 0 7 7 8 9

p7 0 1 1 0 2 4 4 8 1

p8 0 1 2 3 0 0 9 5 9

p9 0 2 1 0 4 8 4 4 2

p10 0 2 1 3 0 4 4 8 2

p11 0 2 2 0 4 6 8 8 8

p12 0 2 3 0 4 7 5 6 7

p13 1 0 0 0 0 9 2 8 1

p14 1 0 1 0 0 7 6 6 0

p15 1 1 0 0 0 1 8 3 8    

a1 a2 a3 a4 a5 a6 a7 a8 a9

p1 0 0 1 0 0 9 1 3 6

p2 0 0 1 0 1 2 6 5 6

p3 0 0 2 0 0 6 2 1 7

p4 0 0 2 3 0 4 1 6 9

p5 0 0 3 0 0 8 0 3 5

p6 0 1 1 0 0 7 7 8 9

p7 0 1 1 0 2 4 4 8 1

p8 0 1 2 3 0 0 9 5 9

p9 0 2 1 0 4 8 4 4 2

p10 0 2 1 3 0 4 4 8 2

p11 0 2 2 0 4 6 8 8 8

p12 0 2 3 0 4 7 5 6 7

p13 1 0 0 0 0 9 2 8 1

p14 1 0 1 0 0 7 6 6 0

p15 1 1 0 0 0 1 8 3 8

p16 1 1 1 0 0 4 0 2 1

p17 1 2 0 3 0 9 6 3 2

p18 2 0 0 0 0 9 3 5 6

p19 2 3 0 0 0 4 8 7 2

p20 2 5 0 0 0 8 5 3 4  
 

         Fig. 7: Problem #3 (15×9) dataset                                          Fig. 8: Problem #4 (20×9) dataset 
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a1 a2 a3 a4 a5 a6 a7 a8 a9

p1 0 0 1 0 0 9 1 3 6

p2 0 0 1 0 1 2 6 5 6

p3 0 0 2 0 0 6 2 1 7

p4 0 0 2 3 0 4 1 6 9

p5 0 0 3 0 0 8 0 3 5

p6 0 1 1 0 0 7 7 8 9

p7 0 1 1 0 2 4 4 8 1

p8 0 1 2 3 0 0 9 5 9

p9 0 2 1 0 4 8 4 4 2

p10 0 2 1 3 0 4 4 8 2

p11 0 2 2 0 4 6 8 8 8

p12 0 2 3 0 4 7 5 6 7

p13 1 0 0 0 0 9 2 8 1

p14 1 0 1 0 0 7 6 6 0

p15 1 1 0 0 0 1 8 3 8

p16 1 1 1 0 0 4 0 2 1

p17 1 2 0 3 0 9 6 3 2

p18 2 0 0 0 0 9 3 5 6

p19 2 3 0 0 0 4 8 7 2

p20 2 5 0 0 0 8 5 3 4

p21 7 0 0 0 3 0 7 8 0

p22 7 0 0 3 3 3 4 5 9

p23 7 0 0 5 3 8 3 3 5

p24 7 0 0 6 3 0 1 7 4

p25 2 0 8 0 1 1 1 5 5

p26 1 5 1 0 0 2 6 4 3

p27 6 5 4 4 3 6 0 7 0  
 

Fig. 9: Problem #5 (27×9) dataset 

 

 

Table 1 demonstrates that each of the proposed methodologies are competent to 

attain good solutions and effective in constructing the families of parts. Despite the fact that the 

solutions obtained are not identical therefore the sum of similarities are not identical for the 

test datasets. It depicts that C-Linkage technique outperformed the SLCA and K-means 

methods for the problems # 2, 3 and 4. However  for the smallest dataset #1 (5×9) K-means 

has produced nearly 50% improved result over SLCA and C-Linkage technique. Thereafter for 

the dataset #5 (27×9)  nearly 10% improvement has been shown by K-means over the other 

two technique. For continuous data K-means technique is superior over the linkage clustering 

methods [38]. Due to that fact K-means method is heavily adopted as an efficient clustering 

technique in literature. Thus according to the past study K-means should incorporate improved 

solutions for all the problem datasets. However data based on classification and coding systems 

are categorical in nature. Therefore normal distance metrics are not advised to be utilized to 

solve such problems [23]. Therefore, a different dissimilarity coefficient measure is utilized in 

this article [15]. Due to that reason linkage methods, practiced in this article, are modified 

substantially. Because of that modifications both the linkage methods attain improved solutions 

for problem datasets 2, 3 and 4 over the K-means technique. For all the test problems C-

linkage has reported an overall improvement of 60% and outpaced other two techniques. 

Hence it could be stated that although C-Linkage is moderately better than the other methods 

in terms of the goodness of solutions obtained, but K-means is also capable to produce 

substantially good results. In terms of computational time all the proposed methods are equally 

good and took minimum CPU time (less than 10 seconds) for all the datasets tested. Table 2 

reports the percentage of perfection achieved while developing the part groups. Further Fig. 10 

establishes the superiority shown by C-Linkage over other two methods. 
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Table 1. Comparison of performance shown by SLCA, C-Linkage and K-Means 

 
#  Dataset 

size 

Part families obtained  Maximum similarities  

SLCA C-Linkage K-Means SLCA C-Linkage K-

Means 

1 5×9 Family 1 {2},  

Family 2 {1,3,4,5} 

Family 1 {2},  

Family 2 {1,3.4,5} 

Family 1 {1,3,5}, 

Family 2 {2,4} 

0.8641 0.8641 1.7108 

2 10×9 Family 1 {1,3,4,5}, 

Family 2 {2, 7, 8, 9, 10}, 

Family 3 {6} 

Family 1 {7,9,10},  

Family 2 {1,3,4,5}, 

Family 3 {2,6,8} 

Family 1 {1, 5, 9}, 

Family 2 {2, 6, 7, 8, 10}, 

Family 3 {3,4} 

1.6492 2.5425 2.4902 

3 15×9 Family 1 {4},  
Family 2 {1,3,5},  

Family 3 {6, 7, 9, 10, 11, 

12, 13, 14}, 
Family 4 {2, 8, 15} 

Family 1 {6, 11, 12}, 
Family 2 {2, 8, 15}, 

Family 3 {1, 3, 4, 5}, 

Family 4 {7, 9, 10, 12, 
13, 14} 

Family 1 {7, 9, 10, 13, 
14},  

Family 2 {2, 6, 8, 11, 

12}, 
Family 3 {1, 3, 5}, 

Family 4 {4} 

2.5707 3.4338 2.5658 

4 20×9 Family 1 {6, 9, 11, 12}, 
Family 2 {1, 3, 5, 7, 10, 

13, 14, 17, 18, 19, 20}, 

Family 3 {4},  
Family 4 {16},  

Family 5 {2, 8, 15} 

Family 1 {7,10,14,19}, 
Family 2 {9, 13, 17, 

18, 20},  

Family 3 {6, 11, 12}, 
Family 4 {2, 8, 15},  

Family 5 {1, 3, 4, 5, 

16} 

Family 1 {9, 13, 14, 17, 
18, 20},  

Family 2 {2, 6, 7, 8, 10, 

11, 12, 15, 19},  
Family 3 {1, 3, 5}, 

Family 4 {4},  

Family 5 {16} 

2.4907 4.2510 2.5323 

5 27×9 Family 1 {22},  

Family 2 {23},  

Family 3 {25},  
Family 4 {1, 2, 3, 4, 5, 6, 

7, 8, 9, 10, 11, 12, 13, 14, 

15, 16, 17, 18, 19, 20, 

26}, 

Family 5 {24}, 

Family 6 {21},  
Family 7 {27} 

Family 1 {6,11,12},  

Family 2 {2,8,15},  

Family 3 {21},  
Family 4 {22,23,24}, 

Family 5 {27},  

Family 6 {1, 3, 4, 5, 

16, 25},  

Family 7 {7, 9, 10, 13, 

14, 17, 18, 19, 20, 26} 

Family 1 {9, 17, 18, 20, 

23},  

Family 2 {2, 8, 15, 26}, 
Family 3 {1, 3, 5}, 

Family 4 {4, 22, 24, 25}, 

Family 5 {16},  

Family 6 {6, 11, 12}, 

Family 7 {7, 10, 13, 14, 

19, 21, 27} 

0.7744 4.1631 4.9185 

 
 

 
Table 2. Comparison among perfection of the obtained results by the algorithms 

 
Problem 

Dataset 

No. of part 

families 
formed(N) 

Sum of similarities,  Perfection percentage,   

SLCA C-Linkage K-means SLCA C-Linkage K-means 

1 2 0.8641 0.8641 1.7108 43.205 43.205 85.54 

2 3 1.6492 2.5425 2.4902 54.97 84.75 83.07 

3 4 2.5707 3.4338 2.5658 64.27 85.84 64.14 

4 5 2.4907 4.2510 2.5323 49.81 85.02 50.65 

5 7 0.7744 4.1631 4.9185 11.06 59.47 70.26 

 

6. Conclusions 

Three different clustering techniques, SLCA, C-Linkage and K-Means algorithms are 

employed in this research to form part families. Since part coding and classification techniques 

are merely adopted in group technology problems, therefore the objective of this study is to 

utilize the heavily practiced coding system namely Opitz part coding. 5 test datasets ranging 

from 5×9 to 27×9 are tested using the aforementioned techniques. Due to the NP-complete 
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nature of the reported problems these methods are equally efficient to produce optimal 

solutions. The proposed methods are compared among each other successfully. The objective 

function utilized in this study is to maximize the sum of similarities among parts in all the part 

families formed. From the beginning of this research work the number of part families to be 

formed is considered as constant. As shown in Table 1 C-Linkage algorithm has outperformed 

SLCA and K-means in terms of solution quality (sum of similarities value) which is further 

depicted in Fig. 10 in terms of the percentage of perfections achieved while forming the part 

families. This study has assumed identical weightage for each and every attribute, however in 

formation of part families some attributes could be more significant than the other attributes. 

Therefore future work could be done by considering fractional weightage for each of the 

attributes. This work could also be extended by considering operational time and sequence of 

each part to develop more effective and robust part families. 

 
 

1 2 3 4 5

SLCA 43.205 54.97 64.27 49.81 11.06

C-Linkage 43.205 84.75 85.84 85.02 59.47

K-means 85.54 83.07 64.14 50.65 70.26
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Fig. 10: Comparison among SLCA, C-linkage, K-means algorithms in terms of solution quality 
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APPENDIX 
 

A numerical example of SLCA approach 

 

The following information is given. 

(i) Information about parts (relevant part attributes as explained in this article with 5 form 

codes of Opitz coding system): 

Part1 1 2 3 4 5    

Part2 0 2 4 3 5   

Part3 2 1 3 4 0 

Part4 3 5 1 4 7  

Part5 8 4 3 5 7 

(ii) Information about significant part attributes 

when, 

 Attribute 1 is numeric, R1= 9; Attribute 2 is numeric, R 2= 9 

 Attribute 3 is numeric, R 3= 9; Attribute 4 is numeric, R4= 9 

 Attribute 5 is numeric, R5= 9. 

 

Step 1: Calculated pairwise similarity coefficients (Sij) from equation (5). 

S12 = 0.9333 

S13 = 0.8444  S23 = 0.7778 

S14= 0.8000  S24 = 0.7333  S34 = 0.6889 

S15= 0.7333  S25= 0.6667  S35= 0.6222  S45 = 0.8000 

 

S12 is determined as follows:- 

S121= = =0.888 

S122= = =1.000 

S123= = =0.888 

S124= = =0.888 
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S125= = =1.000 

Hence  

All other Sij are determined in the same method. 

 

Step 2: Calculate pairwise distances (dij) using equation (1) 

d12 = 0.0667 

d13 =0.1556  d23 =0.2222   

d14=0.2000  d24 =0.2667  d34 = 0.3111 

d15=0.2667  d25=0.3333  d35= 0.3778 d45 = 0.2000 

 

Step 3: Form initial part family. 

Because d12 is the smallest distance, therefore PF1 is formed with parts 1 and 2 as its members. 

 

Step 4: Calculate minimum distance Eij 

E(1,2)3 = 0.1556   

E(1,2)4 = 0.2000   E34=d34 = 0.3111 

E(1,2)5 = 0.2667   E35=d35 = 0.3778  E45=d45 = 0.2000 

E(1,2)3 is obtained as, 

E(1,2)3 =  

Other E(1,2)j are calculated in the similar manner. Thereafter E(1,2)3 has the lowest value, hence  

part 3 is introduced in family PF1. 

 

Step 5: Repeat step 4 for part 4 and 5. 

E(1,2,3)4 = 0.2000 

E(1,2,3)5 =0.2667  E45=d45 = 0.2000 

E(1,2, 3)4 is obtained as, 

E(1,2, 3)4 =  

E45 has the lowest value therefore part 1, 2 and 3 are grouped in family PF1, and part 4 and 5 

are grouped in the 2
nd 

family PF2.  

 

Step 6: Thus all the parts are grouped. PF1 contains {parts 1, 2, 3} and PF2 contains {parts 4, 

5}. Stop.  

Sum of similarities for PF1 is achieved as, 

 

S1 =  

 

Sum of similarities for PF2 is achieved as, 

 

S2 =  

 

Therefore sum of similarities for PF1 and PF2 is achieved as, 
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S=S1+S2= 0.8518+0.8000=1.6518 

 

C-Linkage method follows the same method of SLCA. The only difference is instead of 

calculating minimum distances in step 3 to 5, C-Linkage calculates the maximum distances.  
 

A numerical example of K-means approach 

 

The following information is given. 

(i) Information about parts: (illustrated only with two attributes for four parts) 

Part1 1 1    

Part2 2 1   

Part3 4 3 

Part4 5 4  

1. Initial value of centroids : Suppose we use part1 and part2 as the first centroids. Let c1 and c2 

denote the coordinate of the centroids, then c1 = (1,1) and c2 = (2,1). 

2. Parts-Centroids distance : we calculate the distance between cluster centroid to each part. 

Let us use Euclidean distance, then we have distance matrix at iteration 0 is, 

 

D
0 

=  

 

Each column in the distance matrix symbolizes the part. The first row of the distance matrix 

corresponds to the distance of each part to the first centroid and the second row is the distance 

of each part to the second centroid. For example, distance from part3 = (4, 3) to the first 

centroid c1 is 

 

 = 3.61 

 

And to the second centroid c2 is, 

 = 2.83 

 

3. Objects clustering : We assign each part based on the minimum distance. Thus, part1 is 

assigned to group 1, part2 to group 2, part3 to group 2 and part4 to group 2.  

4. Iteration-1, determine centroids : Knowing the members of each group, now we compute the 

new centroid of each group based on these new memberships. Group 1 only has one member 

thus the centroid remains in c1 = (1,1). Group 2 now has three members, thus the centroid is 

the average coordinate among the three members:  

5. Iteration-1, Parts-Centroids distances : The next step is to compute the distance of all objects 

to the new centroids. Similar to step 2, we have distance matrix at iteration 1 is, 

 

D
1 

=  
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6. Iteration-1, Parts-clustering: Similar to step 3, we assign each part based on the minimum 

distance. Based on the new distance matrix, we move the part2 to Group 1 while all the other 

parts remain. 

 7. Iteration 2, determine centroids: Now we repeat step 4 to calculate the new centroids 

coordinate based on the clustering of previous iteration. Group1 and group 2 both has two 

members, thus the new centroids are 

  
8. 8. Iteration-2, Parts-Centroids distances : Repeat step 2 again, we have new distance matrix 

at iteration 2 as, 

D
2 

=  

 

9. Iteration-2, Parts clustering: Again, we assign each object based on the minimum distance. 

Therefore group 1 contains part1 and part2 and group 2 contains part3 and part 4. 

10.  We obtain, comparison of the grouping of step 6 and step 9 reveals that the parts does not 

move group anymore. Thus, the computation of the k-mean clustering has reached its stability 

and no more iteration is needed. We get the final grouping as the results PF1 {parts 1 and 2} 

and PF2 {parts 3 and 4}. 

 


