
Software-Defined Networking Reviewed Model
Muhammad Faisal Imran Khan*

Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology, Bangladesh
*Corresponding author: Muhammad Faisal Imran Khan, Department of Computer Science and Engineering, Bangladesh University of Engineering and Technology,
Bangladesh, Tel: + 8801941417305; E-mail: buetcse110@gmail.com

Received date: November 14, 2016; Accepted date: November 29, 2016; Publication date: January 01, 2017

Copyright: © 2017 Khan MFI. This is an open-access article distributed under the terms of the Creative Commons Attribution License; which permits unrestricted use;
distribution; and reproduction in any medium; provided the original author and source are credited.

Abstract

Software-defined Networking (SDN) is one new promising development in between Cloud Computing and
Networking industries. As, SDN is quite new, there are many challenges in implementing it in traditional networking
environment. In this paper, my aim is to describe current SDN implementation challenges in detail and proposing a
reviewed model for SDN, where many of these challenges are solved.

Keywords: OpenFlow; Software-defined networking; Network
security; Reliable networking; Scalability

Introduction
Software-defined networking (SDN) is a networking architecture

purporting to be dynamic, manageable, cost-effective and adaptable,
seeking to be suitable for the high-bandwidth, dynamic nature of
today's applications [1].

Figure 1: Software-defined networking structure [2].

The principal of SDN is to separate the control plane from the data
plane and thus centralize network intelligence. In this model, a
networking device does not have intelligence on its own but depends
on a separate software which will have control over similar many
physical devices (Figure 1).

SDN is an agile model of networking because abstracting control
from data plane lets administrators dynamically adjust network-wide
traffic flow to meet changing needs. It is also flexible because SDN lets
network managers configure, manage, secure, and optimize network
resources very quickly via dynamic, automated SDN programs [1].

One framework for SDN is OpenFlow (Figure 2). In OpenFlow
framework, the central part is a software named Controller [3]. It is
where intelligence of routing decisions, routing table generation and
packet traffic control are generated. It manages the hardware based
OpenFlow switches via OpenFlow protocol. OpenFlow switch uses the
routing table generated by Controller to determine where the data
packets should be sent to. This routing table is called Flow Table.
Though it is generated by Controller, it stays in the switch. Controller
sends control message to switch and switch enters a rule in the Flow
Table based on this message. Initially the Flow Table is empty. When a
new packet is received by a switch, it is matched with the existing flow
entries in the Flow Table. If no match, it is sent to Controller to be
processed. Then controller makes decision on how to handle the packet
like – should it be dropped or make a new rule in the Flow Table to
deal with this packet and similar packets received in the future.

Figure 2: OpenFlow data traffic model.

Though SDN promise a simplified network management by
centralized control, SDN need research in issues like – network
security, compatibility, scalability, reliability, Controller placement,
wireless integration, Flow Table management, performance under
latency constraints, difficulties regarding language of the software in
SDN etc. These issues can limit the network usage significantly when it
is implemented in large scale network like in a supercomputing data
center across the country or continents. There are solutions for few of
these issues and others are still open question to researchers. These
complicated research issues of Software-defined Networking (SDN) are

Khan, Int J Adv Technol 2017, 8:1
DOI: 10.4172/0976-4860.1000177

Review Article Open Access

Int J Adv Technol, an open access journal
ISSN: 0976-4860

Volume 8 • Issue 1 • 1000177

Int
er

na
tio

na
l J

ou
rna

l of Advancements in Technology

ISSN: 0976-4860

International Journal of Advancements
in Technology

mailto:buetcse110@gmail.com

discussed, an illustration for proposed model of SDN based on
recommendations is presented then the conclusion.

SDN Research Issues

Security
In Software-defined Networking (SDN) model, the control plane is

separated from the data plane, and the increased gap between two
planes has made the network more attack prone compared to
traditional networks. The existing security technologies for the
traditional hop by hop networks also cannot be integrated with the
OpenFlow model. Due to simplicity in SDN architecture, Controller
cannot poke around every packet to detect presence of malicious
programs [4,5].

One of the well known risks of SDN platform, Controller is prone to
DOS attacks, which can be devastating for the entire network (Figure
3). By creating a huge number of new and unnecessary flows, third
party can overwhelm the Controller, as Controller cannot decide
quickly about how to handle these enormous flows. Such saturated
Controller cannot control the original data traffic [4].

Figure 3: SDN is prone to DOS attacks.

Switch software compatibility
OpenFlow switches use embedded software from vendors that are

mainly needed to process messages sent by the Controller and
configure the Flow Table accordingly [4]. This piece of software needs
to be complaint with the OpenFlow specification. But this specification
is still ambiguous and can have several interpretations to different
vendors. This could make producing compatible switch program from
different vendors very difficult (Figure 4).

Scalability
When the network scales up in the number of switches and the

number of end hosts, the SDN Controller can become less effective to
control data traffic [5]. As more requests will be queued to the
Controller, it may not be able to handle them all.

As the flow entries are generated by Controller and stored in switch,
the performance of the SDN data traffic depends on switch resources
(CPU, memory, etc.) and Controller (software) performance. When
new message from Controller come to switch and it is updating the
switch forwarding information base (FIB) by creating a new rule, a
delay can occur in handling other subsequent packets received in the
same switch.

In one solution, DevoFlow [5], micro-flows are managed in data
plane and more massive flows in the Controller, meaning that load on
Controller will decrease, so it can handle relatively larger network and
thus the problem of scalability can be minimized.

Figure 4: Non compatible for commercial use.

Controller compatibility and controller placement
Multiple Controllers may be used to control the same domain. It is

important to ensure compatibility among Controllers to enable
cooperation [3]. The compatibility is needed for enabling various
fundamental services like inter-domain routing to enable
communication between hosts in different domains (Figure 5).

If multiple Controllers compete for the same channel there may not
be full utilization of Controller resources. Optimized placement of
Controller is needed for maximum utilization of Controller resources.

Figure 5: Controller placement in same subnet problem.

Software language
Although SDN simplifies network management with simple

interfaces to determine high level network policies, the underlying

Citation: Khan MFI (2017) Software-Defined Networking Reviewed Model. Int J Adv Technol 8: 177. doi:10.4172/0976-4860.1000177

Page 2 of 5

Int J Adv Technol, an open access journal
ISSN: 0976-4860

Volume 8 • Issue 1 • 1000177

SDN framework need to translate these policies into low-level switch
configurations [5,6]. If a programmer tries to implement a new policy
atomically to a particular switch, in current SDN frame work, it will
cause the disruption of the whole network [3]. A suitable low level
language in SDN framework is required to make this model more
programmer-friendly (Figure 6).

Figure 6: SDN programmers needs low level language to reach
switch interface directly.

Reliability
The reliability concerns emerge in SDN in two situations – first,

when a specific path/link fails and second when the Controller fails
[5-7].

1. In case of path/link failure, the SDN Controller should have the
ability to support fast traffic rerouting into active links.

2. In SDN, only central Controller is in charge of the whole
network. If this Controller fails, the whole network may collapse.
So in case of Controller failure, it is important that the Controller
can enable clustering of two or more SDN Controllers in an
active standby mode (Figure 7). Memory synchronization
between active and stand by Controller should be maintained.

Figure 7: A reliable controller approach in SDN.

A similar solution is SiBF [5], which consists of an army of rack
managers (RMs), one per rack, acting as a Controller. When the master

Controller fails, flow requests are handled by another stand-by
Controller (RM) until the master Controller comes back up. In case of
link failure, SiBF installs new mappings (new back-up flow entries) in
the switches for each active entry. The packets in the switches will be
rerouted to their destinations on the alternative paths indicated by the
back-up entries.

Performance under latency constraints
Performance of SDN is measured by two metrics, 1) flow setup time

and 2) number of flow per second that the Controller can handle.
There are two ways to setup a flow: proactive and reactive [5].

In proactive model, flow setup takes place before packet arrival at
the switch, and therefore, when a packet arrives, the switch already
knows how to deal with it. This mode has negligible delay and removes
the limits on the number of flows per second that can be handled by
the Controller [8-10].

Pro-active Flow Re-active Flow

Flow setup before packet
arrival Flow setup after packet arrival

Negligible delay
Additional time for Controller process and update
switch

Table 1: Different flow setup in SDN controller.

In reactive model, flow setup is performed when a packet arriving at
the switch does not match any of the switch flow entries. Then the
Controller will create flow rule to decide how to process that packet
and this rule will be stored in the switch (Table 1). The reactive flow
setup time is the sum of the processing time of the Controller and the
time for updating the switch. Therefore flow initiation adds overhead
that introduces reactive flow-setup delay.

To overcome performance limitation, the key factors that affect flow
setup time should be considered, these key factors are processing speed
of Controller and I/O performance of the network switch.

Flow table management
The SDN switches can always report forwarding results to the

higher layer – OpenFlow Controller [3]. The results could be simple
success or failure for a data forwarding operation, or some error
messages or other forwarding status data. In the current OpenFlow
model (Figure 8), there are no specifications on how to handle these
feedback data.

If Controller stays busy with dealing redundant feedback from
switch, it can slow down overall data forwarding operations during
heavy data traffic in switch. It is important to perform filtering on the
feedback messages from switch based on the pattern analysis in the
Controller, so that it can filter redundant packets during heavy data
traffic.

Robust Wireless Integration: Although OpenFlow has been well
developed in wired network, there are very few studies on its
performance in wireless networks [3]. Two issues are not covered in
OpenFlow, which are necessary for wireless networks (Figure 9).

1. In a wireless networks the OpenFlow data panel must perform
efficient channel sensing/access. However, the existing OpenFlow
standard only defines data forwarding functions in the hardware.

Citation: Khan MFI (2017) Software-Defined Networking Reviewed Model. Int J Adv Technol 8: 177. doi:10.4172/0976-4860.1000177

Page 3 of 5

Int J Adv Technol, an open access journal
ISSN: 0976-4860

Volume 8 • Issue 1 • 1000177

2. Unlike wired OpenFlow model than can use cables to easily
achieve control/data packet communication among nodes,
wireless network uses unreliable wireless links for both control
plane communications and data plane packet forwarding. The
control plane demands a high-quality channel for loss-free
delivery.

Figure 8: Non intelligent flow table.

Figure 9: Limitation of SDN to wireless connection.

Summary of the Findings
I have combined recommendations from all the previously

discussed issues in the Figure 10 model below:

In this reviewed model
1. SDN Controller now has a low level language instead of previous

high level one, in order to make it more programmer-friendly.
2. Controller also has carrier sensing ability to help working in

robust wireless environment.
3. Now there are standby Controllers to enable reliable networking

with SDN.
4. There is one layer of security with the Controller. This layer can

detect difference between ordinary reply from switch and

malicious third party replies, thus lessening the threat of DOS
attacks in Controller.

5. In switch level, clear specifications have been installed to lessen
ambiguity in vendor software embedding.

6. The flow set up time is minimized by maximizing pro-active flow
rate in Controller.

7. According to “DevoFlow” discussed in section II(c), the micro
data flow is managed in the data plane and more massive data
flow is managed in the control plane, thus reducing the traffic in
Controller when SDN connections grow tremendously huge.

8. Now in Controller, only filtered data can reach from the switch.
For this regard, pattern recognition ability has been included in
Controller.

9. To reduce conflict, Controller of SDN is placed in an optimized
way so it doesn’t compete for channel in another SDN
Controller’s subnet.

Figure 10: Reviewed model for SDN.

Conclusion
In this paper I have comprehensively surveyed the research issues

for Software-defined Networking (SDN) and proposed a reviewed
model of SDN. In this reviewed model, I have added recommendations
on network security, compatibility, scalability, reliability, Controller
placement, wireless integration, Flow Table management, performance
under latency constraints, difficulties regarding language of the
software in SDN etc. I believe that this reviewed model can help SDN
engineers to implement moderate version of SDN so that, it can work
as the proper replacement of traditional hop by hop network.

Acknowledgment
Thanks to Dr Mohammad Shohrab Hossain for technical help with

building the contents in each issue. Special Thanks to Md. Iftekharul
Islam Sakhib for helping with resources.

References
1. http://www.infotechlead.com/mobility/interop-2014-avaya-showcase-

automated-campus-part-sdn-initiative-21223
2. http://www.networkcomputing.com/cloud-infrastructure/7-essentials-

software-defined-networking/1672824201?image_number=1

Citation: Khan MFI (2017) Software-Defined Networking Reviewed Model. Int J Adv Technol 8: 177. doi:10.4172/0976-4860.1000177

Page 4 of 5

Int J Adv Technol, an open access journal
ISSN: 0976-4860

Volume 8 • Issue 1 • 1000177

http://www.infotechlead.com/mobility/interop-2014-avaya-showcase-automated-campus-part-sdn-initiative-21223
http://www.infotechlead.com/mobility/interop-2014-avaya-showcase-automated-campus-part-sdn-initiative-21223
http://www.networkcomputing.com/cloud-infrastructure/7-essentials-software-defined-networking/1672824201?image_number=1
http://www.networkcomputing.com/cloud-infrastructure/7-essentials-software-defined-networking/1672824201?image_number=1

3. Hu JIF, Hao Q, Bao K (2014) A survey on Software-defined Networking
(SDN) and OpenFlow: from concept to implementation. IEEE 16: 4.

4. Jarraya Y, Madi T, Debbai M (2014) A survey and a layered taxonomy of
Software-defined Networking. IEEE 16: 4.

5. Jammala M, Singha T, Shamia A, Asalb R, Lic Y (2014) Software-defined
Networking: State of the art and research challenges. Networking and
Internet Architecture.

6. Abhinav K, Kumar A, Nalini C, Venkatesan KGS (2015) QOS -
guaranteed neighbour selection and distributed packet scheduling
algorithm by using MANET wireless networks. IJIRCCE.

7. Sontakke PD, Dhote CA (2015) Spoofing attacks detection and localizing
multiple adversaries in wireless networks. IJIRCCE 3: 5.

8. Alam M M, Hamida EB (2015) Wearable Wireless networks for internet of
humans: trends and challenges. J Telecommun Syst Manage 4: 1.

9. Tamilarasi K, Bharathi R (2014) Optimum service interval and service
period: MBR in wireless networks. IJIRCCE 4: 1.

10. Karthika RV, Karuppusamy MN (2014) TSROD: Time synchronization by
reducing oceans delay in underwater wireless networks. IJIRCCE 2: 1.

Citation: Khan MFI (2017) Software-Defined Networking Reviewed Model. Int J Adv Technol 8: 177. doi:10.4172/0976-4860.1000177

Page 5 of 5

Int J Adv Technol, an open access journal
ISSN: 0976-4860

Volume 8 • Issue 1 • 1000177

http://labs.xjtudlc.com/labs/wldmt/reading%20list/papers/Multimedia%20and%20Networking/HHB14.pdf
http://labs.xjtudlc.com/labs/wldmt/reading%20list/papers/Multimedia%20and%20Networking/HHB14.pdf
http://www.hit.bme.hu/~jakab/edu/litr/SDN/SDN_Taxonomy_06805151.pdf
http://www.hit.bme.hu/~jakab/edu/litr/SDN/SDN_Taxonomy_06805151.pdf
https://arxiv.org/abs/1406.0124
https://arxiv.org/abs/1406.0124
https://arxiv.org/abs/1406.0124
http://www.rroij.com/open-access/qos--guaranteed-neighbour-selection-distributed-packet-scheduling-algorithm-byusing-manet-wireless-networks.php?aid=55438
http://www.rroij.com/open-access/qos--guaranteed-neighbour-selection-distributed-packet-scheduling-algorithm-byusing-manet-wireless-networks.php?aid=55438
http://www.rroij.com/open-access/qos--guaranteed-neighbour-selection-distributed-packet-scheduling-algorithm-byusing-manet-wireless-networks.php?aid=55438
http://www.rroij.com/open-access/spoofing-attacks-detection-and-localizingmultiple-adversaries-in-wireless-networks.php?aid=56089
http://www.rroij.com/open-access/spoofing-attacks-detection-and-localizingmultiple-adversaries-in-wireless-networks.php?aid=56089
http://www.omicsgroup.org/journals/wearable-wireless-networks-for-internet-of-humans-trends-and-challenges-2167-0919-1000e115.php?aid=60008
http://www.omicsgroup.org/journals/wearable-wireless-networks-for-internet-of-humans-trends-and-challenges-2167-0919-1000e115.php?aid=60008
http://www.rroij.com/open-access/optimum-service-interval-and-service-periodmbr-in-wireless-networks.php?aid=48929
http://www.rroij.com/open-access/optimum-service-interval-and-service-periodmbr-in-wireless-networks.php?aid=48929
http://www.rroij.com/open-access/tsrod-time-synchronization-by-reducingoceans-delay-in-underwater-wireless-networks.php?aid=51174
http://www.rroij.com/open-access/tsrod-time-synchronization-by-reducingoceans-delay-in-underwater-wireless-networks.php?aid=51174

	Contents
	Software-Defined Networking Reviewed Model
	Abstract
	Keywords:
	Introduction
	SDN Research Issues
	Security
	Switch software compatibility
	Scalability
	Controller compatibility and controller placement
	Software language
	Reliability
	Performance under latency constraints
	Flow table management

	Summary of the Findings
	In this reviewed model

	Conclusion
	Acknowledgment
	References

