
Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Mekni et al. J Inform Tech Softw Eng 2017, 7:1
DOI: 10.4172/2165-7866.1000195

Research Article Open Access

*Corresponding author: Mehdi Mekni, Department of Computer Science and
Information Technology, St. Cloud State University, St. Cloud, Minnesota, USA,
Tel: 612-666-8767; E-mail: mmekni@stcloudstate.edu

Received January 12, 2017; Accepted January 17, 2017; Published January 23,
2017

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software
Architecture Methodology in Agile Environments. J Inform Tech Softw Eng 7: 195.
doi: 10.4172/2165-7866.1000195

Copyright: © 2017 Mekni M, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Agile methodology; Software development life-cycle;
Software architectural design

Introduction
Software development projects seeking rapid, sustainable delivery

are combining agile and architecture practices to manage competing
goals of speed in the short term and stability over the long term [1-
3]. A software development lifecycle is essentially a series of steps, or
phases including requirement specification; software design; software
construction; software verification and validation; and software
deployment. These phases provide a model for the development and
management of software [4].

Software architectural design is the process of applying various
techniques and principles for the purpose of defining a module, a
process, or a system in sufficient detail to permit its physical coding.
The conventional approach to the software design process focuses on
partitioning a problem and its solution into detailed pieces up front
before proceeding to the construction phase. These up front software
architecture efforts are critical and leave no room to accommodate
changing requirements later in the development cycle. Some of the
issues faced by organizations involved in up front software design
efforts are [5,6]:

• Requirements evolve over time due to changes in customer and
user needs, technological advancement and schedule constraints.

• Changes to requirements systematically involves modifying the
software design, and in turn, the code.

• Accommodating changing software design is an expensive
critical activity in the face of rapidly changing requirements.

• Clear specification of activities in the agile software design
process is missing and there is a lack of a set of techniques for
practitioners to choose from [7].

There is an obvious need for a software architectural design
approach in agile environments. To the best of our knowledge, no
well-established software design methodology has been proposed
in any literature. These are issues of software architecture while fully
supporting the fundamentals of agile software development methods.

The rest of the paper is organized as follows: Section 2 provides
an overview of existing agile methods. Section 3 details the software
architecture design phase as a key part of the software development
life-cycle. Section 4 presents the proposed software architectural design
methodology in agile environments. Section 5 discusses the outcomes
and limits of the proposed methodology. Finally, Section 6 concludes
and presents the future perspectives of this work.

Agile Development Methods
The goal of agile methods is to allow an organization to be agile,

but what does it mean to be Agile. Agile means being able to “Deliver
quickly”; “Change quickly and often” [8]. While agile techniques vary
in practices and emphasis, they follow the same principles behind the
agile manifesto [9]:

• Working software is delivered frequently (weeks rather than
months).

• Working software is the principal measure of progress.

• Customer satisfaction by rapid, continuous delivery of useful
software.

• Late changes in software requirements are accepted.

• Close daily cooperation between business people and software
developers.

• Face-to-face conversation is the best form of communication.

• Projects are built around motivated individuals who should be
trusted.

• Continuous attention to technical excellence and good design.

Agile development methods have been designed to solve the
problem of delivering high quality software on time under constantly
and rapidly changing requirements and business environments.
Agile methods have a proven track record in the software and IT
industries. The main benefit of agile development software is allowing
for an adaptive process in which the team and development react to
and handle changes in requirements and specifications, even late in
the development process. Figure 1 illustrates an abstract view of the
evolutionary map of main agile development methods.

Through the use of multiple working iterations, the implementation

Software Architecture Methodology in Agile Environments
Mehdi Mekni*, Mounika G, Sandeep C and Gayathri B
Department of Computer Science and Information Technology, St. Cloud State University, St. Cloud, Minnesota, USA

Abstract
Lengthy requirements, design, integration, test, and assurance cycles delay software delivery, resulting in late

discovery of mismatched assumptions and system level rework. In response, development methods that enable
frequent iterations with small increments of functionality, such as agile practices, have become popular. However,
since the business goals and context continuously evolve, the software architecture must also change. Currently, a
clear specification in software architecture activities and processes in agile environments does not exist. In this paper,
we provide an overview on agile development methodology along with the software architecture related issues in
agile environments. Our main contribution is a novel methodology to guide and assist practitioners adopting software
architectural design in agile environments.

Journal of
Information Technology & Software Engineering

Journal
of

 In
fo

rm
at

ion

 Te
chnology & Softw

are Engineering

ISSN: 2165-7866

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 2 of 8

Figure 1: Evolutionary map of agile development methods (adapted from [18]).

of agile methods allows the creation of quality, functional software with
small teams and limited resources. The proponents of the traditional
development methods criticize the agile methods for the lightweight
documentation and inability to cooperate within the traditional
workflow. The main limitations of agile development are: agile works
well for small to medium sized teams; also agile development methods
do not scale, i.e., due to the number of iterations involved it would be
difficult to understand the current project status; in addition, an agile
approach requires highly motivated and skilled individuals which
would not always be available; lastly, not enough written documentation
in agile methods leads to information loss when the code is actually
implemented. However, with proper implementation agile methods
can complement and benefit traditional development methods.
Furthermore, it should be noted that traditional development methods
in non-iterative fashions are susceptible to late stage design breakage,
while agile methodologies effectively solve this problem by frequent
incremental builds which encourage changing requirements. We
will now describe some common agile methods from a requirements
engineering perspective.

Agile modeling (AM)

It is a new approach for performing modeling activities [10]. It
gives developers a guideline of how to build models using an agile
philosophy as its backbone that resolve design problems and support
documentation purposes but not ’over build’ these models (Figure 2). The
aim is to keep the amount of models and documentation as low as possible.

Feature-driven development (FDD)

It consists of a minimalist, five step processes that focuses on

building and design phases each defined with entry and exit criteria,
building a features list, and then planning by feature followed by iterative
design by feature and build by feature steps [11]. In the first phase, the
overall domain model is developed by domain experts and developers.
The overall model consists of class diagrams with classes, relationships,
methods, and attributes. The methods express functionality and are the
base for building a feature list (Figure 3). A feature in FDD is a client
valued function. The feature lists is prioritized by the team. The feature
lists are reviewed by domain members [12]. FDD proposes a weekly 30
minute meeting in which the status of the features are discussed and a
report about the meeting is written.

Dynamic systems development method (DSDM)

It was developed in the U.K. in the mid-1990s [13]. It is an
outgrowth of, and extension to, Rapid Application Development (RAD)
practices [14]. The first two phases of DSDM are the feasibility study
and the business study. During these two phases the base requirements
are elicited (Figure 4). DSDM has nine principles include active user
involvement, frequent delivery, team decision making, integrated
testing throughout the project life cycle, and reversible changes in
development.

Extreme programming (XP)

It is based on values of simplicity, communication, feedback, and
courage [15]. XP aims at enabling successful software development
despite vague or constantly changing software requirements (Figure 5).
XP relies on methods the individual practices are collected and lined
up to function with each other. Some of the main practices of XP are
short iterations with small releases and rapid feedback, close customer

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 3 of 8

Figure 2: Agile modeling [10].

Figure 3: Feature-driven development [12].

Figure 4: Dynamic systems development method [14].

Crystal methodology

It is a family of different approaches from which the appropriate
methodologies can be chosen for each project [18]. Different members
of the family can be tailored to fit varying circumstances. The members
are indexed by different colors to indicate the “heaviness” Clear,
Yellow, Orange, Red, Magenta, Blue and Violet [19]. Three Crystal
methodologies have been used. These are Clear, Orange, and Orange
Web. The difference between Orange and Orange Web is that Orange
Web does not deal with a single project [18]. Crystal includes different
agile methods fitting the needs of teams with different sizes (Figure 7).

Adaptive software

This development attempts to bring about a new way of seeing
software development in an organization, promoting an adaptive
paradigm [20]. It offers solutions for the development of large and
complex systems. The method encourages incremental and iterative
development, with constant prototyping. One ancestor of ASD is
“Radical Software Development” [21]. ASD claims to provide a
framework with enough guidance to prevent projects from falling into
chaos, while not suppressing emergence and creativity.

Internet-speed development (ISD)

It is arguably the least known approach to agile software
development. ISD refers to a situation where software needs to be
released fast, thereby requiring short development cycles [22]. ISD puts
forth a descriptive, management oriented framework for addressing
the problem of handling fast releases. This framework consists of time
drivers, quality dependencies and process adjustments.

Software Architecture
Definition

Software architecture is a way of thinking about computing systems,
for example, their configuration and design. By computing systems, we

participation, constant communication and coordination, continuous
refactoring, continuous integration and testing, and pair programming
[16].

Scrum

Scrum is an empirical approach based on flexibility, adaptability
and productivity [17]. Scrum allows developers to choose the specific
software development techniques, methods, and practices for the
implementation process. Scrum provides a project management
framework that focuses development into 30 day Sprint cycles in which
a specified set of Backlog features are delivered. The core practice in
Scrum is the use of daily 15 minute team meetings for coordination and
integration. Scrum has been in use for nearly ten years and has been
used to successfully deliver a wide range of products. Figure 6 details
the workflow of the Scrum agile software development.

Figure 5: Extreme programming [16].

Figure 6: Scrum agile software development.

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 4 of 8

one particular view in order to explore its distinct characteristics
and distinguish it from the others [23]. The 4+1 approach separates
architecture into multiple views [26,27]. The Garlen et al. work focuses
on the conceptual view [28]. Over the years there has been a great deal
of work on the module view [29].

Moreover, other works focus on the execution view, and in
particular explores the dynamic aspects of a system [30]. The code view
has been explored in the context of configuration management and
system building.

The conceptual view describes the architecture in terms of domain
elements. Here the architect designs the functional features of the
system. For example, one common goal is to organize the architecture
so that functional features can be added, removed, or modified. This
is important for evolution, for supporting a product line, and for
reuse across generations of a product. The module view describes the
decomposition of the software and its organization into layers. An
important consideration here is limiting the impact of a change in
external software or hardware. Another consideration is the focusing
of software engineers’ expertise, in order to increase implementation
efficiency.

The execution view is the run-time view of the system: it is the
mapping of modules to run-time images, defining the communication
among them, and assigning them to physical resources. Resource usage
and performance are key concerns in the execution view. Decisions
such as whether to use a link library or a shared library, or whether
to use threads or processes are made here, although these decisions
may feed back to the module view and require changes there. The code
view captures how modules and interfaces in the module view are
mapped to source files, and run-time images in the execution view are
mapped to executable files. Some of the views also have a configuration,
which constrains the elements by defining what roles they can play in
a particular system. In the configuration, the architect may want to
describe additional attributes or behavior associated with the elements,
or to describe the behavior of the configuration as a whole.

Software architecture activities

Software architecture is comprised of a number of specific
architecting activities (covering the entire architectural lifecycle) and
a number of general architecting activities (supporting the specific
activities) [31]. In the following sections, we provide a short overview
on software architecture activities and processes.

The specific software architecture activities are composed of five
items:

•	 Architectural Analysis (AA) defines the problems an architecture
must solve. The outcome of this activity is a set of architecturally
significant requirements (ASRs) [32].

•	 Architectural Synthesis (AS) proposes candidate architecture
solutions to address the ASRs collected in AA, thus this activity
moves from the problem to the solution space [32].

•	 Architectural Evaluation (AE) ensures that the architectural
design decisions made are the right ones, and the candidate
architectural solutions proposed in AS are measured against the
ASRs collected in AA [32].

•	 Architectural Implementation (AI) realizes the architecture by
creating a detailed design [33].

•	 Architectural Maintenance and Evolution (AME) is to change

Figure 7: Crystal family.

Figure 8: Software design methodology in agile environment.

mean the hardware, the software and the communication components
[6]. A set of components gathered together does not provide us with
a problem solution [23]. We must impose a topology for interaction
and communication upon them and ensure the components both
integrate (physically communicate) as well as interoperate (logically
communicate) [24].

Software architecture views

The process of software design and architecture is usually separated
into four views: conceptual, module, execution, and code. This
separation is based on our study of the software architectures of large
systems, and on our experience designing and reviewing software
architectures [25]. The different views address different engineering
concerns, and separation of such concerns helps the architect make
sound decisions about design tradeoffs. The notion of this kind of
separation is not unique: most of the work in software architecture
to date either recognizes different architecture views or focuses on

Figure 9: The twin peaks model showing the inter-play of requirements and
architecture [50].

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 5 of 8

an architecture for the purpose of fixing faults and architectural
evolution is to respond to new requirements at the architectural
level [34-36].

Software architecture processes

An architecture process is composed of the six specific items
[32,33]:

•	 Architectural Recovery (AR) is used to extract the current
architecture of a system from the system’s implementation [37].

•	 Architectural Description (ADp) is used to describe the
architecture with a set of architectural elements (e.g. architecture
views). This activity can help stakeholders (e.g. architects)
understand the system, and improve the communication and
cooperation among stakeholders [35].

•	 Architectural Understanding (AU) is used to comprehend the
architectural elements (e.g., architectural decisions) and their
relationships in an architecture design [38].

•	 Architectural Impact Analysis (AIA) is used to identify the
architectural elements, which are affected by a change scenario
[39]. The analysis results include the components in architecture
that are affected directly, as well as the indirect effects of changes
to the architecture [39].

•	 Architectural Reuse (ARu) aims at reusing existing architectural
design elements, such as architecture frameworks, decisions, and
patterns in the architecture of a new system [40].

•	 Architectural Refactoring (ARf) aims at improving the
architectural structure of a system without changing its external
behavior [38,41].

Software Design in Agile Environment
The proposed methodology for software architectural design in

agile environments is detailed in Figure 8.

Step 1: definition of architectural requirements

Establishing the driving architectural requirements: Driving
architectural requirements are obtained by analyzing the business
drivers and system context as well as the issues deemed critical to system
success by the product stakeholders. The goal is a specification for the
architecture directing the architects to create a structure for the system
that is sufficient to ensure success in the eyes of the stakeholders. These
requirements prevent creation of an architecture that is overly complex
or that strives for unnecessary elegance at the expense of critical system
properties. The definition of architectural requirements aims to meet
the following goals:

•	 Describe a necessary change to components in an architecture.
This might mean adding new components, removing outdated
ones, replacing or improving components, or changing the way
in which they are organized and how they work together. What
is going to change?

•	 Include the reasoning or motivations behind the change. Why does
it need to change? It should explain why the existing components
are inadequate, limiting or constraining. What problems, issues
or concerns are caused by the current architecture?

•	 Outline the available options for future architectures that address
all concerns. How do alternate target architectures eliminate the
problems of the current architecture?

•	 Explain the benefits, value, risks, costs, opportunities, constraints,
and future options associated with each alternative. How do we
decide between one alternative and another?

•	 Outline any alternative routes to close the gaps and get from the
current to the target architecture. How do we make the transition
or transformation from what we have got now to what we need
in the future?

Step 2: identification of software architecture styles

Architectural structures and coordination strategies are developed
to satisfy the driving architectural requirements. Alternative architecture
solutions may be proposed and analyzed to identify an optimal solution
for the product or product line being developed. When product lines
are involved, SEI architects also help customer staff adapt the product
line architecture to specific product requirements and fully develop the
architecture for an individual product. The identification of software
architecture styles aims to precise the associated elements, forms, and
rationales:

Elements: There are three classes of software elements, namely
processing elements, data elements, and connecting elements. The
processing elements are those components that take some data and
apply transformations on them, and may generate updated or new
data. The data elements are those that contain the information to be
used, transformed and manipulated. The connecting elements bind the
architectural description together by providing communication links
between other components. The connecting elements may themselves
be processing or data elements, e.g., procedure calls, shared data, or
messages.

Forms: The architectural form consists of weighted properties
and relationships. The definition implies that each component of the
architecture would be characterized by some constraints, generally
decided by the architect, and some kind of relationship with one or
more other components. Properties define the constraints on the
software elements to the degree desired by the architect.

Rational: The rationale explains the different architectural decisions
and choices; for example, why a particular architectural style or element
or form was chosen. Rationale is tied to requirements, architectural
views and stakeholders. Probably all choices are governed by what the
requirement is. There are many different external components that have
an interest in the system, and expect different things from the same
system. We therefore have to consider the different external demands
and expectations that affect and influence the architecture and its
evolution.

Step 3: evaluation of software architecture

Software architecture evaluation determines when and what
methods of architecture evaluation are appropriate. The results of such
evaluation are then analyzed and measures are determined and applied
to improve the developing architecture.

A formal software architecture evaluation should be a standard
part of our software architecture methodology in agile environments.
Software architecture evaluation is a cost effective way of mitigating
the substantial risks associated with this highly important artifact. The
achievement of a software system’s quality attributes depends much
more on the software architecture than on code related issues such
as language choice, fine grained design, algorithms, data structures,
testing, and so forth. Most complex software systems are required to be
modifiable and have good performance. They may also need to be secure,
interoperable, portable, and reliable. Several software architecture

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 6 of 8

evaluation methods exist in literature; Architecture Tradeoff Analysis
Method (ATAM) [42], Software Architecture Analysis Method (SAAM)
[43], Active Reviews for Intermediate Designs (ARID) [44].

Step 4: determination of architecture scope

 Before defining an architecture, the developers determine
how many of the system design decisions should be established by
the architecture of the system. This scope delimits the activities of
application developers, allowing them to concentrate on what they do
best. Software architecture scope is a reflection of system requirements
and tradeoffs that made to satisfy them. Possible scope determination
factors include:

•	 Performance

•	 Compatibility with legacy software

•	 Software reuse

•	 Distribution profile (current and future)

•	 Safety, security, fault tolerance, evolvability

•	 Changes to processing algorithms or data representation

•	 Modifications to the structure/functionality

Step 5: description of software architecture
An architecture must be described in sufficient detail and in an

easily accessible form for developers and other stakeholders. The
architecture is one of the major mechanisms that allow stake holders
to communicate about the properties of a system. Architecture
documentation determines what views of software are useful for the
stakeholders, the amount of detail required, and how to present the
information efficiently.

Agile methods agree strongly on a central point: “If information is
not needed, do not document it”. All documentation should have an
intended use and audience in mind, and be produced in a way that serves
both. One of the fundamental principles of technical documentation is
“Write for the reader”.

Another central idea to remember is that documentation is not a
monolithic activity that holds up all other progress until it is complete.
With that in mind, the following is the suggested approach for
describing software architecture using agile like principles [45]:

•	 Create a skeleton document (document outline) for a
comprehensive view based software architecture document using
the standard organization schemes;

•	 Decide which architectural views should be to produced, given
the software architecture scope (step 4) with respect to available
resources;

•	 Annotate each section of the outline with a list of the stake
holders who should find the information it contains of benefit.

•	 Prioritize the completion of the remaining sections. For example:
if a section’s constituency includes stakeholders for whom face-to-
face conversation is impractical or impossible (e.g., maintainers
in an as yet unidentified organization), that section will need to
be filled in. If it includes only such stakeholders, its completion
can be deferred until the conclusion of the software architecture
and design phase.

Step 6: integration of software architecture

The software architecture integration process is a set of procedures

used to combine software architectural components into larger
components, subsystems or final software architecture [46]. Software
architecture integration enables the organization to observe all
important attributes that a software will have; functionality, quality
and performance. This is especially true for software systems as the
integration is the first occurrence where the full result of the software
development effort can be observed. Consequently, the integration
activities represent a highly critical part of the software development
process in agile environments.

Usually, Architecture Analysis and Design Language (AADL) are
used in order to build integrated software reliant systems [47]. The
AADL is designed for the specification, analysis, automated integration
and code generation of real time performance critical (timing, safety,
fault tolerant, security, etc.) software. It allows analysis of system
designs (and system of systems) prior to development and supports
a model based, model driven development approach throughout the
software development life cycle.

During software architecture integration, the software architect,
checks whether the models provided by the component developers,
system deployers, and domain experts as well as his or her own
components assembly model are complete. If values are missing, the
software architect estimates them or communicates with the responsible
role. The result of this step (Integration of Software Architecture) is an
overall quality annotated model.

Step 7: continuous architectural refinement
Architectural refinement aims to help provide the degree of

architectural stability required to support the next iterations of
development. This stability is particularly important to the successful
operation of multiple parallel Scrum teams. Making architectural
dependencies visible allows them to be managed and for teams to be
aligned with them. The architecture refinement supports the team
decoupling necessary to allow independent decision making and reduce
communication and coordination overhead. During the preparation
phase, agile teams identify an architecture style of infrastructure
sufficient to support the development of features in the near future.
Product development using an architectural refinement most likely
occurs in the preservation phase. Architectural refinement is one of the
key factors to successfully scale agile.

Describing and maintaining (through refinement) software
architectural design enables a system infrastructure sufficient to allow
incorporation of near term high priority features from the product
backlog. The proposed software architecture methodology in agile
environments allows the software architecture and design to support
the features without potentially creating unanticipated rework by
destabilizing refactoring. Larger software systems (and teams) need
longer architectural refinements. Building and rearchitecting software
takes longer than a single iteration or release cycle. Delivery of planned
functionality is more predictable when the architecture for the new
features is already in place. This requires looking ahead in the planning
process and investing in architecture by including design work in the
present iteration that will support future features and customer needs.

The architectural refinement is not complete. The refinement
process intentionally is not complete because of an uncertain future
with changing technology orientations and requirements engineering.
This requires continuously extending the architectural refinement to
support the development teams.

Discussion
Different agile methods cover different phases of the software

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 7 of 8

development lifecycle. However, none of them cover the software
architectural design phase. Moreover, the rationalization of phases
covered was missing. The question raised is whether an agile method
is more profitable to cover more and to be more extensive, or cover
less and to be more precise and specific. On one hand, some agile
methods that cover too much ground, i.e., all organizations, phases
and situations, are too general or shallow to be used. On the other
hand, agile methods that cover too little (e.g., one phase) may be too
restricted or lack a connection to other methods. Completeness, a
notion introduced by Kumar and Welke [48], requires a method to
be complete as opposed to partial. In the final analysis it was realized
“completeness” is an element associated both with vertical (i.e., level of
detail) and horizontal (i.e., lifecycle coverage) dimensions. None of the
existing agile methods were either extensive nor precise. Practitioners
and experts are still struggling with partial solutions to problems that
cover a wider area than agile methods do. In the following subsections,
we discuss the limits and perspectives of the architectural refinement
process. Finally, we provide an overview on team organization in agile
environment in support of software architecture and design activities
and processes.

Relationship between software requirements and architectural
activities in agile environments

The important feature of agile methods is that they do not assume
that there is a sequential process, where each phase of the software
development lifecycle is expected to be completed before proceeding to
the next one, as for example in a classical water fall process [49]. Thus
it is expected that requirements engineering or software architecture
phases are not happening just once, but they are rather continuously
distributed along the development process. Once there is a first, usually
incomplete, set of requirements available, an architect proceeds to the
architectural design.

A tighter integration of requirements engineering and software
architectural activities is suggested in the twin peak process model
[50]. While requirements engineering phases and architectural
activities phases alternate in traditional processes, the twin peak model
emphasizes that these two activities should be executed in parallel to
support immediate continuous feedback from one to another (Figure
9). The goal of this process is that requirement analysts and software
architects better understand problems by being aware of requirements
and their prioritization non one hand and architecture and in particular
architectural constraints on the other hand. Additionally, being able
to quickly switch back and forth between the problem to solve (the
requirements) and its solution (the architecture) can help to more
clearly distinguish the two and to avoid mixing up problem and solution
already in the requirements engineering phase.

Team organization

In its simplest instantiation, an agile development environment
consists of a single colocated, cross functional team with the skills,
authority, and knowledge required to specify requirements and
architect, design, code, and testing of the system. As software grows
in size and complexity, the single team model may no longer meet
development demands.

A number of different strategies can be used to scale up the
overall software development organization while maintaining an agile
development approach. One approach is replication, essentially creating
multiple Scrum teams with the same structure and responsibilities,
sufficient to accomplish the required scope of work. Some organizations
scale Scrum through a hybrid approach. The hybrid approach involves

Scrum team replication but also supplements the cross functional
teams with traditional functionally oriented teams. An example would
be using an integration and test team to merge and validate code across
multiple Scrum teams.

In general, we recognized two criteria used to organize the teams.
First organizing the teams either horizontally or vertically and assigning
different teams the responsibility for either components (horizontal) or
features (vertical). The second is assigning the teams responsibilities
according to development phases.

Conclusion and Future Works
In this paper, we provided an overview on software architectural

design related issues in agile environments and proposed a
methodology to guide and assist practitioners adopting agile software
design in such environments. Our methodology relies on seven
processes namely; (1) definition of architectural requirements; (2)
identification of software architectural styles; (3) Evaluation of software
architecture; (4) Determination of architecture scope; (5) Description
of software architecture; (6) integration of software architecture; and
(7) architectural refinement. Agile software development methods
have evoked a substantial amount of literature and debates. However,
academic research on the subject is still scarce, as most existing
publications are written by practitioners or consultants. Yet, many
organizations are considering future use or have already applied
practices that are claiming successes in performing and delivering
software in a more agile form. To conclude, we observed that agile
methods, without rationalization only cover certain phases of the
lifecycle. A majority of them did not provide true support for software
architectural design for project management. While universal solutions
have strong support in the respective literature, empirical evidence on
their adaptation and use in agile environments is currently very limited.

References

1.	 Erickson J, Lyytinen K, Siau K (2005) Agile modeling, agile software
development, and extreme programming: the state of research. J Database
Manag 16: 88-100.

2.	 Bellomo S, Nord RL, Ozkaya I (2013) A study of enabling factors for rapid
fielding combined practices to balance speed and stability. International
Conference on Soft-ware Engineering (ICSE). pp: 982-991.

3.	 Martini A, Pareto L, Bosch J (2012) Enablers and inhibitors for speed with
reuse. Proceedings of the 16th International Software Product Line Conference
1: 116-125.

4.	 Dingsøyr T, Lassenius C (2016) Emerging themes in agile soft-ware
development: Introduction to the special section on con-tinuous value delivery.
Information and Software Technology 77: 56-60.

5.	 Buchmann F, Nord RL, Ozakaya I (2012) Architectural tactics to support rapid
and agile stability. Technical report DTIC Document.

6.	 Herzog J (2015) Software architecture in practice third edition written by len
bass, paul clements, rick kazman. ACM SIGSOFT Software Engineering Notes
40: 51-52.

7.	 Ambler SW (2001) Agile requirements modeling. The Official Agile Modeling
(AM) Site.

8.	 Edeki C (2015) Agile software development methodology. European Journal of
Mathematics and Computer Science 2: 22-27.

9.	 Lata P (2016) Agile software development methods. International Journal of
Computer.

10.	Nierstrasz O, Kurš J (2015) Parsing for agile modeling. Science of Computer
Programming 97: 150-156.

11.	Mahdavi-Hezave R, Ramsin R (2015) Fdmd: Feature-driven methodology
development. Evaluation of Novel Approaches to Software Engineering
(ENASE). pp: 229-237.

https://pdfs.semanticscholar.org/e70e/4746f592485dfd079fd6d723572739f57104.pdf
https://pdfs.semanticscholar.org/e70e/4746f592485dfd079fd6d723572739f57104.pdf
https://pdfs.semanticscholar.org/e70e/4746f592485dfd079fd6d723572739f57104.pdf
http://dl.acm.org/citation.cfm?id=2486923
http://dl.acm.org/citation.cfm?id=2486923
http://dl.acm.org/citation.cfm?id=2486923
http://dl.acm.org/citation.cfm?id=2362554
http://dl.acm.org/citation.cfm?id=2362554
http://dl.acm.org/citation.cfm?id=2362554
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2395559/dingsoyr_lassenius2016_emerging+themes+in+agile+software+development_introduction+to+the+special+section+on+continuous+delivery.pdf?sequence=3
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2395559/dingsoyr_lassenius2016_emerging+themes+in+agile+software+development_introduction+to+the+special+section+on+continuous+delivery.pdf?sequence=3
https://brage.bibsys.no/xmlui/bitstream/handle/11250/2395559/dingsoyr_lassenius2016_emerging+themes+in+agile+software+development_introduction+to+the+special+section+on+continuous+delivery.pdf?sequence=3
https://resources.sei.cmu.edu/asset_files/Article/2012_101_001_87886.pdf
https://resources.sei.cmu.edu/asset_files/Article/2012_101_001_87886.pdf
http://dl.acm.org/citation.cfm?id=2693252
http://dl.acm.org/citation.cfm?id=2693252
http://dl.acm.org/citation.cfm?id=2693252
http://www.ibm.com/developerworks/library/co-tipam.html
http://www.ibm.com/developerworks/library/co-tipam.html
http://www.idpublications.org/wp-content/uploads/2015/05/Agile-Software-Development-Methodology.pdf
http://www.idpublications.org/wp-content/uploads/2015/05/Agile-Software-Development-Methodology.pdf
http://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/425
http://ijcjournal.org/index.php/InternationalJournalOfComputer/article/view/425
https://pdfs.semanticscholar.org/e62d/e816ec22c32d477bddcde14fc23de1ab018e.pdf
https://pdfs.semanticscholar.org/e62d/e816ec22c32d477bddcde14fc23de1ab018e.pdf
http://sharif.edu/~ramsin/index_files/Publications_PDF/Mahdavi_Ramsin_ENASE_2015_FDMD.pdf
http://sharif.edu/~ramsin/index_files/Publications_PDF/Mahdavi_Ramsin_ENASE_2015_FDMD.pdf
http://sharif.edu/~ramsin/index_files/Publications_PDF/Mahdavi_Ramsin_ENASE_2015_FDMD.pdf

Volume 7 • Issue 1 • 1000195J Inform Tech Softw Eng, an open access journal
ISSN: 2165-7866

Citation: Mekni M, Mounika G, Sandeep C, Gayathri B (2017) Software Architecture Methodology in Agile Environments. J Inform Tech Softw Eng
7: 195. doi: 10.4172/2165-7866.1000195

Page 8 of 8

12.	Choudhary, Rakesh SK (2016). An approach using agile method for software
development. In Innovation and Challenges in Cyber Security (ICICCS-
INBUSH) International Conference. pp: 155-158.

13.	Awan R, Muhammad S, Fahiem M, Awan S (2016) A hybrid software
architecture evaluation method for dynamic system development method.
Nucleus 53: 180-187.

14.	Lange B, Flynn S, Proffitt R, Chang CY, Rizzo AS (2010) Development of an
interactive game-based rehabilitation tool for dynamic balance training. Topics
in stroke rehabilitation 17: 345-352.

15.	Jaafar NH, Rahman MA, Mokhtar R (2016) Adapting the extreme programming
approach in developing ecorrective and preventive actions: An experience.
Regional Conference on Science, Technology and Social Sciences (RCSTSS
2014). pp: 801-809.

16.	Abrahamsson P, Salo O, Ronkainen J, Warsta J (2002) Agile software
development methods: Review and analysis. VTT Publications, Finland. p. 478.

17.	Cej A (2010) Agile software development with scrum. EngD Thesis.

18.	Abrahamsson P, Warsta J, Siponen MT, Ronkainen J (2003) New directions
on agile methods: A comparative analysis. Proceedings 25th International
Conference. pp: 244-254.

19.	Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering
practices and challenges: An empirical study. Information Systems Journal 20:
449-480.

20.	Highsmith J (2013) Adaptive software development: A collaborative approach
to managing complex systems. Addison-Wesley, USA.

21.	Floyd C (1992) Software development as reality construction. Springer,
Germany. pp: 86-100.

22.	Baskerville R, Ramesh B, Levine L, Pries-Heje J, Slaughter S (2003) Is internet-
speed software development different? IEEE software 20: 70-77.

23.	Bass L, Clements P, Kazman R (2012) Software architecture in practice.
Addison-Wesley, USA.

24.	Kaisler SH (2005) Software paradigms. John Wiley & Sons, USA.

25.	Qian K, Fu X, Tao L, Xu C, Diaz-Herrera J (2009) Software architecture and
design illuminated. Jones and Bartlett Publishers, USA.

26.	Kruchten P (1995) The 4+1 view model of architecture. IEEE Software 12: 42-50.

27.	Singh S, Chaurasia M, Gaikwad MH (2016) Importance of 4+ 1 views model in
software architecture. Imperial Journal of Interdisciplinary Research.

28.	Clements P, Garlan D, Bass L, Stafford J, Nord R, et al. (2002) Documenting
software architectures: Views and beyond. Pearson Education, US.

29.	Ducasse S, Pollet D (2009) Software architecture reconstruction: A process-
oriented taxonomy. IEEE Transactions on Software Engineering 35: 573-591.

30.	Magee J, Kramer J (1996) Dynamic structure in software architectures. ACM
SIGSOFT Software Engineering Notes 21: 3-14.

31.	Yang C, Liang P, Avgeriou P (2016) A systematic mapping study on the
combination of software architecture and agile development. J Syst Software

111: 157-184.

32.	Hofmeister C, Kruchten P, Nord RL, Obbink H, Ran A, et al. (2007) A general
model of software architecture de-sign derived from five industrial approaches.
J Syst Software 80: 106-126.

33.	Tang A, Avgeriou P, Jansen A, Capilla R, Babar MA (2010) A comparative study
of architecture knowledge management tools. J Syst Software 83: 352-370.

34.	Systems and software engineering - architecture description. ISO/IEC/IEEE
42010. 2011.

35.	Software engineering – software life cycle processes – maintenance. ISO/IEC
14764:2006.

36.	Postma A, America P, Wijnstra JG (2004) Component replacement in a long-
living architecture: the 3RBDA approach. Proceedings. Fourth Working IEEE/
IFIP Conference. pp: 89-98.

37.	Malavolta I, Lago P, Muccini H, Pelliccione P, Tang A (2013) What industry
needs from architectural languages: A survey. IEEE Trans Softw Eng 39: 869-
891.

38.	Li Z, Liang P, Avgeriou P (2013) Application of knowledge based approaches
in software architecture: A systematic mapping study. Information and Software
Technology 55: 777-794.

39.	Bengtsson P, Lassing N, Bosch J, Vliet HV (2004) Architecture-level modifiability
analysis (ALMA). J Syst Software 69: 129-147.

40.	IEEE standard for information technology system and software life cycle
processes reuse processes. IEEE Std 1517-2011-51.

41.	Babar MA, Brown AW, Mistrík I (2013) Agile software architecture: Aligning
agile processes and software architectures. Elsevier.

42.	Kazman R, Klein M, Barbacci M, Longstaff T, Lipson H, et al. (1998) The
architecture tradeoff analysis method. Engineering of Complex Computer
Systems. Proceedings of the fourth IEEE International Conference. pp: 68-78.

43.	Tekinerdogan B (2004) Asaam: Aspectual software architecture analysis
method. Proceedings of the Fourth Working IEEE/IFIP Conference. pp: 5-14.

44.	Babar MA, Zhu L, Jeffery R (2004) A framework for classifying and comparing
software architecture evaluation methods. Software Engineering Conference,
2004 Proceedings, Australia. pp: 309-318.

45.	Clements P, Ivers J, Little R, Nord R, Stafford J (2003) Documenting software
architectures in an agile world. Technical report DTIC Document.

46.	S. Larsson (2007) Key elements of software product integration processes.
Mälardalen.

47.	Feiler P (2013) Architecture analysis and design language.

48.	Kumar K, Welke RJ (1992) Methodology engineering: A proposal for situation
specific methodology construction. Challenges and strategies for research in
systems development. John Wiley & Sons, USA. pp: 257-269.

49.	Sommerville I (1996) Software process models. ACM computing surveys
(CSUR) 28: 269-271.

50.	Nuseibeh B (2001) Weaving together requirements and architectures.
Computer 34: 115-119.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7505513
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7505513
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7505513
http://www.thenucleuspak.org.pk/Fulltext/MS-1186.pdf
http://www.thenucleuspak.org.pk/Fulltext/MS-1186.pdf
http://www.thenucleuspak.org.pk/Fulltext/MS-1186.pdf
https://www.ncbi.nlm.nih.gov/pubmed/21131259
https://www.ncbi.nlm.nih.gov/pubmed/21131259
https://www.ncbi.nlm.nih.gov/pubmed/21131259
http://link.springer.com/chapter/10.1007%2F978-981-10-1458-1_73
http://link.springer.com/chapter/10.1007%2F978-981-10-1458-1_73
http://link.springer.com/chapter/10.1007%2F978-981-10-1458-1_73
http://link.springer.com/chapter/10.1007%2F978-981-10-1458-1_73
http://www.pss-europe.com/P478.pdf
http://www.pss-europe.com/P478.pdf
http://eprints.fri.uni-lj.si/1203/
http://www.secure.com.sg/courses/ICT353/Session_Collateral/TOP_03_ART_06_ARTICLE_ABRAHAMSSON_New_Directions_Agile_Methods.pdf
http://www.secure.com.sg/courses/ICT353/Session_Collateral/TOP_03_ART_06_ARTICLE_ABRAHAMSSON_New_Directions_Agile_Methods.pdf
http://www.secure.com.sg/courses/ICT353/Session_Collateral/TOP_03_ART_06_ARTICLE_ABRAHAMSSON_New_Directions_Agile_Methods.pdf
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2575.2007.00259.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2575.2007.00259.x/abstract
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2575.2007.00259.x/abstract
http://homepages.herts.ac.uk/~comqjs1/Highsmith.pdf
http://homepages.herts.ac.uk/~comqjs1/Highsmith.pdf
http://www.springer.com/gp/book/9783642768194
http://www.springer.com/gp/book/9783642768194
http://ieeexplore.ieee.org/document/1241369/
http://ieeexplore.ieee.org/document/1241369/
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30264
http://resources.sei.cmu.edu/library/asset-view.cfm?assetid=30264
http://www.scirp.org/(S(czeh2tfqyw2orz553k1w0r45))/reference/ReferencesPapers.aspx?ReferenceID=464345
http://www.jblearning.com/catalog/9780763754204/
http://www.jblearning.com/catalog/9780763754204/
https://www.cs.ubc.ca/~gregor/teaching/papers/4+1view-architecture.pdf
http://www.onlinejournal.in/IJIRV2I10/105.pdf
http://www.onlinejournal.in/IJIRV2I10/105.pdf
http://dl.acm.org/citation.cfm?id=599933
http://dl.acm.org/citation.cfm?id=599933
http://ieeexplore.ieee.org/document/4815276/
http://ieeexplore.ieee.org/document/4815276/
http://dl.acm.org/citation.cfm?id=239098.239104
http://dl.acm.org/citation.cfm?id=239098.239104
http://www.cs.rug.nl/paris/papers/JSS16a.pdf
http://www.cs.rug.nl/paris/papers/JSS16a.pdf
http://www.cs.rug.nl/paris/papers/JSS16a.pdf
https://www.dimap.ufrn.br/~thais/MES20072/SoftwareArchitecturalGeneralModel.pdf
https://www.dimap.ufrn.br/~thais/MES20072/SoftwareArchitecturalGeneralModel.pdf
https://www.dimap.ufrn.br/~thais/MES20072/SoftwareArchitecturalGeneralModel.pdf
http://www.rug.nl/research/portal/publications/a-comparative-study-of-architecture-knowledge-management-tools(667f54f1-cb01-462f-afb1-d5ee4c1fae79)/export.html
http://www.rug.nl/research/portal/publications/a-comparative-study-of-architecture-knowledge-management-tools(667f54f1-cb01-462f-afb1-d5ee4c1fae79)/export.html
http://ieeexplore.ieee.org/document/6129467/
http://ieeexplore.ieee.org/document/6129467/
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064
http://ieeexplore.ieee.org/document/1310693/
http://ieeexplore.ieee.org/document/1310693/
http://ieeexplore.ieee.org/document/1310693/
http://ieeexplore.ieee.org/document/6374194/
http://ieeexplore.ieee.org/document/6374194/
http://ieeexplore.ieee.org/document/6374194/
http://www.cs.rug.nl/paris/papers/IST13c.pdf
http://www.cs.rug.nl/paris/papers/IST13c.pdf
http://www.cs.rug.nl/paris/papers/IST13c.pdf
http://www.cs.vu.nl/~hans/publications/y2004/alma.pdf
http://www.cs.vu.nl/~hans/publications/y2004/alma.pdf
http://ieeexplore.ieee.org/document/5551093/
http://ieeexplore.ieee.org/document/5551093/
http://www.ingenieria.unal.edu.co/ACSCI/sistemasycomputacion/docs/SWEBOK/ELSEVIER.AGILE.SOFTWARE.ARCHITECTURE.1ST.EDITION.2014.pdf
http://www.ingenieria.unal.edu.co/ACSCI/sistemasycomputacion/docs/SWEBOK/ELSEVIER.AGILE.SOFTWARE.ARCHITECTURE.1ST.EDITION.2014.pdf
http://ieeexplore.ieee.org/document/706657/
http://ieeexplore.ieee.org/document/706657/
http://ieeexplore.ieee.org/document/706657/
http://doc.utwente.nl/49567/1/01310685.pdf
http://doc.utwente.nl/49567/1/01310685.pdf
http://ieeexplore.ieee.org/document/1290484/
http://ieeexplore.ieee.org/document/1290484/
http://ieeexplore.ieee.org/document/1290484/
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1556&context=sei
http://repository.cmu.edu/cgi/viewcontent.cgi?article=1556&context=sei
http://www.idt.mdh.se/~icc/phd/StigLarsson-PhD/PhdProp.pdf
http://www.idt.mdh.se/~icc/phd/StigLarsson-PhD/PhdProp.pdf
http://www.aadl.info/aadlinfosite/LinkedDocuments/AADLFeilerCACSD2006.pdf
http://dl.acm.org/citation.cfm?id=133574
http://dl.acm.org/citation.cfm?id=133574
http://dl.acm.org/citation.cfm?id=133574
http://dl.acm.org/citation.cfm?id=234420
http://dl.acm.org/citation.cfm?id=234420
http://dl.acm.org/citation.cfm?id=621682
http://dl.acm.org/citation.cfm?id=621682

	Corresponding author
	Abstract
	Keywords
	Introduction
	Agile Development Methods
	Agile modeling (AM)
	Feature-driven development (FDD)
	Dynamic systems development method (DSDM)
	Extreme programming (XP)
	Scrum
	Crystal methodology
	Adaptive software
	Internet-speed development (ISD)

	Software Architecture
	Definition
	Software architecture views
	Software architecture activities
	Software architecture processes

	Software Design in Agile Environment
	Step 1: definition of architectural requirements
	tep 2: identification of software architecture styles
	Step 3: evaluation of software architecture
	Step 4: determination of architecture scope
	Step 5: description of software architecture
	Step 6: integration of software architecture
	 7: continuous architectural refinement

	Discussion
	Relationship between software requirements and architectural activities in agile environments
	Team organization

	Conclusion and Future Works
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	References

