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Introduction
The ability to predict disease risk and/or identify individuals 

or groups of individuals susceptible to different health conditions 
lies at the core of epidemiology. Considering epidemiology history, 
the recognition that genetics have roles in human diseases other 
than obvious genetic syndromes is relatively recent. The current 
major causes of burden of disease (i.e., non-communicable diseases, 
such as cardiovascular diseases, cancer and diabetes) [1], although 
known to have strong environmental determinants, are considered 
multi-factorial consequences of rather complex interactions among 
environmental, social and genetic factors. Therefore, genetic 
epidemiology may provide substantial contributions in identifying 
individuals with higher susceptibility to different conditions, which 
may have positive implications for health both at the clinical and even 
at the population level [2,3]. It is important to highlight that genetic 
epidemiology can also be used for robust causal inference from 
associations between a given exposure-outcome pair. Such application 
of genetic epidemiology, so-called Mendelian randomization, relies 
on the use of appropriate genetic factors that somehow “mimic” the 
exposure status and has significant strengths (although also particular 
limitations) in the context of instrumental variables [4].

Advances in the understanding of the human genome, in 
technologies for DNA analysis (especially regarding assays for studying 
human genetic variation) and in statistical thinking that incorporates 
biological aspects of genetics resulted in high-throughput technologies 
that allow association studies to be performed on a genome-wide 
scale. Of these, genome-wide association studies (GWAS) are possibly 
the most prominent example, where a panel of single nucleotide 
polymorphisms (SNPs) is genotyped in platforms suited for millions 
of SNPs at relatively affordable costs [5]. However, a major drawback 
of the majority of studies in genetic epidemiology (especially of studies 
involving multiple SNPs) is that they are ultimately focused on single-
SNP associations with phenotype [6]. Although convenient, such 

approach is likely to underestimate the roles of genetics in human 
diseases by disregarding not only the joint effect of multiple loci but the 
complex interaction network between them. This might be one of the 
reasons why the expectations of genetic studies in human health were 
not meet so far [7,8]. Indeed, the approach of genomic prediction has 
been proposed to address the task of analyzing the roles of multiple 
SNPs in combination in complex traits [9]. In this manuscript, 
however, the focus will be on two-SNP interactions.

SNP-SNP interactions in genetic epidemiology studies
An aspect of genetic studies that has been recently receiving more 

attention in candidate gene approaches is the assessment of SNP-SNP 
interactions. Since in such studies normally a small number of SNPs 
is genotyped, testing for interaction is less cumbersome and easier to 
interpret. In addition, SNP-SNP interaction studies (when plausible and 
well-conducted) are more likely to meet the expectation of identifying 
“genomic hotspots” for human diseases than studies that disregard 
such interactions. Since focusing on few specific genomic regions is 
much more feasible to have implications for the so-called genomic 
medicine (although genome-scale methods are becoming increasingly 
popular and accessible), the correct study of SNP-SNP interactions 
is of significant relevance. A further positive aspect of SNP-SNP 
interactions studies is the possibility of statistical modeling by several 
types of regression techniques, with straightforward implementation 
of interaction (or effect modification) analysis. Intuitively, the simplest 
scenario for a SNP-SNP interaction consists of studying two SNPs. 
Although relying on only two loci, such analysis can be powerful when 
a true interaction exists. Moreover, the rationale discussed below can 
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Abstract
Genetic epidemiology is a promising field to identify patterns of disease susceptibility that can be explored in 

personalized medicine. However, especially for complex traits, the genetic component is likely to be composed of 
several loci and/or of interactions between them. The last is addressed in this manuscript, which aims to provide an 
overview of the advantages and disadvantages of statistically-oriented and biologically-oriented approaches for two-
SNP interactions. Eight biologically-oriented models of epistasis are discussed, focusing on their implementation, 
which is exemplified with real data. Additionally, some key technical points (such as reducing statistical power due 
to multiple testing and use of conceptual considerations) are discussed, and an exploratory step prior to the analysis 
is proposed to pre-select the models of epistasis to be actually tested. A function (written in R) is provided (under 
request) to facilitate the implementation of such models (and can be easily modified to implement others). It is 
stressed that, regardless of the method choice, the biological meaning of the model being tested is critical for correct 
interpretation of the results.
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be transposed to interactions involving more than two SNPs (although 
high-order analyses of interaction might require specific techniques to 
reduce data complexity [10]).

Interaction between two or more SNPs (or genetic loci in general) 
is commonly referred to as epistasis [11]. Different epistatic effects 
have been observed in a variety of species, which are useful to define 
biologically-intuitive models of interaction between two SNPs. This is 
somehow different than interaction models that would be included in a 
regular statistical analysis under a regression framework, for instance. 
Statistically, it would be intuitive and straightforward to carry out an 
analysis of epistasis as follows: outcome ~ SNP1 + SNP2 + SNP1:SNP2 
(where “~” denotes “described by”, “+” denotes the inclusion of 
independent variables, and “:” denotes “interaction”), using the 
appropriate regression model. Before doing so, however, it is necessary 
to define the genetic models of the SNPs themselves before proceeding 
with the interaction analysis. The coding for each of the five most 
common genetic models (with genotypes labeled “0” corresponding to 
the reference category for a given model) for associations involving a 
single SNP is shown in Table 1. Briefly, the genotypic model assumes 
that each genotype has independent effects; the overdominant 
model assesses whether the heterozygous genotype is associated with 
the outcome when compared with homozygous genotypes. In the 
dominant model, carrying one or two copies of the variant allele has 
the same functional implications, while, in the recessive model, such 
effect would occur only in homozygous individuals for the variant 
allele. The additive model (sometimes referred to as log-additive for 
regression frameworks such as binomial or Poisson) assumes that the 
effect of adding 1 copy of the variant allele is the same across the range 
of possible values.

A statistically-intuitive approach for SNP-SNP interactions

Given two diallelic SNPs in loci A and B, the first step of the analysis 
would be to perform single-SNP associations with the trait. For this, the 
choice of which genetic models to include can be based on previous 
studies and conceptual motivations, as well as to avoid studying models 
that give similar results. Assuming no criteria whatsoever, all five models 
could be studied for each SNP, resulting in a total of 10 hypothesis tests. 
While this is a reasonable number, if the same principle is to be applied 
for SNP-SNP interaction, a total of 25 different models would be tested. 
In addition to type-I error inflation due to multiple testing (which 
could be easily solved), the main complication of this approach is that 
many of these models would be of difficult interpretation (if making 
any sense at all). Again, prior evidence and conceptual aspects could 
be considered to define the genetic model of each SNP to perform the 
interaction analysis. Moreover, results from the single-SNP analysis 
could be used, such as taking the most significantly associated model(s) 
of each SNP. Nevertheless, it is often the case that the interaction under 
study has not been previously investigated, and it is quite possible that 
none of the single-SNP models resulted in significant or interesting 
associations (which would be, in fact, a motivation to perform an 
interaction analysis).

A statistically-intuitive solution would be to assess interaction 
using models composed of the same coding (i.e., under the same 
genetic model) for both SNPs. This is, in fact, what some statistical 
packages (such as “SNPassoc” package for R environment for statistical 
computing [12]) offer as an analysis of epistasis. Although such 
interaction can be easily assessed by including an interaction term in 
a regression model, the equivalent variable coding to achieve the same 
result is shown (for clarity) in Table 2. Evidently, such interaction 
models are correct in the statistical sense, but this does not guarantee 

that their interpretation is biologically meaningful (this is particularly 
true for the “Additive-Additive” model, which is not included in the 
function for epistasis analysis provided by the “SNPassoc” package). 
In more general terms, such interaction models provide analysis of 
the form “comparing individuals that have (for example) at least one 
variant allele of each SNP (i.e., Dominant-Dominant model) with the 
rest”. It does not provide complex interaction systems more typical of 
epistatic models. So, although statistically intuitive and correct, models 
coded in this way are not likely to suffice to capture interaction in the 
biological sense.

Defining biologically-oriented complex models of epistasis 
by adequate variable coding

Differently than statistically-oriented SNP-SNP interaction 
analysis, obtaining biological-oriented complex models of epistasis 
cannot be achieved by, for example, simply including an interaction 
term in a regression model. Rather, the correct variable coding has 
to be used to establish such models, therefore being a task to the 
investigator. Although this provides flexibility to test different models, 
it is important to define biologically-plausible and interpretable models 
(otherwise a statistically-oriented approach would be preferable since 
it has a defined criterion). In addition, translating biological knowledge 
into a coding system might not be straightforward in some instances. 
In Table 3, the coding system required to define eight distinct complex 
models of epistasis is provided. The interpretation of each model and 
the rationale of its coding system are described below.

Dominant epistasis (1): In this model, one SNP has a dominant 
effect given that the genotype of the other is homozygous for the wild 
type allele. However, the presence of at least one variant allele in the 
other SNP overcomes such effect in a dominant fashion. According to 
column 1.1, the genotypes where there is at least one variant allele of 

Genotypes* Genetic models†

Genotypic Overdominant Dominant Recessive Additive
AA 0 0 0 0 0
Aa 1 1 1 0 1
Aa 2 0 1 1 2

*A: wild type allele at locusA; a: variant allele at locusA; †Each column represents 
the coding system for defining five distinct genetic models

Table 1: Variable coding to define five genetic models for a single SNP.

Combined Models of statistical interaction†

genotypes* Gen-Gen Over-Over Dom-Dom Rec-Rec Add-Add
AA/BB 0 0 0 0 0
AA/Bb 1 0 0 0 0
AA/bb 2 0 0 0 0
Aa/BB 3 0 0 0 0
Aa/Bb 4 1 1 0 1
Aa/bb 5 0 1 0 2
aa/BB 6 0 0 0 0
aa/Bb 7 0 1 0 2
aa/bb 8 0 1 1 4

*A, B: wild type alleles at loci A and B, respectively; a, b: variant alleles at loci 
A and B, respectively; †Each column represents a variable coding system that is 
equivalent to including an interaction term in a regression analysis having both 
SNPs in the specified genetic models; Gen-Gen: Genotypic-Genotypic; Over-
Over: Overdominant-Overdominant; Dom-Dom: Dominant-Dominant; Rec-Rec: 
Recessive-Recessive; Add-Add: Additive-Additive; Of these, only the Add-
Add model is actually quantitative (the numbers in the other models represent 
categories).

Table 2: Statistically-intuitive models of SNP-SNP interactions.
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SNP B have the same functional significance (coded as “1”), given that 
the homozygous wild type genotype is observed for SNP A. If genotypes 
“Aa” or “aa” are observed, then a different functional effect, which 
overcomes (i.e., is dominant over) the effects of SNP B (regardless of its 
genotype) is assumed (coded as “2”). As shown in Table 3 (columns 1.1 
and 1.2), the choice of which SNP is dominant over the other (if SNP 
A is dominant over SNP B or SNP B is dominant over SNP A) changes 
the coding for some categories of combined genotypes.

Recessive epistasis (2): This model is very similar to the previous 
one, except that the effect under consideration is the recessive. This 
model assumes that one SNP has a recessive effect given that the 
genotype observed for the other SNP is not the homozygous variant. 
In column 2.1, SNP B has a recessive effect if the genotype for SNP A 
is either “AA” or “Aa” (corresponding to assigning “1” for “AA/bb” 
and “Aa/bb” combinations of genotypes). However, if the homozygous 
variant genotype is observed for SNP A (i.e., “aa”), a different functional 
effect is assumed (coded as “2”), regardless of the genotype observed for 
SNP B. Similarly to the dominant epistasis model, it is shown in Table 
3 (columns 2.1 and 2.2) that the choice of which SNP has a recessive 
effect that does not depend on the genotype observed for the other 
changes the coding for some categories of combined genotypes.

Dominant and recessive epistasis (3): According to this model, 
one SNP has a dominant effect only if the genotype observed for the 
other is the homozygous variant. In a simpler (although less technical) 
view, it is similar to the notion that “the recessive effect of one SNP 
is to allow the other to have a dominant effect”. In column 3.1, it is 
observed that SNP A has a dominant effect given that the genotype 
“bb” is observed (resulting in the coding of “1” for the combined 
genotypes “Aa/bb” and “aa/bb”). As shown in Table 3 (columns 3.1 
and 3.2), the choice of which SNP has a dominant effect given that the 
genotype observed for the other is the homozygous variant changes the 
coding for some categories of combined genotypes.

Double dominant epistasis without cumulative effect (4): This is 
a very simple epistatic model regarding its coding and interpretation. 
It assumes that both SNPs have a dominant effect, so the presence of at 
least one variant allele in at least one of the SNPs is both sufficient and 
necessary to configure a functional effect, which is the same regardless 
of the number of variant alleles and in which SNP they occur. This idea 

can be easily transposed into a coding system by assigning “1” when at 
least one variant allele is observed.

Double recessive epistasis without cumulative effect (5): This 
model is also very simple and similar to the previous one. The difference 
is that it assumes a recessive effect for both SNPs, so observing the 
homozygous variant genotype in at least one of the SNPs is both 
sufficient and necessary to produce a functional effect. The respective 
coding system is simply to code a genotype combination involving at 
least one homozygous variant genotype as “1”.

Double dominant epistasis with cumulative effect (6): As the 
name suggests, this model is very similar to model 4. The difference is 
that the presence of at least one variant allele for both SNPs is assumed 
to have a different effect than if at least one allele is observed for only 
one of the SNPs (hence the “cumulative effect”). Regarding the coding 
system, the only difference (when compared to the respective model 
without cumulative effect) is that a different effect (coded as “2”) is 
assigned to genotype combinations where at least one variant allele in 
both SNPs is observed (“Aa/Bb”, “Aa/bb”, “aa/Bb”, “aa/bb”).

Double recessive epistasis with cumulative effect (7): Again, the 
name of this epistatic model is suggestive: this model is very similar to 
model 5. The difference is that the presence of the homozygous variant 
genotype for both SNPs is assumed to have a different effect than if 
only one of the SNPs presents the homozygous variant genotype. 
Regarding the coding system, the only difference (when compared to 
the respective model without cumulative effect) is that a different effect 
(coded as “2”) is assigned to the double recessive genotype (i.e., “aa/
bb”).

Quantitative (8): This model of epistasis is also very simple, and the 
only one (among the models proposed here) which the coding system 
is actually numeric, rather than representing categories or factors. It 
assumes that the effect consists of a monotonic function where the 
independent variable is the number of variant alleles present in the 
genotypes observed, which can be clearly seen in Table 3 (column 8). 
Importantly, this model makes no distinction regarding the origin of 
the variant allele(s) that result in the respective coding. For example, 
the coding for the genotype combinations “AA/bb”, “Aa/Bb” and “aa/
BB” is 2, despite the differences regarding the nature of this total of 2 
variant alleles.

Using complex models of epistasis: an example with real data
The theoretical considerations regarding SNP-SNP interactions 

presented are intended not only to assist genetic researches to use 
biologically-oriented models of epistasis, but also to provide the basic 
rationale for the correct understanding of what is actually performed 
by including interaction terms in regression models (which can surely 
be useful if correctly interpreted) regarding SNP-SNP interactions. In 
addition, the rationale exposed may also assist researches to develop a 
coding system to obtain an epistatic model not covered in the present 
manuscript. As a further contribution, the coding system proposed for 
the different types of epistasis is illustrated in an example using real 
data. The coding was performed using a function written in R [13], 
which will be provided, under request, to anyone who is interested in 
using it. Importantly, the function writing focused on simplicity to 
facilitate interpretation and modification to include genetic models not 
covered here.

The data was obtained from a manuscript published in 2011 about 
the associations between two SNPs and breast cancer in a case-control 
study in Taiwan [14]. One of the SNPs studied is a non-synonymous 
SNP in the TP53 gene, resulting in an amino acid substitution at codon 

Combined Models of epistasis†

genotypes* 1.1 1.2 2.1 2.2 3.1 3.2 4 5 6 7 8
AA/BB 0 0 0 0 0 0 0 0 0 0 0
AA/Bb 1 2 0 0 0 0 1 0 1 0 1
AA/bb 1 2 1 2 0 0 1 1 1 1 2
Aa/BB 2 1 0 0 0 0 1 0 1 0 1
Aa/Bb 2 2 0 0 0 0 1 0 2 0 2
Aa/bb 2 2 1 2 1 0 1 1 2 1 3
aa/BB 2 1 2 1 0 0 1 1 1 1 2
aa/Bb 2 2 2 1 0 1 1 1 2 1 3
aa/bb 2 2 2 2 1 1 1 1 2 2 4

*A, B: wild type alleles at loci A and B, respectively; a, b: variant alleles at loci A 
and B, respectively; †1: Dominant epistasis; 2: Recessive epistasis; 3: Dominant 
and recessive epistasis; 4: Double dominant epistasis without cumulative effect; 
5: Double recessive epistasis without cumulative effects; 6: Double dominant 
epistasis with cumulative effect; 7: Double recessive epistasis with cumulative 
effects; 8: Quantitative; Of these, only the quantitative model is actually quantitative 
(the numbers in the other models represent categories). Models that have two 
versions (e.g., 1.1 and 1.2) are the cases where which SNP corresponds to the 
“A” hypothetical locus and which corresponds to the “B” hypothetical locus is not 
redundant.

Table 3: Coding system for eight different epistatic models for two-SNP interactions.
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If all or several models of epistasis are tested, then the need to correct 
for multiple testing (in studies aiming at identifying true associations) 
arises. Although there are many kinds of corrections, in the majority (if 
not in all) of them the stringency increases (i.e., the P-value threshold 
for significance reduces) according to the number of tests performed. 
Among such methods, the Bonferroni correction, although known to 
be over-conservative in several situations, is one of the most popular 
and, given its simplicity [18], will be considered here as an illustration. 
Assuming a pre-specified α=0.05 (i.e., the significance threshold), the 
Bonferroni correction consists of defining a new α by diving its original 
value by the total number of tests performed (which is equivalent to 
multiplying the P-values by the total number of tests performed). If 
the P-values shown in Table 4 were Bonferroni-corrected, only the 
P-value corresponding to model 4 (double dominant epistasis without 
cumulative effect) would remain statistically significant.

Although in the example above the Bonferroni-correction 
somehow “facilitated” the choice of the model of epistasis, it is intuitive 
that correcting for multiple-testing in analyses of epistasis will always 
be conservative in the sense that only one model is expected to be “true”. 
In this view, the larger the number of models considered in the analysis, 
more the statistical power to detect the “single true” model is reduced. 
This rationale further corroborates the importance of pre-selecting the 
models to be tested prior to the analysis. Although the capacity of doing 
so largely depends of the availability of literature on a related topic, 
an exploratory method based on the data itself can be used. Basically, 
the genotypes of the two SNPs can be combined in a single variable 
(resulting in nine different categories, as shown in Table 3, unless one 
or more of the possible pairs of genotypes do not occur in the sample). 
Then, the reference is defined (normally, the genotype pair composed 
of the homozygous genotype for both SNPs) and a regression model 
is fitted having the combined genotypes as the independent variable.

The results can, then, be explored by visual inspection, which 
facilitates to apprehend the general aspect of the results and get some 
intuition on what “formal” models of epistasis are more likely to fit the 
observed pattern. Therefore, based on such visual inspection, at least 
some epistatic models can be excluded, thus reducing the total number 
of models of epistasis to be tested (and, consequently, the stringency of 
the multiple testing correction is also reduced). In Figure 1, the odds 
ratio (except for the reference category, for which the odds of breast 
cancer are shown) with 95% confidence intervals are shown for each 
category of combination of genotypes for R72P and T309G SNPs (in 
the form R72P/T309G; for R72P, the nucleotides – which are G and 
C – are shown) as the independent variable and breast cancer as the 
outcome. Based on the figure, it is evident that the 95% confidence 
intervals of the ORs for all groups are, in general, above (or poorly 
including) the nullity, but are not very different among them. Such 
pattern clearly fits the assumptions of the dominant model of epistasis 
without cumulative effects (which was, indeed, the model that resulted 
in the lowest p-value), suggesting that (at least in some situations), the 
proposed exploratory step prior to the formal analysis may contribute 
to reducing the inflation of type-I error, thus increasing statistical 
power by keeping α closer to 0.05 (or any other pre-specified value 
of acceptable type-1 error). In addition, such exploratory approach 
can be used to identify patterns that can, in turn, be explored in new 
models specified by the researcher. Unfortunately, it is unlikely that 
the exploratory step will always provide such clear indications of the 
most likely model of epistasis, which directly impacts its capacity to 
to contribute for maintaining statistical power by excluding unlikely 
models.

72 of the encoded protein (p53) involving Arginine and Proline (hence, 
the SNP is commonly referred to as TP53 R72P SNP) [15]. The other 
SNP is a substitution involving the nucleotides T and G at the position 
-309 of the MDM2 gene (MDM2 T309G SNP), which has been shown 
to have functional implications for the expression of the encoded 
protein (MDM2) [16]. It is important to note that TP53 and MDM2 
are in the same pathway, since MDM2 negatively regulates p53 [17]. 
Therefore, studying interactions involving R72P and T309G SNPs is a 
case that fits the “classical” biological sense of epistasis.

A table containing disease status and genotypes for R72P and 
T309G SNPs can be easily extracted from Table 3 of the manuscript. 
After doing so, the coding for the eight models of epistasis can be 
obtained by using the “epistasis.coding” R function (available under 
request). Since the function returns a data frame where columns are the 
epistatic models and the rows correspond to the original observations, 
each column of such data frame can be directly used as an independent 
variable in a regression model. To illustrate this application, a logistic 
regression model was fitted to the data for each model of epistasis. 
The results [odds ratio (OR), 95% confidence intervals (95% CI) and 
p-values of the likelihood ratio chi-squared test (P)] are shown in Table 
4.

Final Remarks
Multiple testing × Pre-analysis filtering

A question that immediately arises when several different models 
for the same general association (in this case, two-SNP interactions 
and breast cancer) are tested is: should all models be tested or is there 
a role for subjective pre-selection of models based on conceptual 
considerations? Unfortunately, there is no universal answer to this 
question. If the investigation has an exploratory aim, then fitting all 
the models is reasonable. Indeed, a common situation would be to test 
all models in a pilot study aiming to define the most likely model(s) 
of epistasis, and obtain effect size estimates for sample size calculation 
for the actual investigation to be carried out more adequately. As for 
conceptual considerations, there is surely room for them. For example: 
if a pair of SNPs has been observed to interact under a specific model 
of epistasis in studies involving different outcomes and/or populations, 
such consistency may well be used to reduce the number of epistatic 
models to be tested in a future study.

Epistatic Categories†

model* 1 2
OR (95% CI) P

1.1 2.90 (1.39-6.46) 2.51 (1.28-5.30) 0.013
1.2 2.24 (1.03-5.16) 2.68 (1.37-5.65) 0.012
2.1 1.40 (0.84-2.35) 1.39 (0.94-2.04) 0.172
2.2 1.46 (0.96-2.23) 1.31 (0.84-2.04) 0.159
3.1 0.99 (0.60-1.64) - 0.984
3.2 1.25 (0.84-1.87) - 0.270
4 2.60 (1.34-5.46) - 0.004
5 1.39 (0.99-1.97) - 0.061
6 2.62 (1.30-5.64) 2.59 (1.31-5.52) 0.016
7 1.44 (1.00-2.07) 1.15 (0.56-2.31) 0.142
8 1.19 (1.01-1.40) - 0.041

*The names of the models of epistasis represented by each number were described 
in Table 3.†These represent the categories (other than ‘0’, which is the reference) 
formed by the coding system for each model; “-“ indicates models that only have 
one category other than the reference.

Table 4: Results of the crude analysis for the association between R72P and 
T309G SNPs and breast cancer under eight models of epistasis.
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Statistically-oriented x Biologically-oriented SNP-SNP 
interactions

Although the focus of this manuscript was to provide a means to 
investigate SNP-SNP interactions under complex models of epistasis, 
it should be noted that what was called “statistically-oriented” 
interaction is not wrong in any sense. What was argued here is that, 
given its convenience (requiring simply to include an interaction term 
in a regression analysis), this method could be, in some instances, 
used without adequate attention to what is actually being analyzed 
in a biological perspective. For example, it is not essentially wrong 
to investigate SNP-SNP interactions by including an interaction 
term between two SNPs, each coded as the dominant model (for 
example). However, the investigator must be aware of what model 
of epistasis is actually being analyzed rather than simply interpreting 
that “interaction”, in a general form, is being tested and relying on a 
significant P-value to conclude that such “general interaction” exists. 
To facilitate such interpretation, the coding corresponding to including 
an interaction term between SNPs under different genetic models is 
shown in Table 2.

In the example above, a biologically-oriented interpretation would 
be that it is necessary for at least one variant allele to be observed in 
both SNPs for a functional effect to occur. The warning here is not 
that this is an implausible model, but that the investigator must be 
aware that this is the model being investigated. In this regard, if this 
is the model of choice, then it is surely easier to include an interaction 

term rather than coding a new variable and adding it to the regression 
model. Indeed, such practicality is an advantage of statistically-
oriented analysis of SNP-SNP interactions. Moreover, when interest 
lies in analyzing high-order interactions (composed of several SNPs), 
a statistically-oriented approach might be the only feasible method to 
perform the analysis. Another advantage is that this approach provides 
a framework for investigating both main effects of each SNP as well as 
their interaction. For example: if the interaction consists of including 
an interaction term between two SNPs (each coded in the dominant 
model), then the respective coding for the main effects for each SNP 
is the coding that was used for them in the interaction term (here, the 
dominant model). In the more complex models of epistasis provided in 
Table 3, there are no such direct counterparts; in other words, it would 
be difficult (if possible) to determine how to code the SNPs for studying 
their main effects in addition to their interaction. The interest of doing 
so, however, largely depends on the context of the investigation and of 
the scientific questions to be answered.

Evidently, the methods proposed here for investigating SNP-SNP 
interactions differ with regards to their application, implementation 
and interpretation. The fact that these approaches differ does not make 
them opposites, but rather complements of each other, to be explored 
adequately by the investigator. Due to the variety of methods presented 
here for analyzing interactions between two SNPs, the proposed 
exploratory step may be particularly useful to guide the choosing of 
models of epistasis to be actually tested. Depending on the directions 
pointed by the data itself, the investigator can choose between 
biologically-oriented or statistically-oriented approaches. Regardless of 
that, being aware of the biological meaning of the model being tested is 
critical to obtain meaningful results regarding SNP-SNP interactions, 
as well as for correctly interpreting such results.
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