

Small RNAs in Disease Regulation and Therapeutic Potential

Harper Collins*

Department of Small RNA Networks and Therapeutics, University Hospital Oslo, Norway,

DESCRIPTION

Small RNAs are non coding RNA molecules that typically range from 20 to 30 nucleotides in length. Despite their small size, these molecules exert substantial influence over gene expression, often by interfering with Messenger RNA (mRNA) stability or translation. MicroRNAs (miRNAs) are one of the most studied and widely recognized types of small RNAs. These molecules are transcribed from the genome as long primary miRNAs (pri miRNAs), which are then processed into shorter Precursor Mirnas (pre miRNAs) and subsequently into mature miRNAs. The mature miRNA, typically 21 to 24 nucleotides in length, is incorporated into the RNA Induced Silencing Complex (RISC), where it guides the complex to target mRNA molecules with complementary sequences. This interaction typically leads to mRNA degradation or inhibition of translation, effectively silencing gene expression. miRNAs are involved in the regulation of a wide range of biological processes, including development, differentiation, apoptosis, and immune response. They can act as fine tuners of gene expression, regulating the expression of multiple genes simultaneously. It is estimated that a single miRNA can regulate hundreds of genes, and conversely, a single gene can be regulated by multiple miRNAs.

Small interfering RNAs (siRNAs) are another class of small RNAs that function similarly to miRNAs but differ in their origin and mechanism. While miRNAs are typically involved in endogenous regulatory processes, siRNAs are often introduced into the cell exogenously, such as through viral infection or laboratory experiments. siRNAs are processed from long double-stranded RNA (dsRNA) molecules, and once incorporated into RISC, they guide the complex to target complementary mRNAs, leading to their degradation. siRNAs have been extensively studied for their role in defending against viral infections and maintaining genome integrity. They are also widely used in research to knock down specific genes in order to study their function, as well as in potential therapeutic applications where

they can be used to silence disease causing genes. Piwi Interacting RNAs (piRNAs) are a class of small RNAs that interact with Piwi proteins and play a critical role in silencing transposable elements in germ cells. Unlike miRNAs and siRNAs, which typically regulate gene expression in somatic cells, piRNAs are primarily involved in maintaining genome stability during the process of gametogenesis. They help prevent the mobilization of transposons, which could lead to genomic instability and mutations.

The most common form of regulation exerted by small RNAs is post transcriptional, where small RNAs bind to mRNA molecules after they have been transcribed but before they are translated into proteins. By binding to complementary sequences in the mRNA, small RNAs can cause mRNA degradation or inhibit its translation. This allows cells to fine tune. The roles of small RNAs in regulating gene expression are particularly evident in development and disease. From controlling the expression of genes that dictate cellular fate to modulating immune responses, small RNAs are involved in nearly every aspect of cellular function. Small RNAs are crucial in regulating cellular processes during development.

The therapeutic applications of small RNA regulation are vast, with potential treatments for a wide range of diseases, from cancer to viral infections and genetic disorders. The precision with which small RNAs can target specific genes makes them ideal candidates for gene silencing and gene editing therapies. RNA Interference (RNAi) is a process in which small RNA molecules, such as siRNAs, mediate the degradation of target small RNAs can also be used in conjunction with gene editing tools like CRISPR to enhance the specificity and efficiency of genome editing. By guiding the CRISPR Cas9 system to specific loci on the genome, small RNAs can help ensure that the right genes are targeted for modification. This approach could be used for precision gene therapy, allowing scientists to correct genetic defects or modify genes involved in disease.

Correspondence to: Harper Collins, Department of Small RNA Networks and Therapeutics, University Hospital Oslo, Norway, E-mail: harper.collins@gmil.com

Received: 01-Dec-2025, Manuscript No. CSSB-25-39265; **Editor assigned:** 03-Dec-2025, PreQC No. CSSB-25-39265 (PQ); **Reviewed:** 16-Dec-2025, QC No. CSSB-25-39265; **Revised:** 23-Dec-2025, Manuscript No. CSSB-25-39265 (R); **Published:** 30-Dec-2025, DOI: 10.35248/2332-0737.25.13.121

Citation: Collins H (2025). Small RNAs in Disease Regulation and Therapeutic Potential. *J Curr Synth Syst Bio*. 13:121.

Copyright: © 2025 Collins H. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.