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ABSTRACT
Manned aircraft have been widely used to detect objects/anomalies on the ground using daytime and nighttime 
sensors. The introduction and development of Unmanned Aerial Systems (UAS) allowed transitioning of this 
dull and often dirty and dangerous task on to them. Further development and miniaturization of UAS and 
their sensors provide these small UAS (sUAS) with almost the same capabilities as those of the larger drones. 
Indeed, the flight duration and potential coverage of sUAS are much more modest compared to the larger 
systems. However, an opportunity to fly at very low altitudes creates a unique niche. This paper presents a 
brief summary of recent research activities conducted to explore feasibility of several new applications of sUAS 
equipped with modern small single-spectrum and multi-spectral sensors to detect and possibly classify relatively 
small (down to several centimeters) objects. The goal of the paper is to encourage further exploration of these 
and other promising applications for a growing fleet of small robotic aircraft.

Keywords: Unmanned Aerial System (UAS); Aerial imagery; Object detection and classification; Multi-Spectral 
(MS) sensor; Machine Learning (ML)

INTRODUCTION
For the past two decades, Unmanned Aerial Systems (UAS) 
have primarily been used for Intelligence, Surveillance, and 
Reconnaissance (ISR) missions at different levels – from small 
tactical Group 1 and 2 UAS (like RQ-14, RQ-11, Insitu ScanEagle) 
supporting special operation force teams at the tactical level all way 
up to large Group 5 UAS (like MQ-9 and RQ-4) supporting ISR 
operations at the strategic level. The latest local armed conflicts 
revealed yet another niche for UAS to be used as a loitering 
munition (aka suicide drone, kamikaze drone, expendable UAS, or 
exploding drone). The effectiveness of using UAS in any of these 
two applications relies on modern high-resolution daytime Electro-
Optical (EO) and nighttime Infra-Red (IR) sensors.

These days, a typical EO/IR sensor provides resolution (the number 
of pixels that a camera can capture in each frame) of at least 1,920 
pix by 1,080 pix (e.g., L3Harris WEBCAM MS series sensors) [1] 
and a variable Field of View (FoV) (focal length), which enables 
detection and tracking of relatively small objects. Depending on 
the flying Above Ground Level (AGL) altitude, these sensors assure 
spatial resolution of about 3 cm/pix. Miniaturized EO/IR sensors 
integrated with smaller, commercially available drones feature the 
same in not even better resolution and because they can fly at a 

much lower altitude compared to a pattern altitude of a typical 
ISR or suicide mission, such a platform enables superb spatial 
resolution opening the door to novel applications. For example, 
Sony RX1 RII camera flyable on many small UAS (sUAS) to include 
Quantum Systems Trinity 90+ fixed-wing eVTOL platform features 
7,952 pix by 5,304 pix resolution and DJI Zenmuse X7 camera 
flyable on many multirotor sUAS to include DJI drones features 
a 6K (6,016 pix by 3,200 pix) video capability. In addition to this, 
sUAS can carry other commercially-available advanced sensors like 
LiDARs and Multi-Spectral (MS) sensors [2].

This paper reviews several recent attempts by the research team led 
by the author to explore feasibility of using these modern tools 
for several novel applications. The first example deals with using 
multiple (swarm) sUAS equipped with EO sensor to detect foreign 
object debris on a runway. Next, a brief description of research 
concerned with detection of unexploded ordnance using Machine 
Learning (ML) is provided. To improve the detection rate, instead 
of a common EO sensor a sUAS used in this latter research was 
equipped with a miniaturized MS sensor. Fusing the detection 
results from multiple spectra resulted in a superb detection 
capability as opposed to an EO sensor. The subsequent section 
shows an example of using sUAS and EO sensor not only to detect 
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Figure 1: A variety of FODs [3].

an (abandoned) small firearms on the ground but also classify them 
using a pretrained Convolutional Neural Network (CNN). The last 
example demonstrates a possible usage of a MS sensor to detect 
camouflaged targets and battlefield anomalies, but this time MS 
data were used differently by utilizing spectral indices.

LITERATURE REVIEW

Foreign object debris detection using EO sensor

The worldwide cost of dealing with Foreign Object Debris (FOD) 
exceeds US$13 billion per year in direct and indirect costs [3]. Even 
more significantly, FOD had been attributed as one of the major, if 
not direct, causes of several aviation crashes, the most high-profile 
of which was the Air France Concorde crash in July 2000 that killed 
109 people on-board and four on the ground. In this particular 
crash, it was a piece of titanium debris, a part of a thrust reverser 
that had fallen from a Continental Airlines McDonnell Douglas 
DC-10 during takeoff about four minutes earlier. Other examples 
of FOD include rocks, broken pavement, ramp equipment, parts 
from ground vehicles, garbage, maintenance tools, bolts, lockwire, 
etc. (Figure 1). Airport operations, including FOD detection, place 
a high demand on manpower. FOD walk-downs (executed regularly 
on aircraft carriers) are time consuming and require significant 
human resources, hence are not applicable for civil airport 
operations. Besides, visual FOD detection by humans is found to 
be not reliable – in this case one piece of FOD would be found on 
the runway every two months, as compared to the estimated one 

found every two days with automated scanning.

Automation of FOD detection, proposed by Lee WL et al, provides 
an opportunity to improve the detection rate and productivity 
of manpower [4]. This research effort proposed a concept of 
operations of the Automated FOD Detection System (AFDS) that 
employs multiple small multi-rotor UAS carrying commercial- 
grade EO sensors to scan a runway and compare scan data with a 
FOD-free image library.

Small object detection algorithms were developed and validated in 
several flight campaigns. This research also produced a Graphical 
User Interface (GUI) for operating such a system (the number of 
drones, their speed and pattern altitude depends on the specific 
EO sensor to be used). This particular research used multiple 
commercial-of-the-shelf sUAS equipped with a typical 4K 94°-
FoV EO sensor Zenmuse X3 (providing 4,000 pix by 3,000 pix 
resolution) flying just a few meters above the runway.

For the small square black and white FOD samples ranging in size 
from 2 cm to 20 cm considered in this study, Figure 2 shows the 
detection rate achieved during the flight testing of the developed 
concept/algorithms. Notably, the white FOD samples were easier 
to detect (due to a better contrast with the gray runway concrete/
asphalt or black tire rubber marks in a touchdown zone). Figure 3 
illustrates the dependance on the runway sweep pattern altitude 
above the ground.
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shows a wide range of UXO varying by size (cf. a 155-mm projectile 
vs. a 20-mm M55 projectile), shape, and color. Clearly, UXO poses 
a threat to soldiers operating in mission areas, but current UXO 
detection systems do not necessarily provide the required safety and 
efficiency to protect soldiers from this hazard.

A new UXO detection system include, proposed and investigated 
by Cho S et al, takes advantage of employing a Deep Learning 
Convolutional Neural Network (DLCNN) trained to detect UXO 
in multiple spectral bands as recorded by MS sensor integrated 
with sUAS [6].

While traditional single-lens sensors combine and store visible light 
spectrum (400 nm-700 nm) as Red-Green-Blue images, MS sensors 
employ multiple lenses to capture multiple images in a selected sets 
of wavelength bands. The latter may include wavelengths invisible 
to the human eye. For example, a popular MicaSense RedEdge-MX 
sensor used in the UXO detection study featured five narrow bands 
centered around Blue (475 nm), Green (560 nm), Red (668 nm), 
Red Edge (RE) (717 nm), and (invisible) Near-Infrared (NIR) (840 
nm) spectra [7]. As seen from Figure 7, RE spectrum (between 690 
nm and 730 nm) is located in the very beginning of the non-visible 
light spectra in the region of rapid change in reflectance of vegetation, 
and as such can be very useful in detecting variations in the physical 
environment (e.g., disturbed soil) and in chemical properties.

Planning and operation of a FOD sweep is envisioned to be 
conducted using a GUI shown in Figure 4. The list of detected 
FOD candidates for further inspection/removal shows up in the 
lower-right part of GUI while an operator has an opportunity to 
monitor the sweep using an additional GUI screen as shown in 
Figure 5. This specific example (Figure 4) features nine drones 
flying along the 46 m wide and 2 km long runway at 22 m/s 4 m 
above the ground. Figure 5 features the moment when the far-left 
drone (the first out of nine) finds a suspect FOD (denoted as a 
red square). In this particular case, the entire sweep took less than 
two minutes, which in the real-world situation would have only a 
negligible impact on airport operations.

This research found that the overall concept is definitely feasible 
with more testing needed to ensure its reliability and suitability. 
More sophisticated (e.g., MS) sensors can be used with FOD 
candidate classification added if needed.

DISCUSSION

Unexploded ordnance detection using MS sensor and ML

Unexploded ordnance is “military ammunition or explosive 
ordnance which has failed to function as intended” and left behind 
after war conflicts, weapon system testing and trainings [5]. Figure 6 

Figure 2: Detection rate of different-size black and white specimens.

Figure 3: Detection rate versus flight altitude for black and white objects.
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Figure 4: Prototype of AFDS GUI.

Figure 5: Detachable window showing the image of a detected FOD candidate.
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Figure 6: Sample UXO found during Fort Ord ex-military base clean up.



6

Yakimenko OA OPEN ACCESS Freely available online

J Aeronaut Aerospace Eng , Vol.12 Iss.4 No:1000327

about 1-2 hours to actually train the detector (in the MATLAB 
interpretative environment). Once trained, however, the detector 
can process a streamed video at the 10 fps rate. For compiled code, 
this rate is estimated to be at least two orders of magnitude higher.

As far as the ratio of correctly predicted positives and predicted 
positives, even a standard EO camera allows detecting UXO 
with ~0.77 Average Precision (AP). Employing a MS sensor with 
multiple spectrum bands, especially RE and NIR, allows capturing 
different sets of features so that while the AP values for the 
individual spectrum bands are lower than that of the EO sensor, 
when combined (fused) they ensure much better detection results.

Of course, to increase a Technology Readiness Level (TRL) of the 
developed prototype, more research needs to be conducted (for 
example, to tackle motion blur and occlusion), but in general 
finding UXO using a MS sensor proved to be a feasible approach 
worth further exploration.

Detection and classification of small firearms using EO 
sensor and ML

The research effort presented in the previous section was further 
expanded to explore feasibility of not only detecting different small 
objects using imagery collected by sUAS but also classifying them 
into different categories. Rather than UXO, “lost” small firearms 
were used as a realistic operational scenario [8]. Specifically, 
three classes of different shape/size/color small firearms were 
considered: pistol, black rifle, and brown rifle (shown in Figures 
10a-10c, respectively).

This particular research used a single EO rather than a MS sensor 
(as was the case in the study described in the previous section). 
Zenmuse X5, a 16-megapixel EO RGB sensor with a video resolution 
of 4,096 pix by 2,160 pix and shutter speed of 1/8000 s, was 
integrated with sUAS. To collect imagery for CNN training, sUAS 
flew search patterns over a 28.7 m by 15.2 m (440 m2) operating 
area. During data collection, the positions and orientations of the 
objects were varied. 

Obviously, finding and classifying a pistol appears to be a more 
challenging task compared to finding the larger objects (rifles) 
because a smaller object can sometimes be confused with a shadow 

MS sensors have already proved to be a very useful tool in agriculture, 
forestry and land management applications, and there is definitely 
a potential to contribute to detecting man-manned objects against 
natural background (to include soil and vegetation). Having such a 
sensor integrated with sUAS allows covering up to 0.3 km2 within 
about 15 minutes, i.e., during a single sortie. Having multiple sUAS 
(as in the application described in the previous section) extends the 
search capability even further. 

Figure 8 gives an example of five images recorded by each individual 
spectrum lens of MicaSense RedEdge-MX sensor. While all images 
look somewhat the same, there may be slightly different sets of 
scene features captured by each of them, thus complementing each 
other. 

After experimenting with different CNNs, the ResNet50, a variant 
of ResNet model, was finally chosen for UXO detection (ResNet50 
refers to the Residual Network with 50 layers based on residual 
learning). The developed DLCNN ends with the YOLO output 
layer (YOLO is the most successful object detection algorithm in 
the field) providing locations of the refined Bounding Boxes (BBs) 
enclosing all candidate UXO. Each spectrum is trained with its 
own DLCNN and the resulting BBs for each band are also shown 
in the individual spectrum images of Figure 8. 

While in the particular case shown in Figure 8 the UXO was found 
in each individual band, in practice it is not necessarily the case. 
Quite often, only the blue and green detectors were successful while 
three other detectors were not. In some other cases, only the NIR 
detector detected UXO while other detectors failed. The developed 
two-step BB merging procedure fuses five detection results together 
to take advantage of having multiple bands (positive detections). 
Figure 9 visualizes this procedure for a specific case when only 
the blue and green detectors are successful. Indeed, having five 
opportunities to detect UXO rather than just one as provided by 
a single EO sensor increases the overall probability of detecting 
UXO.

The DLCNN detectors developed and trained on realistic imagery 
proved overall feasibility of the concept and demonstrated quite 
a promising performance. With only about 1,000 images (per 
each spectrum band) needed to train a single detector, it takes on 
the order two hours to prepare (resize, label, augment) data and 

Figure 7: Spectrum bands of MicaSense RedEdge-MX sensor against spectral reflectance curve for vegetation [7].
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Figure 8: BBs for a detected UXO as seen on MS images.

Figure 9: Results of detection in multiple spectra and the final merging BB.

Figure 10: Objects of interest: Pistol (in red box) (a), black rifle (b), and brown rifle (c).
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of 1,300 m2. Another direction of the future research efforts is 
exploring different ways of augmenting existing (limited) data 
sets by applying various rendering effects and varying background 
complexity. Also, it would be interesting to quantify how the shape, 
size, and orientation of anchor boxes affect the performance of 
detectors.

Detection of camouflaged targets and battlefield anomalies 
using spectral indices 

In response to the extended usage of tactical- and theater-level UAS 
for reconnaissance and surveillance in the modern battlefield, 
the ground forces put more and more emphasize on hiding their 
assets using camouflage or exploiting terrain and vegetation. In 
their research, Barmpas S et al used a more advanced version of 
the MicaSence sensor, MicaSence RedEdge-P, featuring five-band 
MS and panchromatic sensors to explore capability of defeating 
camouflage and still detecting battlefield anomalies that otherwise 
are not visible using regular daytime/nighttime vision sensors [9].

Figures 12a-12c illustrates examples of uncamouflaged and 
camouflaged targets used in this study as well as an example of 
battlefield anomalies, like a landmine or Improvised Explosive 
Device (IED), that can potentially be recognized by disturbed soil.

The results of the extensive flight campaign were evaluated using 
two criteria. The first criterion was the ability to detect the target 
by employing different spectral indices. The second criterion 
examined the ability of MS sensor to provide a better detection 
compared to a regular EO or panchromatic sensor (the former one 
creates a complete three-color image, while the latter produces a 
single-band grayscale image that combines the information from 
the visible red, green, and blue bands).

A spectral index is a mathematical equation that is applied to the 
various spectral bands for each pixel. This research studied a variety 
of well-established indices blending two different spectra that are 
commonly used in agriculture to enhance vegetation and more 
specifically healthy vegetation. However, neither of them worked 
to defeat camouflage. Then, target reflection in each individual 
spectrum was examined against different backgrounds to include grass, 
tree, tree shadow, and grass under a tree (Figure 13).

or black stone. The confusion may also occur when even the larger 
objects are partially obscured. To this end, Figure 10c illustrates 
an example when a brown rifle barrel is intentionally obscured by 
leaves.

A total of 3,140 images of small firearms were collected to train 
CNN. Data augmentation (resulted in a fourfold increase of the 
training data set) was applied to improve overall performance of 
proposed system. Following imagery collection and conditioning, 
the Faster RCNN, YOLO, and SSD models were explored to see 
which one delivers the best performance in detecting small firearms.

It was determined that the same YOLO model with a ResNet-50 
backbone network as in the study addressed in the previous section 
was the most effective for small firearms detection and classification 
as well. The model was trained with eight anchors, (predefined BBs 
of a certain height and width), mini-batch size of eight, learning rate 
of 0.001, and maximum number of epochs of ten, which happened 
to be the best set of parameters. The training time happened to 
be about 1 hr and 20 min for each run. The trained network 
demonstrated very good results featuring a mean AP (mAP) of 0.97 
(0.98-for the good-contrast objects regardless of their size, and 0.94-
for a lower-contrast objects). Good performance was demonstrated 
even for the partially occluded objects (see examples in Figures 
11a-11c). Obviously, tuning CNN for the best performance requires 
additional efforts. To this end, several experiments were conducted 
with varying the aforementioned CNN parameters. As expected, 
the learning rate (that controls how much to change the model in 
response to the estimated error each time the model weights are 
updated) and the number of anchors, happened to be the most 
important parameters. For example, when the learning rate was 
increased from 0.001 to 0.01, the mAP dropped to almost 0, and 
when the number of anchor boxes was increased from eight to 
eleven, mAP changed to 0.95 (1 for the pistol and brown rifle, and 
0.95 for a black rifle).

A high probability of correct detection/classification proves that 
such a system can be developed, prototyped and tested in a realistic 
operational environment which is the direction of the follow-up 
research. For the small firearm detection mission, the multirotor 
sUAS would fly a pattern maintaining a fixed ~3 m height above 
the ground level at a constant speed of ~1.4 m/s. In this case, 
during a 30 min flight, a single sUAS could cover on the order 

Figure 11: Detection of partially occluded pistol (a), black rifle (b), and brown rifle (c).
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Figure 12: Examples of the objects to detect: open-terrain target (a), camouflaged target (b), buried IED (c).

Figure 13: Difference of spectral reflectance of target vs. Underlying environment in different bands.

Figure 14: NDREBI images of the target out in the open terrain without (a) and with (b) camouflage for a 100 m AGL flight.

Figure 15: NDREBI images of the uncamouflaged target partially obscured by trees for the 50 m AGL (a) and 100 m AGL (b) flight patterns.

indices when flying a MS sensor at a relatively high (for sUAS) 
altitudes of 50 m to 100 m. Specifically, Figures 13a and 13b show 
the cropped NDREBI images with an open terrain uncamouflaged 
and camouflaged targets (both clearly identifiable) when flying at 
100 m above the ground.

Even when placed under a tree, the NDREBI image is still useful 
for finding the target (Figures 14a and 14b). Obviously, the lower 
altitude the better detection capability is.

Figures 15 and 16 illustrate NDVI capability to detect disturbed 
soil (relative to detection of the two targets shown in Figure 12c). 

The RE band exhibited the largest (negative) difference for all 
examined environments (NIR would be another alternative). The 
blue band exhibited some (positive) differences and a relatively 
large negative difference for a tree shadow environment. Hence, 
combining these two bands into the spectral index NDREBI=(RE-
Blue)/(RE+Blue) ensured the best result. 

In the case of detecting the freshly buried objects simulating 
landmines and IEDs, it was the NDVI index, NDVI= (NIR-RED)/
(NIR+RED), that provided the better detection results compared 
to NDREBI due to its ability to distinguish disturbed soil from 
vegetation or undisturbed soil.

Figures 14-16 illustrate effectiveness of using these two spectral 
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CONCLUSION

This paper provided a brief review of several research efforts aimed 
at finding new applications for sUAS integrated with EO/MS 
sensors and empowered by using the ML algorithms. This includes 
using single and multiple sUAS to detect (and classify) foreign 
object debris on a runway; unexploded ordnance; small firearms; 
camouflaged targets and battlefield anomalies. The developed 
detection algorithms have been tested in real flight campaigns and 
are mature enough to be advanced to the higher TRLs. While these 
algorithms were specifically targeting the small objects, they can 
easily be scaled up and applied to find larger objects while utilizing 
bigger UAS flying at higher altitudes and utilizing different sensors 
(e.g., see the current research effort in [10]). 
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