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Introduction
Development of male germ cells is a complex differentiation process 

that depends on a well-coordinated gene expression patterns [1,2]. 
During the whole process, epigenetic factors, such as small non-coding 
RNAs (sncRNAs), are dynamics to regulate gene expression temporally 
and spatially, faciliating the formation of viable healthy spermatozoa. 
Consequently, male germ cells are vulnerable to epigenetic defects 
that may further result in sperm arrest, apotosis and even cause male 
infertility. With the capability of sperm to transmit the genetic and 
epigenetic information to offspring, it is critical to investigate the 
molecular mechanisms that regulate the complex processes of sperm 
proliferation and differentiation at various male germ cell phases [3].

The rapid development of high-throughput analytical techniques 
has detailed a high diversity of sncRNAs specific existing in mammalian 
testis [4]. These sncRNAs presenting a wide variety of sizes are essential 
regulators for gene expression at transcriptional, post-transcriptional 
and epigenetic level, giving rise to a profound insight into the regulation 
of sperm development [5]. sncRNAs investigations in male germ cell 
developmental process is becoming an attractive new area.

Fast-increasing amounts of evidence indicate that mammalian 
male germ cells express a wide range of sncRNAs that comprise a well 
characterized class of non-coding RNAs [6-9]. The proper sncRNAs 
processing is of great significance for normal sperm development, but 
disruption of their regulation may result in some reproductive diseases 
[10]. As a result, a thorough understanding of the signaling pathways in 
these biological processes may be a novel attractive target for diagnosis 
and therapy of reproductive associated diseases. Based on recent 
advances in sncRNAs regulation, we mainly present an overview of the 
biogenesis, mechanisms, and functions of different types of sncRNAs in 
the whole process of male germ cell development, with special focus on 
miRNAs and piRNAs, and then the appilication of siRNAs in exploring 
the roles of specific gene will also be discussed.

Development of Male Germ Cells
Origin of male germ cells

The progenitors of Primordial Germ Cells (PGCs) derived from the 
pluripotent cells of epiblast are the origin of male germ cells. PGCs begin 
to express blimp protein when they are identifiable [11], which could 
promote the expression of germ-cell-specific markers and pluripotency 
genes, leading to the formation of the germ cell lineage [12]. At the 
phase of gastrulation, once stimulated by BMP4 and under the 
guidance of steel factor [13], PGCs start to migrate toward the hindgut 
during its anterior extension and then they move into the mesoderm 
and bilaterally migrate to the genital ridges [3]. The dynamic movement 
of PGCs is dependent on E-cadherin (CDH1) and b1-intergrin (Itgb1) 
and is directed by cxcl12 [14,15]. During these processes, mammalian 
germ cells initiate proliferation and differentiation, eventually forming 
gonocytes within seminiferous cords that are surrounded by Sertoli 
cells [16,17] (Figure 1). Gonocytes show a transitory mitotic activity, 
and then arrest in the G0/G1 phase of the cell cycle [18]. 

Overview of spermatogenic process

After birth, gonocytes migrate from the centre to the basal lamina 
of the seminiferous tubules where they resume mitotic proliferation and 
become Spermatogonial Stem Cells (SSCs), initiating the spermatogenic 
process [19]. Subsequently, the SSCs divide into either self-renewal 
(Asingle spermatogonia) or daughter cells (Apaired spermatogonia) 
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Abstract
Global rise in male infertility as a result of dysfunction of male germ cells has been pointed out by many 

investigations. Therefore, it is essential to elucidate the molecular mechanisms involving in the development of 
sperm, which rely on phase-specific gene expression that is regulated by myriads of small non-coding RNAs at 
transcriptional, post-transcriptional and epigenetic level. Recent advancement in small non-coding RNAs mainly 
including siRNAs, miRNAs and piRNAs has determined several pathways, which synergically regulate the process 
of male germ cell development. However, the aberrant expression of them is associated with dysfunction of male 
germlines, such as sperm arrest or apotosis, which further leads to male infertility. In this review, we focus mainly 
on the biogenesis and functions of these transcripts in the regulation of mammalian male germ cell development, 
elucidating the mechanisms between their dysregulation and related dysfunctions of sperm and providing some 
basic informations for diagnosis and treatment of male infertility.
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that are committed to divide mitotically to produce the type Aaligned 
spermatogonia [20]. The maintenance of self-renewal was promoted 
by several factors such as gdnf and etv5, while differentiation process 
was promoted by steel factor and notch signaling [21,22]. Subsequently, 
Aaligned spermatogonia produce several generations of spermatogonia, 
including type A1-A4, intermediate, and type B spermatogonia before 
entering meiosis. After proliferation phase, type B spermatogonia enter 
the meiotic stage and divide via mitosis to give rise to several generations 
of primary spermatocytes, including preleptotene, leptotene, zygotene 
and pachytene spermatocytes [7]. Pachytene spermatocytes are then 
divided in meiotic prophase I, and the cells undergo a reduction division 
to split the sister chromosomes into two cells, generating secondary 
spermatocytes. The secondary spermatocytes very quickly divide again 
without replicating their DNA to form haploid round spermatids 
[23]. Subsequently, haploid spermatids undergo spermiogenesis to 
develop into mature spermatozoa (Figure 1), which involves several 
morphological changes such as acrosome formation and nuclear 
condensation [24]. Finally, spermatozoa are released into the rete testis 
and the epididymis where a series of additional maturational events 
take place [25,26].

The proliferation and differentiation of male germ cells undergo 
throughout the embryogenesis and spermatogenesis. During prenatal 
stages, the mainly process is the proliferation of PGCs, and then they 
are differentiated under a series of mediated factors to form gonocytes. 
After birth, gonocytes resume mitotic proliferation, initiating 
spermatogenesis that mainly includes three phases. The first phase 
is the mitosis of spermatogonia; the secnod phase is the meiosis of 
spermatocytes; and the last phase is the spermatogenesis that involves 
a series of morphology changes. Modified from He Zuping [7] and 
Meikar [27].

Biogenesis and Mechanisms of Small Non-coding RNAs
Due to the high requirements for gene regulation, it is therefore 

not surprised that sncRNAs are involved in the control of sperm 
production. Male germ lineages express three classes of sncRNAs, 
including Dicer-dependent microRNAs (miRNAs), small interfering 
RNAs (siRNAs), as well as Dicer-independent PIWI-interacting RNAs 
(piRNAs) [27]. These sncRNAs bind to evolutionarily conserved 
Argonaute (AGO) family proteins that are further classified into AGO 

and PIWI subclades. The AGO subclades are ubiquitously expressed in 
multicellular organisms, involving the processes of RNAi and miRNA-
mediated gene silencing [28]. The PIWI subclades interacting with 
piRNAs directly are specifically enriched in the male germ cells [29]. 
Since sncRNAs are major regulators for male germ cell development 
[27], we will discuss their proposed biogenesis and mechanisms in 
details. 

Synthesis of siRNAs

siRNAs, derived from long double-stranded RNA (dsRNA), or a 
short hairpin RNA (shRNA), are generated into 21~28 nt by Dicer. 
Owing to this synthetic process, the synthesis of siRNAs does not need 
Drosha and DGCR8, which are necessary for the processing of the 
miRNA precursors [30]. After transported to the cytoplasm, siRNAs 
could recruit a multienzyme complex, forming the siRNA-induced 
silencing complex (siRISC) that identifies and cleaves the target mRNA 
with perfect complementarity [31]. As a result, the cognate mRNA is 
cleaved and protein synthesis is repressed, indicating that siRNAs are 
essential for post-transcriptional gene silencing [32].

In addition to the silencing mechanism for post-transcriptional 
mRNA regulation, siRNAs also have epigenetic effects on chromatin 
modifications by targeting specific sites that is essential for delivering 
epigenetic grooming enzymes to particular sites [33]. Firstly, siRNAs 
are packaged into the RITS complex, and then the siRNA effector 
molecule, the AGO1 protein, is delivered to the silenced sites. AGO1 
interacts with the H3K9 methyltransferase Clr4, recruiting it to the sites 
of heterochromatin formation [33]. Finally, recruitment of HP1 allows 
spreading and maintenance of the heterochromatic state[34], leading 
to gene silencing through histone H3K9 methylation [35]. Moreover, 
similar to piRNAs, siRNAs could also result in gene silencing through 
DNA methylation [36].

Biogenesis of miRNAs

miRNAs are well-characterized endogenous RNA molecules. 
Coding genes for miRNAs are distributed throughout the genome and 
approximately half of them are located in the introns [37]. The synthesis 
and mechanism of miRNAs are a multi-step process. In nucleus of 
cells, miRNA sequences are typically transcribed by RNA Polymerase 
II as hairpin-loop-folded primary transcripts (pri-miRNAs) [38]. Pri-
miRNAs are cleaved by the microprocessor complex (Drosha/DGCR8), 
generating 70 nucleotide (nt) pre-miRNA that are then transported to 
the cytoplasm via exportin-5 [39]. In cytoplasm of cells, the pre-miRNA 
is further processed by Dicer to their mature 20-24 nt double-stranded 
mature miRNA. The produced mature miRNA is unwound and one 
of the strand are then incorporated into an AGO2, forming miRNA-
induced silencing complex (miRISC), with imperfect complementarity 
to multiple targets [40]. 

The mechanisms of miRNAs can be pictured as a cascade of events 
where miRNA pathway regulates gene expression by repressing or 
activating the target mRNAs [41]. It is most commonly believed that 
the miRISC usually mediates the numerous downstream protein-
coding target gene silencing by the sequence-specific recognition of 
their target mRNAs, which leads to either degradation or translationally 
inhibition of the target sequences [42]. Usually, miRNAs bind to target 
mRNAs in the 3’UTR to form the RNA duplexes. Also, miRNAs have 
been demonstrated to bind to the 5’UTR and open reading frame of a 
subset of target mRNA [43]. Additionally, there is another mechanism 
by which miRNAs repress the translation by targeting the m7G-cap Figure 1: Development of male germ cells
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recognition [44]. However, under some conditions, miRNAs have also 
been shown to activate translation. For instance, miR-369-3 expression 
is up-regulated and binds to the 3’UTR of tumour necrosis factor alpha 
(TNFa), resulting in enhanced translation of TNFa [45].

piRNAs and PIWI proteins

piRNAs, about 25-33 nt in length, constitute the largest class of 
sncRNAs, whose coding genes mostly derive from specific genome 
clusters, terming piRNA clusters that range from a few to hundreds 
of kilobases in size [46]. The majority of piRNA clusters map typically 
to only one genome strand, which are located in a limited number of 
pericentromeric and telomeric sites and are enriched for retrotransposon 
sequences [47]. The synthesis of piRNAs is a PIWI protein dependent 
mechanism, which requires primary processing pathway and ping-
pong cycle to produce the mature sense and antisense single-stranded 
piRNAs [48]. 

Firstly, sense and antisense transcripts are transcribed from piRNA 
clusters and transported to the cytoplasm for further processing. These 
transcripts are catalyzed probably by Zucchini protein, a single-strand-
specific nuclease, to produce 5’ends with a phosphate group, which 
are then loaded to MILI [49]. Subsequently, 3’ends are cleaved again 
by mHEN1, a RNA methyl transferase, to produce 2’-O-methylation 
with the size of piRNAs being determined by the types of PIWI proteins 
[50,51]. This pathway is called the primary processing of piRNAs. In 
postnatal germ cells, sense-strand piRNAs, are produced only by 
primary processing pathway and are loaded to MILI, MIWI and AGO3, 
but their functions are less well characterized [52].

In fetal male germ cells, piRNAs are also operated by secondary 
processing to amplify themself, which is essential for transposon gene 
silencing regulation. In this pathway, primary piRNAs produced by 
primary processing bind to MILI protein, initiating the ping-pong 
cycle that could amplify piRNA response. Firstly, AGO3 associates with 
sense-strand piRNAs to form an AGO3-piRNA complex that catalyzes 
antisense-strand cleavage and generates antisense piRNAs [47]. Then 
Aubergine (Aub) and PIWI associate with antisense piRNAs to form 
a complex, generating mature antisense piRNAs. By contrast, mature 
antisense piRNAs bound to Aub to form an Aub-piRNA complex that 
cleaves sense-strand piRNAs and produces sense piRNA precursor. 
The sense piRNA precursor associates with AGO3 to forms a complex 
that gives rise to mature sense piRNAs, eventually completing the 
cycle. piRNAs bind to PIWI proteins and several other functional 
components, forming PIWI-interacting RNA complex (piRISC), which 
guides de novo DNA methylation that specializes in targeting sites, 
resulting in Transposable Elements (TE) silencing [53]. Moreover, 
PIWI, HP1a, and Su(var)3-9 will also be recruited to these sites, 
reflecting that piRNAs are essential for the recruitment of epigenetic 
factors to specific genomic sites [54].

Profile and Functions of Small Non-coding RNAs in 
Sperm Development
The role of siRNAs in male germ cell development

Sequencing of the mouse testicular RNA have revealed that siRNAs 
are highly enriched in male germ cells and a total of 73 siRNAs have 
been identified [55]. The functions of siRNAs are mainly involved in 
post-transcriptional gene silencing through inducing target mRNA 
degradation. Moreover, they also have nuclear effects on chromatin 
modifications due to their high diverse of hits on multiple chromosomes 

[55]. For instance, siRNA-mediated repression of transcripts is 
associated with histone or DNA methylation, which targets the 
promoters of specific genes [56,57]. However, several researchers have 
found that siRNA targeted genes are first activated and then their 
transcripts are repressed, and the mechanism of that is not change the 
state of DNA methylation, but involves in histone demethylation [58]. 

On the other hand, siRNAs could also be used as a valuable 
approach to knock down the expression of interest genes that is RNA 
interference (RNAi) technology. RNAi could effectively repress a certain 
gene and further analyze the physiological functions of this gene, which 
is essential for elucidating the effects of individual gene on male germ 
cells [7]. For example, He et al found that the suppression of Gfra1 
in mouse through siRNAs could result in a switch from self-renewal 
to differentiation of SSCs [59]. Moreover, siRNAs was also applied to 
repress some transcription factors, including Bcl6b, Erm and Lhx1, 
that are essential for SSCs self-renewal regulation [60,61]. Collectively, 
these studies illustrate that siRNAs are crucial for exploring the roles of 
particular genes in the regulation of male germ cell development.

miRNAs in male germ cell development

With the stage-specific manner, miRNAs are highly, exclusively 
or preferentially expressed in male germ cells for the maintenance of 
their undifferentiated state and the induction of their differentiation 
[62]. Growing evidence has identified that miRNAs as potential 
regulators, in cooperation with other epigenetic modifications or not, 
are clearly involved in the orchestrated and stage-specific regulation of 
gene expression, which is critical for forming functional spermatozoa 
[63,64]. Thus the characterization of the profiles and functions of 
miRNAs in each step of male germ cell development is necessary. 

PGCs arise as a small cohort of cells in early embryogenesis, and the 
levels of miRNAs are higher in PGCs than somatic cells [65]. Disruption 
of miRNA pathway has demonstrated that miRNAs are critical for 
male germ cell development. For example, the germ cell-specific 
Dicer knockout mouse shows the defects of PGCs in proliferation 
and post-natal spermatogenesis [63,64]. Signatures of miRNAs were 
also identified in populations of SSCs, spermatocytes and spermatids 
[66,67]. These cell types seem to share several common miRNAs, 
although some miRNAs are expressed in the certain cell types. MiR-21 
is exclusively expressed in SSCs population, which is essential for the 
maintenance of SSCs undifferentiated state via working with etv5 [68]. 
Meanwhile, miR-135a has also been demonstrated to play important 
roles in self-renewal of SSCs by FoxO1 [69]. On the other hand, miR-
34c targets the Nanos2 that could trigger SSCs differentiation, and 
then it also involves in the differentiation of spermatogonia through 
targeting Notch-signalling pathways [21,70]. Moreover, miR-146 is 
highly expressed in SSCs and the presence of this miRNA is important 
for their differentiation through retinoic acid signaling pathway 
[71]. However, the clusters of miR-17-92, highly expressed in SSCs, 
are drastically down-regulated by retinoic acid induction, reflecting 
that miR-17-92 clusters are essential for promoting the survival and 
proliferation of SSCs [72]. Other miRNAs such as miR-221/222 have 
also been shown to play potential roles in maintaining the state of SSCs 
[73].

Sequencing of miRNAs revealed that miRNA gene clusters on 
the X chromosome seem to have a higher expression levels in meiotic 
spermatocytes and haploid spermatids than that in somatic cells [74]. 
Likewise, Liu et al found that several miRNAs such as miR-34b-5p and 
miR-34c-5p were up-regulated in human spermatocytes compared 
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to spermatids, reflecting their roles in the regulation of meiosis [75]. 
However, X chromosomal genes undergo epigenetic silencing in 
mid-to-late pachytene spermatocytes by the process of Meiotic Sex 
Chromosome Inactivation (MSCI). Interestingly, numerous X-linked 
miRNAs could escape the silencing by MSCI, indicating that the 
miRNA gene duplications on the X chromosome were selectively 
favored during evolution to allow their expression in spite of sex 
chromosome inactivation, which is necessary for the differentiation of 
spermatocytes and spermatids [76]. miR-449, under the regulation of 
transcription factors CREMtau and SOX5, is significantly up-regulated 
upon meiotic initiation, which is involved in the regulation of gene 
expression in spermatocytes and spermatids [77]. Coincidentally, miR-
34c exhibits a similar effect to that of miR-449 [78]. Both of miR-34c 
and miR-449 have been shown to share some target genes that belong 
to the E2F transcription factor-retinoblastoma regulatory network, 
reflecting a functional complementation [79]. 

The presence of miRNAs is also necessary for spermatogenesis. The 
correct timing expression of transition proteins (TPs) and protamine’s 
(Prms) are essential for sperm chromatin compaction through the 
process of histone-protamine transition [80]. TPs and Prms are 
subjected to extensive translational control that involves in miRNA-
mediated mechanisms. For example, miR-469, a testis-specific miRNA, 
has been demonstrated to target TP2 and Prm2 mRNAs, inhibiting 
their transcripts at the translation level with a minor effect on mRNA 
degradation [81]. On the other hand, miR-122a, predominately 
enriched in late-stage male germ cells, has been shown to repress the 
transcription of TP2 directly through binding to and inducing TP2 
mRNA cleavage [82]. Furthermore, there are another miRNA mediated 
pathway that regulate gene expression through targetting the mRNA 
of heat shock factor 2 (HSF2), a transcription factor that regulates the 
expression of numerous genes required for normal spermatogenesis 
[83]. For instance, miR-18 that belongs to the miR-17-92 clusters is 
abundantly expressed in the testis, which could directly target HSF2 
mRNA, influencing a wide range of developmental processes including 
gametogenesis [83]. 

piRNAs in male germ cell development

The complex procedure of male germ cell development requires an 
accurate gene expression and regulation. In contrast to miRNAs that are 
expressed abundantly throughout the process of sperm development, 
piRNAs are expressed predominantly in fetal and neonatal male germ 
cells, pachytene spermatocytes as well as round spermatids, which 
are necessary for the proliferation of SSCs and the differentiation 
of male germ cells [84,85]. In mammals, piRNAs are divided mainly 
into three categories (foetal/pre-natal, post-natal pre-pachytene and 
pachytene) on the basis of their specific phases of expression patterns 
[86]. Moreover, piRNA functions are supported by binding to PIWI 
proteins and other functional adjuncts. There are three PIWI subfamily 
members, including MILI, MIWI and MIWI2, are primarily expressed 
in male germ cells with distinct expression patterns [87,88]. Each 
PIWI protein, binding a specific subset of piRNAs or not, is crucial for 
male germ cell development through guiding TE silencing and mRNA 
repression [89].

In fetal male germ cells, the majority of fetal piRNAs that bind to 
MILI and MIWI2, are involved in the TE silencing at epigenetic and 
post-transcriptional level [90,91]. MILI is a cytoplasmic protein that 
first expresses in PGCs at around the time of sex differentiation and 
then continues its expression throughout the spermatogenesis until 

the round spermatid stage. MIWI2 can be detected in a very narrow 
expression window that from embryonic pro-spermatogonia to the 
very early post-natal spermatogonia, and then it is diminished a few 
days after birth [6]. Moreover, both MILI and MIWI2 localize in germ 
granules, which are loaded with foetal piRNAs and are important for 
the proper function of the piRNA pathway in transposon silencing 
[92]. In addition, there is another piRNAs existing before the pachytene 
stage,that is pre-pachytene piRNAs [86]. Consistent with foetal piRNAs, 
pre-pachytene piRNAs play a similar role in TE silencing [46]. However, 
MILI is the only PIWI protein that is expressed at this stage, and there 
is one protein, namely MAEL, may be involved in the regulation of the 
meiotic TE silencing through the PIWI-piRNA pathway [93].

On the other hand, the pachytene piRNAs associated with MILI 
and MIWI are produced later in pachytene spermatocytes and round 
spermatids in exceptionally large amounts, reflecting their roles in these 
germ cells [94]. The pachytene piRNA expression starts when pachytene 
spermatocytes appear, peaks in postmeiotic round spermatids and 
disappears during spermatogenesis [27]. Meanwhile, MIWI2 expression 
ceases and MIWI expression starts in the pachytene stage in meiosis 
and continues throughout the phase of round spermatid differentiation 
[86]. Although there is a large amount of pachytene piRNAs massively 
increase in pachytene spermatocytes and round spermatids, the exact 
functions of them remain to be characterized. Interestingly, Vourekas et 
al have found that piRNAs had no complementary larger RNA targets, 
but MILI and MIWI seem to have other piRNA-independent functions 
as well [95]. For example, MIWI has been demonstrated to bind 
directly to spermatogenic mRNAs, involving in the formation of mRNP 
complexes or the translational repression of spermatogenic mRNAs, 
which established a novel role of the piRNA pathway that shed light 
on this mechanism in the regulation of male germ cell development 
[95,96].  

Alterations of sncRNAs in sperm development and the 
biomarkers for male diseases

Sperm development is prone to mistakes as demonstrated by 
the falling sperm quality. The increasing incidence of male infertility 
reflects a dysfunction of male germ cell development, and thus the 
characterization of the epigenetic factors that negatively affect sperm 
quality is of great importance for a better understanding of the etiology 
of sterility. Since sncRNAs act as regulatory factors of gene expression 
and epigenetic events during sperm development, the exploration of the 
functions and the potential targets of sncRNAs, and the identification 
for the profiles of cell- and stage-specific distribution of sncRNAs in 
male germ cells would be helpful for more insights into the molecular 
control of sperm development, and may provide a potent tool for the 
diagnosis of infertility and gene therapy for male reproductive diseases.

Dysregulation of miRNAs and Male Infertility
Male infertility is a world-wide disease, and approximates half of 

all cases result from abnormal male germ cell development [97]. It is 
well known that miRNAs, a versatile regulator, can down-regulate the 
expression of genes and control a wide range of biological processes 
[98]. However, the miRNA-mediated mechanisms in male infertility 
are limited. There are some basic assumptions that any disorder or 
failure in miRNA biogenesis, deregulation in expression of certain 
miRNAs and single nucleotide polymorphism in the miRNA binding 
site or related genes may lead to male infertility[10]. Dysregulation of 
pacific miRNAs in sperm development is associated with certain male 
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infertility, which may serve as effective biomarkers for diagnosis of this 
disease. Sequencing of miRNAs in azoospermia and asthenozoospermia 
revealed that the levels of miR-34c-5p, miR-122, miR-146b-5p, miR-
181a, miR-374b, miR-509-5p, and miR-513a-5p are down-regulated 
in azoospermia and increased in asthenozoospermia [99]. Likewise, 
miR-34c-5p was lower in seminal plasma of azoospermic patients 
and higher in seminal plasma of asthenozoospermia patients [99]. In 
addition, miR-19b and let-7a are highly expressed in non-obstructive 
azoospermia and oligozoospermia [100]. 

On the other hand, the dysfunction of miRNAs could also result in 
cells apoptosis. For example, the most abundant sperm miRNA in the 
human is miR-34c and its inhibition in primary spermatocytes seems 
to prevent germ cell from testosterone deprivation-induced apoptosis, 
while its overexpression could trigger cultured germ cells apoptosis 
[101,102]. High-throughput sequencing has identified miR-21, along 
with miR-34c, -182, -183, and -146a, are preferentially expressed 
in SSCs-enriched germ cell cultures. When miR-21 was inhibited 
transiently in SSCs-enriched population, the number of germ cells 
undergoing apoptosis is increased,suggesting that miR-21 is essential 
for maintaining the SSCs population [68]. 

Mutations of PIWI proteins and dysfunction of male germ 
cell development

The PIWI proteins including MILI, MIWI and MIWI2 are 
crucial components in the piRNA pathway, which are essential for 
the maturation and functions of piRNAs. Moreover, they also could 
cleave target nucleic acids as small RNA-guided nucleases, which play 
important roles in the successful completion of sperm production, 
reflecting an essential role for piRNAs in this process [103,104]. It is 
therefore not surprised that mutations of PIWI proteins could result in 
the dysfunction of male germ cell development. 

In fetal male germ cells, there is a dramatic resetting of de novo 
DNA methylation, MILI and MIWI2 establish the repression of TE to 
enforce genomic stability through this pathway. In MILI and MIWI2 
mutants, the biogenesis and profiles of fetal piRNAs are severely 
disrupted, which further results in the hypo methylation in transposon 
genes [88]. It is the hypo methylation that later activates the retro 
transposon genes in spermatocytes, wherein gross cell death occurs. 
These testicular phenotypes resemble remarkably that in the Dnmt3L 
mutant mouse, indicating that DNA demethylation may be a major 
cause of MILI and MIWI2 mutant phenotypes [105]. In addition, it is 
revealed that the increased activities of retro-transposons could also 
lead to a high extent of DNA Double-Strand Breaks (DSBs), which 
results in the defect synapsis of homologous chromosomes in meiotic 
spermatocytes and spermatogenesis stops with meiotic arrest [106].

After birth, there is another mechanism that consisting of MILI, 
MIWI and other epigenetic factors involving in the silence of TE. For 
example, MILI and H3K9me2 exist in meiotic male germ cells and 
MIWI can cleave transposon RNAs directly in another aspect, which 
may be essential for post-transcriptionally TE silencing [107]. In the 
MILI knockout mouse models, there is a notably testicular phenotype 
with spermatogenesis blocked at the pachytene spermatocyte stage, 
which possibly results from the genomic instability due to an abnormal 
TE expression [88]. On the other hand, in the MIWI knockout testis, 
the expression of pachytene piRNAs is significantly reduced, which 
results in round spermatid arrest with no apparent defects in meiotic 
progression and complete lack of elongating spermatids, reflecting that 
spermatogenesis arrested at the round spermatid stage is not capable to 

start the elongation of spermatids [87,88]. In addition, the MOV10L1, 
an RNA helicase, has been shown to act upstream of PIWI proteins in 
the primary processing of pachytene piRNAs [108], and its disruption 
may induce a complete loss of pachytene piRNAs, which further leads 
to the chromatoid body fragmentation and severe DNA damage [109].

Conclusion
Given the increasing cases of idiopathic infertility that results 

mainly from falling sperm quality, the study of regulation in male 
germ cell development is of great importance for elucidating the 
etiology of male infertility. It is already apparent that the combined 
actions of siRNAs, miRNAs and piRNAs have major contribution 
to the highly orchestrated expression of specific genes. It is obvious 
that the dysregulation of specific sncRNAs will result in certain male 
infertility or male germ cell tumors, which may serve as biomarkers for 
the diagnosis and treatment of these reproductive diseases. Moreover, 
we can also assess the fertility potential of specific sperm and select 
high quality sperm used for assisted reproductive treatment through 
sequencing specific sncRNAs. In addition, spermatozoa RNAs can 
be transmitted into oocyte through fertilization process, and we can 
predict the risk of embryo development based on the profiles of specific 
RNAs. On the other hand, sncRNAs could also interact with other 
epigenetic factors, such as DNA methylation and histone modifications, 
to regulate certain genes expression. In the future, it is necessary to 
characterize the regulatory network that involves in the interaction 
between sncRNAs and other epigenetic modifications, which will fetch 
more functional surprises in the event of male germ cell development.
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