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Abstract

Smac mimetics are a very promising new class of anticancer agents demonstrating an acceptable safety profile
and efficacy in some preclinical models of cancers when used as a single agent or in combination with conventional
or nonconventional therapies. Future preclinical and clinical trials could enlarge their spectral of action in
inflammatory, fibrotic and infectious diseases.
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Abbreviations:
cIAPs: Cellular IAPs; IL: Interleukin; MAPK: Mitogen-activated

Protein Kinase; NF-κB: Nuclear Factor kappa-light-chain-enhancer of
Activated B Cells; NODs: Nucleotide-binding Oligomerization
Domain-containing Proteins; PAMPs: Pathogen-associated Molecular
Pat-terns; PRRs: Pattern-recognition Receptors; RIG I: Retinoic Acid-
inducible Gene I; Smac: Second Mitochondria-derived Activator of
Caspases; SMs: Smac Mimetics; TLRs: Toll-like Receptors; TNFR:
Tumor Necrosis Factor Receptor; XIAP: X-chromosome Linked IAP.

Introduction
The inhibitor of apoptosis proteins (IAPs) were initially discovered

in baculovirus in a genetic screen aiming to identify viral proteins able
to block the death of infected cells [1]. IAP homologs were then
described in yeasts, nematode, insects, fishes and mammals based on
structural feature. The IAP family is defined by the presence of at least
one specific domain named Baculovirus IAP Repeat (BIR) located at
the N-terminal end of the protein. Some IAPs also harbor a C-terminal
RING domain that confers an E3-ubiquitine ligase activity (For review,
see [2,3]). Mammalian cells contain 8 IAP members including the X-
chromosome linked IAP (XIAP), the cellular IAP 1 and 2 (cIAP1 and
cIAP2) and the melanoma apoptosis inhibitory protein (ML-IAP) that
exert an anti-apoptotic activity. Among them, XIAP can directly block
the activity of initiator caspase-9 and executor caspases-3 and -7,
thereby inhibiting both intrinsic and extrinsic pathways of apoptosis
[4]. Upon activation of intrinsic pathway, XIAP is neutralized by the
second mitochondria-derived activator of caspases (Smac) that is
released from the mitochondria as a result of the mitochondria outer
membrane permeabilization (MOMP). As an additional checkpoint
preventing unforeseen caspase activation, cIAP1, cIAP2 and ML-IAP

can bind, sequester and target Smac for ubiquitin proteasome system
(UPS)-mediated degradation, thus favoring XIAP in caspase inhibition
[5]. The structural characterization of the interaction of XIAP with
caspases or Smac demonstrated that they bind at the same binding
interface e.i. a surface hydrophobic groove located within some BIR
domains. Thus, Smac acts as a competitive inhibitor of XIAP-caspase
interaction. These results led to the design of synthetic IAP antagonist
compounds mimicking the activity of Smac and named Smac mimetics
(SMs) [6,7]. This brief review will summarize advances on the use of
SMs in cancer therapy and will present recent preclinical studies
highlighting the therapeutic potential of SMs in inflammatory, fibrotic
and infectious diseases (Figure 1).

SMs in Cancer Therapy
Because (i) IAPs display potent anti-apoptotic properties, (ii) their

expression were showed to be upregulated in number of human tumor
samples and correlated with advanced progressive disease,
aggressiveness, and poor prognosis and (iii) they constitute a resistance
factor to anticancer therapy, SMs have been developed for the purpose
of anti-cancer treatments. Number of preclinical studies showed their
capacity to inhibit tumor growth in multiple solid tumors, acute
lymphocytic leukemia (ALL) and multiple myeloma xenograft models
and demonstrated a synergic activity of SMs with conventional
therapeutic agents and with novel therapy e.g. tumor necrosis factor
(TNF) related apoptosis-inducing ligand (TRAIL), proteasome
inhibitors, BH3-mimetics or immune checkpoint inhibitors [6,8-11].
Importantly, these compounds were well tolerated by animals and did
not display toxicity against normal lymphocytes, bone marrow stromal
cells or normal mammary epithelial cells [12]. SMs have entered into
active human clinical trials for review, see [6,13]. They are being
evaluated as a single agent or in combination with an anticancer drug
in both solid tumors and hematological malignancies. The first clinical
trials results demonstrated a good tolerance and target inhibition
[14,15].
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Figure 1: A- Cell signaling activity of IAPs. IAPs are important cell signaling regulators of TNFR signaling pathways. They are required for the
canonical NF-κB activation, MAPK activation and pro-inflammatory cytokine production and they inhibit cell death and the non-canonical
NF-κB activation. IAPs can also control the canonical NF-κB activation in response to PRRs. XIAP blocks apoptosis by inhibiting caspases and
cIAPs and ML-IAP prevent Smac from neutralizing XIAP. Moreover, cIAPs have been involved in inflammasome activation. B- Mechanisms of
action of Smac mimetics. Smac mimetics can bind XIAP, cIAPs and ML-IAP. They favor apoptosis by blocking XIAP-caspase interaction. They
induce the ubiquitin-proteasome system-mediated degradation of cIAP1 and in some situation cIAP2 and XIAP, inhibiting canonical
activation of NF-κB in response to TNFR and PRR engagement, inhibiting inflammasome activation, promoting the non-canonical NF-κB
activation and priming cells to TNF-induced cell death.

As expected, SMs abrogate XIAP-mediated caspases inhibition and
restore apoptotic response in cancer cells. In addition to target XIAP,
SMs also bind the BIR domains of ML-IAP, cIAP1 and cIAP2. SMs
appeared to stimulate the E3-ubiquitine ligase activity of cIAP1, which
results in the auto-ubiquitination and very fast degradation of cIAP1
and in some situation cIAP2 and XIAP. As a consequences, SM cause
the production of TNF-α which can trigger cell death by an autocrine

pathway [3]. These unexpected results highlighted the critical role of
cIAPs as cell signaling regulators. Because of their capacity to bind and
ubiquitinylate important signaling intermediates, they control the
activation of NF-κB (nuclear factor kappa-light-chain-enhancer of
activated B cells) and MAPK (Mitogen-activated protein kinase)
signaling pathways downstream of some members of the TNF receptor
(TNFR) superfamily including TNFR1, TNFR2, CD30 (Cluster of
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differentiation 30), CD40 and TWEAK (TNF-like weak inducer of
apoptosis). They are required for the canonical activation of NF-κB
and MAPK while they block the non-canonical NF-κB activating
pathway and cytoplasmic caspase-activation platform assembly. By
neutralizing XIAP and degrading cIAPs, SMs simultaneously
stimulated NF-κB-mediated pro-inflammatory cytokines production
and prime tumor cells for death receptor-mediated cell death [3]. Thus,
tumor cells become highly sensitive to TNF-α produced by tumoral
cells themselves or by CD8+ lymphocytes and NK (Natural Killer) cells
within the tumor (9). Moreover, the boosted production of pro-
inflammatory signals including IFNγ (Interferon gamma) and IL-2
(Interleukin-2) can elicit antitumoral immune response by promoting
maturation of antigen-presenting cells and enhancing T-cell response
[8,9,16-21].

SMs in Preventing PRR-Dependent Inflammatory
Diseases

More recent studies enlarged the signaling function of IAPs in
antimicrobial innate immunity by demonstrating their role in signaling
pathways initiated by pattern-recognition receptors (PRRs) [22]. These
include cytosolic nucleotide-binding oligomerization domain-
containing proteins (NODs) activated in response to intracellular
bacterial infection, membrane-bound Toll-like receptors (TLRs) that
sensing pathogen-associated molecular patterns (PAMPs) originating
from bacteria, viruses, fungi, parasites and cytosolic retinoic acid-
inducible gene I (RIG I) that recognizes viral RNA. IAPs are recruited
on the receptor-associated intracellular signaling complex upon
receptor engagement and participate to the signal transduction
inducing NF-κB and MAPK activation and the expression of pro-
inflammatory genes [23]. Moreover, cIAPs have been in involved in the
maturation of IL-1β and IL-18 by controlling the assembly of
inflammasome (for review, see [22]). Thus, inhibiting IAPs with SMs
could ultimately decrease the production of inflammatory cytokines,
reduce the recruitment of immune cells at the site of inflammation and
therefore could potentially prevent tissue damage caused by sepsis and
chronic inflammatory conditions. A recent in vivo investigation
demonstrated a benefic effect of the SM birinapant on liver injury and
survival in endotoxemic mice [24].

SMs in Fibrotic Diseases
In 2016, Ashley et al. highlighted the therapeutic potential of SMs in

fibrotic diseases [25]. Pulmonary fibrosis is a progressive disease with a
high mortality rate and the therapeutic options available to patients are
limited. Fibrosis can be triggered by exposure to various injuries such
as infection, allergens, drugs, toxins or it occurs for unknown reasons
(case of the idiopathic pulmonary fibrosis: IPF). Fibrosis is
characterized by the differentiation of fibroblasts into myofibroblast-
like cells producing extracellular matrix. The accumulation of
extracellular matrix in the alveolar space causes irreversible damage
affecting vital function of lung. An upregulation of XIAP- encoding
gene has been reported in patient-derived IPF fibroblasts [26]. The role
of a chronic inflammation and specially IL-1β has been demonstrated
in a mice model of bleomycin-induced lung fibrosis [27]. Treatment of
fibrotic mice with the SM AT-406 significantly decreases the
expression of pro-inflammatory cytokines and reduced collagen
accumulation. Interestingly, AT-406 has also an antifibrotic activity
when administrated latter, after the early inflammatory phase of the
disease [25].

SMs in Clearing Virus-infected Cells
IAPs were initially discovery for their properties to block apoptosis

of viral infected insect cells, allowing viral propagation [1]. In
mammals, cIAPs are a survival factors in HBV (hepatite V virus)
infected hepatocytes, allowing viral persistence [28]. Therefore, SMs
could be a good option to selectively clear latently infected cells. The
efficiency of Smac mimetics in treating HBV infection has been
evaluated in an immunocompetent mouse model of chronic HBV. SMs
treatment significantly decreases the serum HBV DNA and serum
HBV surface antigen level, reduces the amount of HB core antigen
(HBcAG)-positives hepatocytes and decrease the content of HBV
genome in infected livers. Moreover, SMs improve the efficiency of the
antiviral nucleoside analog entecavir in clearing infection [29].

Conclusion
SMs are very promising novel class of therapeutic agents for treating

cancer. Ongoing and future clinical trials will determine the efficiency,
safety and drugs combinations. The ongoing investigations of
mechanistic effects of SMs and the analysis of the genetic and
environmental tumors profile should make possible to define
hallmarks for predicting the response to SM treatment and for
determining the appropriate indications. More work is required to
decipher the relationship between IAPs and several cell signaling
pathways, to determine the importance of this class of proteins in the
physiopathology of inflammatory, fibrotic and infectious diseases and
to analysis the potential therapeutic of IAP antagonists in these
diseases. SMs are non-specific compounds targeting several IAPs.
Ongoing work will determine whether more selective antagonists to
one member of the family or to one specific IAP function could be
relevant in a particular pathological context.
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