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INTRODUCTION

Gliomas are one of the most common and malignant brain 
tumours [1]. They can occur anywhere in the central nervous 
system but primarily occurs in the brain, spinal cord and the glial 
tissues [1]. However, it is still unknown whether gliomas arise from 
normal glial cells, glial or neural progenitors, stem cells, or other 
cell types. Histopathology has traditionally been used to diagnose 
and classify gliomas. Glial tumours were classified as astrocytic 
tumours, oligodendroglial tumours, oligoastrocytic tumours, 
ependymal tumours, neuronal (gangliomas) and mixed neuronal-

glial tumours by the World Health Organization (WHO) in 2007 
[2]. These includes grade I tumours like pilocytic astrocytomas, 
pleomorphic xanthoastrocytomas, and subependymal giant cell 
astrocytomas, as well as more common infiltrating gliomas like 
grade II oligodendrogliomas and astrocytomas, and grade III 
anaplastic oligodendrogliomas, anaplastic oligoastrocytomas, 
anaplastic oligodendroma and Glioblastoma (GBM) [2].

Glioblastoma is a fatal, aggressive brain tumour [3]. The most 
common and malignant primary brain tumour in adults is 
glioblastoma. Necrosis and endothelial proliferation are the 
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histopathologic markers that define grade IV, the highest grade 
in the World Health Organization (WHO) classification of brain 
tumours. Glioblastomas that are developed from the previously 
diagnosed WHO grade II or grade III gliomas, are classically 
referred to as “secondary glioblastoma” [4].

Both in the kreb cycle and in the cytoplasm, the Isocitrate 
Dehydrogenase (IDH) family of enzymes catalyses the conversion 
of isocitate to alpha-ketoglutarate while also converting 
Nicotinamide Adenine Dinucleotide Phosphate (NADP+) to 
reduced NADP+(NADPH) [5]. In a number of malignancies, 
somatic mutations in genes encoding two isoforms of Isocitrate 
Dehydrogenase (IDH1 and IDH2) are found. Although other 
substitutions at these or surrounding positions are seen, the 
great majority of mutations are caused by an amino-acid change 
at position 132 in IDH1 from arginine to histidine (R132H) 
and at position 172 in IDH2 from arginine to lysine (R172K) 
[6,7]. In gliomas, all pathogenic mutations occur in the sub-
state recognition site, which drastically alters the enzyme active 
sites, resulting in a neomorphic shift in IDH function. Proteins 
produced by IDH gene mutations convert alpha-ketoglutarate to 
the probable oncometabolite 2-Hydroxyglutarate (2HG) [8].

GBM is found in around 80% of Patients with GBM a dismal 
prognosis and, if left untreated, they expire quickly. The majority 
of patients die within two years of diagnosis, and the overall 
survival duration is less than a year.

While the morphologies of GBM tumours may be similar or 
overlap, variations in tumour growth and molecular pathways 
necessitate diagnostic beyond histological profiling [9]. The 
requisite excision or biopsy can be troublesome due to the 
location and delicate nature of brain tissue, making histological 
profiling a task in and of itself. Non-invasive diagnostics that can 
better identify and discriminate GBM tumours will clearly speed 
up non-resection therapy techniques, enhancing patient survival 
[10].

Malignant tumors such as GBM have highly diversified 
phenotypic and molecular characteristics at both intratumour 
as well as intertumour levels [11]. Interlesion heterogeneity also 
known as intertumour heterogeneity refers to the differences 
in the tumour profiles and characteristics found between 
different patients [11]. Intralesion heterogeneity also known as 
Intratumor heterogeneity refers to tumor cell populations (with 
different molecular and phenotypical profiles) within the same 
tumor specimen or patient [11]. Oncogenic mutations cause 
cancer, which is often characterized as a hereditary disease [12]. 
Intratumoral heterogeneity has long been linked to genetic 
variability inside cancer cell populations, in a similar gene-centric 
paradigm. Recent research reveals, however, that a tumour is 
heterogeneous in practically every apparent phenotypic attribute 
as a result of non-genetic sources of variability as well as genetic 
factors [13].

Heterogeneity in tumours is linked to a poor prognosis and 
outcome [11-13]. Intratumor heterogeneity is regarded to be 
one of the most important predictors of therapeutic resistance 
and treatment failure, as well as one of the main causes of poor 
overall survival in cancer patients with metastatic illness [14]. 
Different layers of complexity exist in tumour heterogeneity. 
Individual patients, lesions, and cell populations should be 
thoroughly characterized at various intervals because cancer is 
a heterogeneous dynamic target [15]. Tumor heterogeneity has 
posed a significant barrier in matching patients with the proper 
medication at the right time, making precision medicine aims 
difficult to achieve [16].

Cancer Stem Cells (CSCs) (also referred to as tumor-initiating 
cells) are a source of functional cellular heterogeneity in tumors. 
Genetic heterogeneity resulting from DNA sequence variation 
and/or whole chromosomal and focal Copy Number Variations 
(CNVs) is another source of intra-tumor heterogeneity. Aneuploid 
or chromosomally unstable populations of tumour cells with 
aberrant numbers of chromosomes produce whole chromosome 
CNVs [17]. Aneuploidy is a stable state in which aneuploid 
cells in a tumour have the same defective karyotype, and it is 
common in cancer, with aneuploidy being seen in over 90% of 
solid tumours. Furthermore, many aneuploid tumour cells have 
Chromosomal Instability (CIN). CIN is characterized by a high 
incidence of chromosome mis-segregation that results in random 
chromosome losses and gains [18].

Many efforts have been made by researchers and oncologists 
to understand the origin of GBM, but the reason still remains 
unclear. Due to this, the etiology of GBM remains unknown. 
Out of the many hypotheses, two of them suggest the origin of 
GBM. One of them suggests that GBM arises from Cancer Stem 
Cells (CSCs) that possess the ability to self-renew, differentiate 
and encourage tumor formation. The second theory suggests 
that GBM progresses due to intertumor heterogeneity [19]. This 
point’s towards an important area of research for identifying the 
intertumor differences in the cancer stem cells populations in 
order to achieve therapeutic targets.

The main goal of this study was to identify the underlying gene 
expression changes in a single tumour cell owing to intra-tumor 
heterogeneity. In the present study we investigate the impact of focal 
Copy Number Variation (CNV) due to chromosomal instability 
on gene expression profiles by analyzing the transcriptomes of a 
glioblastoma Cancer Stem Cell (CSC) line, GliNS2 CSCs, that 
is chromosomally unstable and a control Normal Neural Stem 
Cell (NSC) line, CB660 NSCs. Besides finding gene expression 
profile differences intra-tumourly, identification of affected 
biological pathways would help further in the identification of 
molecular mechanisms which encourage the rate of molecular 
hetereogeneicity.
Hence, in the present study, we investigate the transcriptomic 
profiles of 75 Glioma Neural Stem Cells samples (GSC) and 59 
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significant differentially expressed genes among the same tumour 
sample, we scrutinized the most affected biological pathways 
which revealed important results into the neuronal processes like 
axonal growth cone dynamics, extracellular matrix organization, 
synaptogenesis and progenitor dynamics as the transformations 
happen from GSCs to GBM or NSCs to GBM. Besides, the results 
presented here reveal new insight into the progression of GBM 
due to molecular heterogenecity and the identification of novel 
genes involved in gliomagenesis and intra-tumour differences.

METHODOLOGY
Software’s used in this study

Server T-bio Info
Website: https://server.t-bio.info/
The Principal component analysis, H-clust and heat map plots 
was done using this cloud based server.

Metaboanalyst

Website: https://www.metaboanalyst.ca/

Metaboanalyst was used to generate PCA plots using the 
associated data set of this study. The T-test and volcano plots were 
also generated using metaboanalyst.

Enrichr pathway analysis

Website: https://maayanlab.cloud/Enrichr/

The gene ontology analysis was performed using the enrichr 
knowledge database.

Data sets

For this study, the process of single-cell RNA high-throughput 
sequencing processed data for glioma cancer stem cells was taken 
from NCBI GEO [GSE132172]. The dataset of this project was 
generated by Zhao Y et al., (2019) and was published as a bio 
project on NCBI with accession number (PRJNA546254). This 
dataset consisted of RNA-Seq data retrieved from CB660 normal 
neural stem cell lines and GliNS2 glioblastoma stem cell lines. 
A total of 134 samples were present on the associated SRA run 
selector, 59 samples of Normal Neural Stem Cells (NSCs), and 
75 samples of Glioma Stem Cells (GSCs) were selected and 
downloaded as an SRA Run. Table 1 represents the same number 
and the sample size per group.

Table 1: Tabular representation of sample sizes and groups.

Disease state Number of samples

Glioblastoma 75

Normal neural stem cells 59

Data pre-processing: The high throughput sequencing processed 
data was quantile normalized signal data. The processed data 
had gene symbols. The soft family files had other meta-data 
information if required.

Down-stream analysis

Principle component analysis: To understand the patterns of gene 
expression differences among the different genes from the same 
GBM tumour, comparative data analysis was performed using the 
Principal Component Analysis (PCA) module integrated on the 
T-bio info server (https://server.t-bio.info/). PCA is a dimensional 
reduction technique that is applied to larger data sets, in order 
to visualize the variation between samples in a particular data set 
[20]. PCA was performed between these 2 conditions namely: (a) 
Glioma Neural Stem Cells (GSCs) and (b) Normal Neural Stem 
Cells (NSCs). Eventually, the PCA plots were generated using 
metaboanalyst (https://www.metaboanalyst.ca/).

Differential gene expression analysis: The differential gene 
expression analysis was performed using the Deseq2 [21] tool on 
the metaboanalyst platform to derive significantly differentially 
expressed genes between GSCs and NSCs samples. DESeq2 is a 
tool based method for differential analysis of count data that uses 
shrinkage estimation for dispersions and fold changes to improve 
the stability and interpretability of estimates. This helps to enable 
a more quantitative analysis focused on the strength rather than 
the mere presence of differential expression. The significant 
genes were identified with the threshold of [p.adj value <0.05, 
Fold change (>= ± 1.5)].

Assessment of discriminatory potential of significant genes: In 
order to visualize and see the clustering patterns obtained from 
the potential significant genes, H-clustering [22] and a heat map 
[23] were formed using the 134 intra-tumour GBM samples 
(75 GSCs and 59 Normal Neural Stem Cells (NSCs)) with the 
selected set of significant genes. These significant genes were 
generated using the Volcano plot tests and T-tests which were 
run using metaboanalyst software. H-clustering is an important 
technique of machine learning which is used to group similar 
data points such that the points in each same group are more 
similar to each other than the points in the other groups. The 
groups formed are known as “clusters”. H-clustering (distance: 
euclidean, linkage: average) was performed to understand the 
discriminatory potential of significant genes in distinguishing the 
gene expression patterns between the two cell lines of GSCs and 
NSCs samples. Later, heat maps were drawn using the T-bio-info 
server in order to elucidate the pictorial representation of specific 
up-regulated and down-regulated genes out of the potential 
significant genes obtained using volcano and T-tests.

Gene enrichment analysis: In order to draw out the biological 
significance of the differentially expressed genes, a gene set 
enrichment analysis [24] was performed. Gene Set Enrichment 
Analysis (GSEA) is a powerful analytical method to interpret gene 
expression data [25]. GSEA helps one find the genes involved in 
molecular, biological and cellular pathways. Moreover, GSEA was 
performed using enrichr platform [26], which is an easy-to-use 
intuitive enrichment analysis web-based tool providing various 
types of visualization summaries of collective functions of gene 
lists.

Normal Neural Stem Cells (NSC) samples to understand the gene 
expression differences among them. After the identification of 
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RESULTS

In the present study we analyzed, the transcriptomes of a 
glioblastoma Cancer Stem Cell (CSC) line, GliNS2 CSCs, that 
is chromosomally unstable and a control normal, diploid Neural 
Stem Cell (NSC) line, CB660 NSCs.

Comparative data analysis

The data was further analyzed using the principle component 
analysis method [27], on the software metaboanalyst. Figure 1 
represents the variations between GBM tumour (GSCs) and 
Normal Neural Stem Cell (NSCs) gene samples. Moreover the 
Figure 2, below represents a 3D PCA Plot and Figure 3 represents 
PCA pipeline on T-bio Infor server.

Downstream analysis

It is evident from the PCA results in Figure 1 that the variation 
between the genes of glioma neural stem cells samples and 
normal neural stem cells samples is maximum. This is observable 
from the two different clusters formed in PCA 3D Plot and the 
% differences as well. To further analyze the data we carried out 
a comprehensive comparative analysis between glioma neural 
stem cells samples and normal neural stem cell samples. Followed 
by that, in downstream analysis, we performed differential gene 
expression analysis between the genes glioma tumour cell sample 
and normal neural stem cell sample. Also, when the glioma 
tumour stem cell sample and normal neural stem cell sample 
was examined in a specific scatter plot [26], it was obvious that 
there was an improvement in principal components, and the 
two groups were separated from each other which showed clear 
distinction. The observable clear distinction between these 
two groups was enough to lead us further for investigation the 
tumour’s transcriptomic profiles.

Differential gene expression analysis

The differential gene expression analysis [28] between the genes 
of Glioma Neural Stem Cells (GSCs) and Normal Neural Stem 
Cells (NSCs) samples scrutinized 383 significantly differentially 
expressed genes between GSCs and NSCs [padj. value <0.05, 
log2 fold change (>=+/-1.5)]. Among them, 109 genes were found 
to be significantly upregulated (p.adj value <0.05, Fold change 
>=+1.5) genes and 653 genes were found to be significantly 
downregulated (p.adj value <0.05, Fold change <=-1.5) in GSCs 
in comparison to NSCs. A volcano-plot for the differentially 
expressed genes can be seen in Figure 4.

Figure 1: PCA between GBM tumour and Normal neural stem cell 
gene samples. Note: ( ) Glioblastoma cancer stem cells, ( ) Neural 
stem cells.

Figure 2: A 3-D PCA Plot. Note: ( ) Glioblastoma cancer stem 
cells, ( ) Neural stem cells.

Figure 4: A volcano Plot depicting the significant(Up-regulated & 
down-regulated genes). Note: ( ) Sig.Down [232], ( ) Sig.Up 
[151], ( ) Unsig. [2116].

Figure 3: PCA Pipeline on T-Bio Infor server.
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Clustering and heat map revealed variations among 
glioma neural stem cells and normal neural stem cells 
samples

Hierarchical clustering [29] was performed to visualize intra-
tumour gene expression variations between the two groups 
namely GSCs and NSCs tumour. The main aim of hierarchical 
clustering was to understand if the significantly differentiated 
genes are capable of forming clusters based on their gene 
expression profiles. The clustering results show clear distinct 
clusters formed between GSCs and NSCs samples as shown in 
Figure 5. The heat map [30] representing the gene expression 
patterns between GSCs samples and NSCs samples is shown in 
Figure 6. The heat map indicates specific up-regulated and down 
regulated genes.

Pathway enrichment analysis

To understand the involvement of the differentially expressed 
down-regulated and up-regulated significant genes, pathway 
analysis [31] was performed using the enrichr [32,33] knowledge 
database. Figure 7 depicts what biological, molecular and cellular 
pathways are affected due to the up-regulated genes. Figure 
8 depicts what biological, molecular and cellular pathways are 
affected due to the down-regulated genes.

The top hits for the major pathways affected due to the up-
regulated genes included the axon-guidance pathway (KEGG 
Pathway analysis), extracellular matrix organization (GO biological 
pathway analysis), Protein homodimerization activity pathway 
(GO molecular pathway analysis) and collagen containing extra-
cellular matrix pathway (GO cellular pathway analysis).

Similarly, the top hits for the major pathways affected due to 
the down-regulated genes included the human T-cell leukemia 
type-1 infection pathway (KEGG pathway analysis), negative 
regulation of cell matrix pathway (GO biological pathway 
analysis), P-transmembrane receptor protein tyrosine kinase 
activity pathway (GO molecular pathway analysis) and collagen 
containing extra-cellular matrix pathway (GO cellular pathway 
analysis).

Here on, we down-streamed our analysis, and focused on 

Figure 5: Hierarchical Clustering results as dendrograms. Red box 
clusters indicate the GSCs samples, and the green one represents 
the clusters of the NSCs samples.

Figure 7: Gene ontology and KEGG pathway analysis of Up-
regulated genes.

Figure 8: Gene ontology and KEGG pathway analysis of down-
regulated genes.

Figure 6: Heatmap representing the Gene expression patterns of 
significantly differentially expressed genes.
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disturbed extra-cellular matrix organization pathways due to the 
up-regulation of specific genes. Some of the major genes involved 
in the progression of disturbed extra-cellular matrix organization 
pathway are LOX, LOX1, COL6A2, COL8A1, COL3A1, LUM, 
TGFB1, LAMA2, POSTN, MFAP5, MFAP2, FBN2, FLRT2 and 
HTRA1.

DISCUSSION

The origin of glioma and progression of gliomagenesis still 
remains unknown [34]. With no known specific etiological 
feature addressed to yet, this necessitates more investigation 
into the involvement of glioma tumours. We aimed to establish 
a strong connection between glioma tumour formation and the 
underlying gene expression alterations in this study using the 
single cell RNA-Seq analytic approach on the transcriptome 
profiles of genes within glioma tumor cell and normal neural 
stem cell. In our comparative analysis, where we performed 
the principle component analysis, we observed clear clusters 
formed between GSCs and NSCs tumour cell line sample. This 
supports the idea that the difference between glioma neural 
stem cells and normal neural stem cells is due to differences in 
gene expression among the same tumour at the transcriptomics 
level. Further studies with larger number of sample sizes would 
reveal the changes occurring exactly during this transformation 
at the gene level at the intra-tumour region. Furthermore, based 
on the differential gene expression analysis using the Deseq-2 
tool on the metaboanalyst software between the Glioma Neural 
Stem Cell tumour (GSCs) and Normal Neural Stem Cell (NSCs) 
samples we scrutinized 383 significantly differentially expressed 
genes between GSCs and NSCs [padj. value <0.05, log2 fold 
change (>=+/-1.5)]. Among them, 109 genes were found to be 
significantly up-regulated (p.adj value <0.05, Fold change >=+1.5) 
genes and 653 genes were found to be significantly down-regulated 
(p.adj value <0.05, Fold change <=-1.5) in GSCs in comparison to 
NSCs. Followed by that, in order to get the visual representation 
of the data analysis results we plotted the dendrograms, heat 
map, and hierarchical clustering which revealed the significance 
of significantly expressed genes among the GBM tumour and 
normal stem cell sample. A heat map generated from these 
significant genes showed that some of the genes were down-
regulated in GSCs tumor cell whereas some of them were up-
regulated in normal neural stem cell, highlighting differential 
expression of genes within a single cancer cell population.

Gene ontology analysis performed using enrichr based on 
significant gene sets showed obvious involvement of genes in 
pathways like axon growth curve pathway, molecular nervous 
system development pathway, amyloid beta-binding pathways, 
some of the amino acids metabolism pathway, axon guidance, 
extracellular matrix organization, collagen binding pathways, 
and receptor-ligand binding pathways. Furthermore, one of the 
most affected pathways due to the up-regulated genes as per our 
biological processes pathway analysis was the extracellular matrix 
organization pathway.

The Extracellular Matrix (ECM) is a non-cellular meshwork of 
cross-linked macromolecules that constitute a dynamic, supra-
molecular framework. It delivers physical and chemical cues that 
drive cancer progression and spread [35]. The Extracellular Matrix 
(ECM), which is a primary structural component of the tumour 
microenvironment, is a highly dynamic structure, and there is 
growing evidence that ECM proteins provide a physical and 
metabolic habitat for CSCs. A disruption in the balance between 
ECM synthesis and secretion, as well as altered expression of 
matrix-remodeling enzymes, causes aberrant ECM dynamics 
in cancer [36]. However, studies suggest that the tumor-derived 
ECM has a different biochemical composition and is stiffer than 
normal ECM.

Sequestered growth factors, ECM biomechanics, and 
ultrastructural organisation, among the other biochemical and 
biomechanical signals present in the ECM, are recognized by 
cells and transformed into downstream cellular responses. These 
downstream cellular responses work together to slow or stop the 
progression of cancer. Disrupted turnover of ECM components, 
as well as aberrant or absent post-translational modification, 
are among the alterations seen in many illnesses, including 
cancer. Furthermore, the ECM is a highly ordered structure, 
and its functional qualities are dependent on ECM component 
assembly precision. Subtle alterations in these components’ 
stoichiometry may have biological repercussions that affect tissue 
function. A Cancer-Associated Fibroblast (CAFs) is key stromal 
cells in the tumour microenvironment that can be trained and/
or recruited by tumour released substances [36]. CAFs’ ability to 
manufacture and alter ECM components has a significant impact 
on tumour growth. Understanding the heterotypic interactions 
between tumour cells, the ECM, and CAFs in the tumour 
microenvironment can provide insight into the mechanisms that 
support tumour growth and metastasis [37].

All this suggests, that ECM has major role in cell migration, 
cell proliferation, cancer stemness, tissue homeostasis, and 
collagen secretion. Taking the upper hand, ECM stops the 
cancer progression while secretion of various proteins such as 
collagen binding proteins, laminins, heparin family proteins, 
and integrin’s. However in our study, up-regulation of the extra 
cellular matrix organization pathway suggests the over activation 
of this biological pathway. Over activation of any biological 
processes leads to an enhanced activity of that pathway. Here 
in the case of up-regulation of extra cellular matrix pathway, it 
secretes a higher amount of proteins, collagen and other growth 
factors. Collagen can help cancer cells grow and migrate, but 
new research has found that it can also impact the function 
and phenotype of tumor-infiltrating immune cells such Tumor-
Associated Macrophages (TAMs) and T cells [38]. Hence 
over-secretion of collagen allows more cancer stem cells to be 
transformed to cancerous malignancies and also in cancer 
tumour cell proliferation and metastasis. The lack of collagen has 
also been linked to malignancies growing more quickly, according 
to research. Hence secretion of Collagen binding proteins by 
ECM in right required amounts imparts immune function of 
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preventing the tumour cell proliferation and re-growth. However 
Under or over secretion of Collagen due to disturbed ECM 
pathways provides a way for tumour cell proliferation and other 
cancerous metastatic pathways.

To overcome this problem and impart therapeutic resistance 
towards the up-regulation of Extra cellular matrix pathway 
organization we can target the genes discovered in our study such 
as LOX, LOX1, COL6A2, COL8A1, COL3A1, LUM, TGFB1, 
LAMA2, POSTN, MFAP5, MFAP2, FBN2, FLRT2 and HTRA1. 
Targeting these genes would help us combat the over-activation 
of the extra cellular matrix organization pathway. This would 
provide a helping hand towards controlling the GBM tumour 
cell proliferation.

CONCLUSION

ECM components in a tumour microenvironment may 
nevertheless pose a number of problems that could jeopardize 
an otherwise successful treatment programme. To begin with, 
ECM proteins have been proven to operate as a physical barrier 
to medicine delivery to cancer cells. Second, ECM proteins can 
de-differentiate non-CSCs into CSCs, making it more difficult 
to eliminate all CSCs. Finally, because ECM influences immune 
cell recruitment, dysregulated ECM components may obstruct 
prospective immunotherapeutic techniques. Finally, the ECM is 
a complex and dynamic system: Different ECM molecules are 
expressed at different times and in different tissues and different 
isoforms of the same molecule might play conflicting roles in 
cancer stemness depending on the circumstances. Given these 
concerns, future research should focus on elucidating the role 
of ECM components in cancer stemness in order to develop 
medicines that effectively eliminate all CSCs.

FUTURE DIRECTIONS

In future studies, may be accessing the precise role of Collagen 
protein coding genes in relation with Glioblastoma multiforme 
cancer could help us achieve therapeutic targets for GBM. 
However limited number of samples was a limitation of this 
study, which could be overcome with larger sample size. Apart 
from this, analyzing the role of genes like LOX, LOX1, COL6A2, 
COL8A1, COL3A1, LUM, TGFB1, LAMA2, POSTN, MFAP5, 
MFAP2, FBN2, FLRT2 and HTRA1 which contribute to the 
significantly up-regulated disturbing process of the extra cellular 
matrix organization pathway in humans, could help us achieve 
therapeutic targets for treating this fatal brain tumour.
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