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Abstract
Systemic lupus erythematosus (SLE) and primary Sjögren’s

syndrome are two systemic autoimmune diseases, which are believed
to develop when genetically predisposed individuals undergo
epigenetic modifications in response to environmental factors. Recent
advances in the understanding of the pathophysiology of these two
diseases suggest a multi-step process involving environmental factors
leading to distinct cell specific deregulation of the epigenetic
machinery, and the effect is reinforced in those patients with risk
variants mapping to epigenetically-controlled immune regulators.
Finally, it was observed that the PKC-delta/Erk/DNMT1 pathway was
altered in both diseases and the effects could be reversed thus
providing arguments to suggest that therapeutic strategies targeting
this pathway would be effective in both diseases.
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Introduction
Recent advances in our comprehension of the pathophysiology of

Autoimmune diseases (AID) strongly suggest a multi-step process that
involves environmental factors (e.g. viruses, tobacco, drugs), followed
by deregulation of the epigenetic machinery (e.g. DNA demethylation,
histone modifications), which in turn specifically affects the immune
system and/or the target organs and, last but not least, this process is
amplified in the case of genetic mutations [1,2]. As a consequence,
autoreactive lymphocytes and autoantibodies (Abs) are produced
leading to development of the disease [3]. At the crossroads of
environmental and genetic factors, epigenetic processes are
deregulated and, in order to highlight important similarities and
differences between AID, we have selected systemic lupus
erythematosus (SLE) and primary Sjögren’s syndrome (pSS) as models
(Table 1).

Environmental factors
Several lines of evidence strongly support a critical and pathogenic

role for environmental factors and subsequent epigenetic deregulation

in SLE and pSS development. Such assertion is based on the
determination of the disease concordance rates (CR) for monozygotic
twins (MZ) revealing a CR of 24-57% for SLE and a CR of 15-25% for
pSS, thus supporting an intermediate scenario in which genetics and
environmental factors are both involved [1]. Geoepidemiology
Analysis has given results that highlight differences between the two
diseases since the highest rate of pSS is reported in northern countries
while the worldwide distribution of SLE is more homogeneous [4].
Sunlight exposure, smoking, and industrial pollution were associated
with SLE, while viruses and psychological stress are reported as
contributing factors in pSS [5]. Direct evidence has been provided that
UV light, cigarette smoking, and chemicals can induce important
epigenetic changes. Regarding drug-induced AID, hydralazine and
procainamide, two drugs known to interfere with DNA methylation
are well known to induce SLE and SS in both humans and mice. As a
whole, these observations strongly suggest a key role-played by DNA
methylation and DNA demethylation inducers in the development of
these two diseases [6,7].

Retrotransposons
Another argument to consider, with regards to epigenetic

deregulation in AID, is to the detection of abnormal levels of
retrotransposons and, among these, human endogenous retroviruses
(HERV) [8]. Inserted within the human genome (8%), HERVs are
controlled at the epigenetic level by DNA methylation and, when such
control is impaired, they can affect the human genome in different
ways. One example is related to the human T cell leukaemia related
endogenous retrovirus (HRES-1) that is inserted in the long arm of
chromosome 1 at position 1q42. DNA methylation controls HRES-1
expression [9], and when expressed, HRES-1 produces a p38gag
protein that can induce the development of Abs as observed in 29% of
patients with SLE, and 10% of patients with pSS in contrast to 1.5% in
healthy donors [10]. An association between SLE and HRES-1
polymorphisms has been described [11]. In minor salivary glands from
pSS patients, several HERV-E elements were reported including the
SLE T cell provirus HERV-E 4.1 [12]. Another example is HERV-CD5
that is integrated into chromosome 11 upstream of the host cd5 gene
exon 1 and downstream of the cd6 gene [13]. This integration occurred
just prior to the divergence of hominoids from old world monkeys 25
million years ago [14]. In SLE B cells, defective DNA methylation at
HERV-CD5 promoter introduces an alternative promoter for the cd5
gene, and enables transcription of a fusion transcript with the
consequence of an intracellular variant of CD5 [15,16], which could, in
turn, promote B cell autoreactivity [17,18].
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SLE pSS

Environmental factors
Drugs (procainamide, isoniazide) Drugs (procainamide, isoniazide)

UV lights, smoking Virus, stress

Monzygotic twins 24-57% concordance rate 15-25% concordance rate

Retrotransposons

HRES-1 (T and B cells)  

HERV-E 4.1 (T cells) HERV-E 4.1 (minor salivary glands)

HERV-E CD5 (B cells)  

DNA methylation

↓PkC delta-Erk ↓PkC delta-Erk

↓DNMT1, DNMT3a ↓DNMT1

↑Gadd 45 alpha, MBD4 ↑Gadd 45 alpha

Histone modifications
↑H3-H4 hypoacetylation unknown

↑H3k9 trimethylation unknown

Genetic risk variants
Long range regulatory sequences Long range regulatory sequences

B cells>T cells B cells>monocytes

Reversibility Anti-CD20 (B cells) Anti-IL-6R (epithelial cells)

Table 1: Similarities and differences influencing epigenetic factors in systemic lupus erythematosus (SLE) and primary Sjögren’s syndrome (pSS).

Figure 1: Epigenetic modifications in response to environmental
factors.

Epigenetic modifications and cellular specificity
In SLE, T cells, B cells and monocytes are demethylated due to a

decrease in the protein kinase (PKC)-delta/Erk/DNA methyl
transferase (DNMT)1 pathway, and an increase in the enzymatic
activity of Gadd45alpha and MBD4 [19]. T cell PKC-delta inactivation
induces a lupus-like disease in mice [20]. A similar scenario is reported
in pSS, as DNA demethylation results from a reduction of the PKC-
delta/Erk/DNMT1 pathway and an increase of Gadd45alpha, but with
the notable exception that the target cell is different and concerns
minor salivary gland epithelial cells (SGEC) in pSS [21]. Changes in
histone modifications are also detected in CD4 T cells from SLE
patients, with global H3 and H4 hypoacetylation and hyper H3k9
trimethylation [22].

Genetics
Upto forty non-HLA genetic associations were characterized in SLE

and pSS, and the list is growing with development of genome wide
association studies (GWAS) and next-generation sequencing (NGS)
technologies which contribute to the characterization of rare single
nucleotide polymorphisms (SNPs), new copy number variations
(CNV) and microsatellites [23]. The development of the ENCODE
(Encyclopedia of DNA elements) and roadmap Epigenomic programs
were decisive for our comprehension of the associated causal genetic
risk-factors revealing that they are present predominantly within cell-
specific long range gene-regulatory sequences which are located
outside promoters, protein coding regions, splice junctions, and 3’
UTRs [24]. Histone acetylation is effective to control long-range
regulatory sequences by controlling transcription factor binding and in
turn transcription. However, such control may be altered in the case of
genetic risk variants and such effect would predominantly affect B cells
in both SLE and pSS [23], while it is T cells that are affected in nearly
all AID [1].

Reversibility and cytokines
The anti-CD20 monoclonal antibody (mAb) B-cell-depleting agent

rituximab is effective in both SLE and pSS [25-27] and targeting
cytokines such as BAFF and IL-6 is also effective in management of
SLE [28]. Part of this activity may be attributed to the powerful
influence of the biotherapies on the epigenetic machinery. In pSS,
treating patients with anti-CD20 mAb therapy restores global DNA
methylation in SGEC [21], and the utilization of the anti-IL6 receptor
mAb itolizumab in SLE B cells repairs the defective Erk/DNMT1
pathway and DNA methylation [16,29].
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Conclusion
The arguments presented here indicate that epigenetic changes

(DNA demethylation, histone modifications) confer a risk for SLE and
pSS suggesting a strong argument for epigenetic causality in genetically
predisposed individuals (Figure 1). Another important point is related
to the cellular specificity, which concerns mainly lymphocytes in the
case of SLE and epithelial cells in the case of pSS. However, it was also
observed that the process was reversible, and that both diseases could
be induced by DNA demethylating drugs and are related to a defective
PKC-delta/Erk/DNMT1 pathway. As a consequence it can be
postulated that drugs controlling this pathway would undoubtedly
have benefits for SLE and pSS prevention and treatment [30,31].
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