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Abstract

Plant pathogens, and photosynthesis inhibiting herbicides, can both damage photosystem Il (PSll), causing it
to be highly sensitive to damage by light energy, and to release high levels of reactive oxygen species (ROS). This
photoinhibition of PSII could possibly be the source of the strong oxidative burst associated with the pathogen-
induced, hypersensitive defense response (HR). To examine a possible mechanism of how the HR-associated
ROS burst could originate from PSII inhibition, we compared the transcriptome responses in soybean undergoing
photoinhibition induced by HR, to soybean undergoing photoinhibition induced by the herbicide bentazon, which
specially stops PSII electron flow by preventing QB from binding to D1. Most genes shared similar expression
patterns between HR and bentazon treatments; however, interesting differences were also observed. The most
striking differences were seen with genes related to photosynthesis, where these genes were uniformly down
regulated in HR, but were mostly up in response to bentazon. Another interesting difference was seen in genes of the
phenylpropanoid pathway. These defense-related genes were mostly down or non-responsive to bentazon, but were
generally induced in response to pathogen-induced HR, showing that soybeans activate the phenylpropanoid-based
phytoalexins independent of PSII inhibition. We conclude that the PSII inhibition occurring during the HR is not being
triggered simply by the inhibition of electron flow through the photosystem centers. Instead, it is more likely that the
initial triggers of the HR halt the repair of damaged PSII which leads to enhancing photoinhibition and contributing the
rapid production of ROS, sealing the fate of cells undergoing HR; and other triggers independently induce specific
aspects of defenses such as the phenylpropanoid pathway.
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Introduction

A common plant response after sensing pathogen attack is the
production of reactive oxygen species (ROS) such as singlet oxygen,
superoxide, and hydrogen peroxide which both harm the pathogen and
signal additional defense pathways [1,2]. The hypersensitive response
(HR), which often succeeds in delineating and defeating biotrophic
and hemi-biotrophic pathogens, has been characterized as having
two bursts of ROS. One burst, which is common to compatible and
incompatible (HR) interactions, is presumably the result of NADPH
oxidases, and appears within minutes of recognition of the infection
[1,3-5]. The second oxidative burst (the source of which is largely
speculative) is much greater than the initial burst, and is specific to HR
reactions.

It has been widely reported that light can affect defense responses
[6,7], and that a common plant response to pathogen infection is
the rapid decreased expression of genes related to photosynthesis
[8,9]. More specifically, there are several reports on the possible role
of photosystem II (PSII) inhibition as an important player in plant
defense and production of ROS, perhaps a major source of the ROS
seen in the HR-specific oxidative burst [8,10,11]. Allen et al. [10]
reported decrease in PSII efficiency in response to an elicitor of the HR,
and Seo et al. [11] showed that resistance to viral infection is enhanced
if replacement of damaged D1 subunit of PSII is reduced using an
FtsH (one of the proteases responsible for D1 degradation prior to
replacement) mutant. Additionally, photoinhibition was measurable
as a decrease in PSII operating efficiency in soybean within 8 hours
of being inoculated with HR-inducing P. syringae [8]. It has therefore
been hypothesized that the loss of functional PSII (perhaps through
the reduced replacement of photo-damaged D1 subunit) would lead

to inactivation of PSII during the HR and subsequently increase the
production of ROS, leading to HR and enhanced defense [8,11]. Loss
of functional D1 leads to a break in the electron transfer chain resulting
in photoinhibition due to PSII inability to pass light energy through
the release of electrons along the electron transfer chain, and instead
releasing absorbed light energy as heat, fluorescence and ROS [12,13].

The herbicide bentazon (similar mode of action as atrazine, a
well-characterized chemical that is known to induce photoinhibition),
interferes with PSII function by inhibiting the ability of plastoquinone
B (Q,) to bind to the PSII subunit D1, such that electrons cannot flow
from Q, to Q,, effectively stopping photosynthesis and rendering the
plant fatally sensitive to excess light damage [13,14-16]. Bentazon is not
too damaging to soybean however, as soybean has the ability to degrade
it, and there are no known secondary targets outside of a transient PSII
inhibition. Based on a transcriptomic study [17] of soybean leaves
treated with bentazon, soybean begins to noticeably remove bentazon
toxicity between about 4-8 hours post application.
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One main reason that it is difficult to determine what is the source
of the HR-specific ROS burst, is that pathogens are dynamic living
organisms that provide many responses during infection. When a
pathogen attacks a plant host, a wide range of signaling factors are
exchanged that induce numerous host responses. For example, the
bacterial pathogen Pseudomonas syringae releases several phytotoxins
in addition to secreting about 40 different effector proteins into a host
[18]. Plants also actively respond to these virulence factors, in addition
to sensing and responding to numerous pathogen associated molecular
patterns (PAMPS), such as bacterial flagellin and chitin oligomers
from fungi [19,20]. Pathogen-associated elicitors may also include
molecules of plant origin such as plant cell-wall fragments originating
from pathogen-released cell-wall degrading enzymes [21,22]. On the
other hand, instead of trying to untangle the responses to multiple
signals, one could simply examine the effects of a chemical that
specifically inhibits only one known protein-molecular interaction in
plants. In this study, we used a chemical inducer of photoinhibition
to gain insight into the photoinhibition induced during HR. We
compared gene expression level data from a study [17] of soybean
treated with bentazon, which induces PSII inhibition by a known
mechanism (inhibition of electron flow at D1), to an expression study
(8] on the HR induced by P. syringae, which induces PSII inhibition
be an unknown mechanism. We hypothesize that, if the large amounts
of ROS induced by P. syringae is due mainly to inhibition of PSII
electron flow, then these two treatments will share many patterns in
their global gene expression. Additionally, where differences occur,
the expression patterns can help differentiate gene expression change
related to PSII inhibition during HR, from those that might be due to
other dynamic events occurring during host-pathogen interactions.
To assist in discerning gene expression due solely to induction of cell
death during the defense response, we also compared the datasets to
a global expression study [23] from soybean treated with glyphosate,
a shikimate pathway inhibitor. Glyphosate does not directly target
photosynthesis, and the plant cell death is not caused by ROS, but by
nutritional starvation [24,25].

This comparative study utilized data from a previously published
[8] cDNA microarray survey of 27,000 genes in soybean that identified
3,898 genes as being differentially expressed due to P. syringae leaf
infection at 2, 8, 24 hours post infection (hpi). The highest number
of transcriptional changes was noted in the HR treatment at 8 hpi,
including the down regulation of nearly 100 chloroplast-associated
genes. The HR expression data was compared to a cDNA microarray
survey of 36,000 genes on the effect of bentazon [17] on soybean leaves
that recognized 6,646 genes as differentially expressed genes within 8
hours of application. These two studies were also compared to a cDNA
microarray study [23] on the effect of glyphosate treatment on sensitive
soybean that identified 3, 170, and 311 genes having different transcript
levels at 1, 4, and 24 hours post treatment (hpt), respectively.

Materials and Methods

Generation of gene lists from experiments to be cross
compared

Two approaches were taken to obtain an overview of clustered gene
expression patterns taken from mRNA expression experiments that
utilized soybean ¢cDNA microarrays [26] developed at the University
of Illinois, involving soybean response to P. syringae [8], bentazon
[17], or glyphosate [23]. One method utilized a gene list of statistically
significant genes responding to herbicide treatments, which were then
used to find the corresponding expression of these genes in tissue
undergoing HR induced by P. syringae. The top 3000 significant genes

from the bentazon experiment across the entire study were selected,
as were the top 1300 significant genes from the glyphosate study at 24
hpi. Duplicate gene IDs were removed to obtain 4033 genes in total.
The resulting list of 4033 genes that were highly significant in either
the bentazon or glyphosate study was used to retrieve gene expression
data across all the experiments of interest, regardless of significance
in the HR experiment. Expression data was obtained from our in-
house soybean gene expression database (SGED, http://sged.cropsci.
illinois.edu/). The second method approached the problem from the
HR perspective. The 3898 genes that were the most significant in their
differentially expression in the P. syringae induced HR study were used
to retrieve and compare expression data from the herbicide studies.

For specific comparisons between the P. syringae induced HR
and bentazon treatments based on single functional categories,
only genes that were overlapping in significance between the two
studies were used for clustering. One exception was for the analysis
of photosynthesis, where genes that were significant in either the HR
reaction, or in response to bentazon, were used, and all duplications
based on microarray match to Glyma ID (v 1.1) were removed, and the
compatible (virulent isolate) P. syringae interaction was added.

Clustering and imaging tool

Hierarchical clustering was performed using the software Cluster
[27] utilizing the average linkage method. The clustering results were
visualized with Maple Tree (http://www.eisenlab.org/eisen/?page_
id=42). A table to convert microarray IDs with more recent GlymalDs
is provided (Supplemental Table 1).

Results and Discussion

Overall cross comparison of gene expression profiling from
soybean treated with HR inducing pathogen, PSII inhibiting
herbicide, and shikimate pathway inhibiting herbicide

The 4033 most significant differentially expressed genes from from
either the effect of the herbicide bentazon on PSII inhibitioin [17],
or the effect of the herbicide glyphosate on inhibiting the shikimate
pathway [23], were compared to the gene expression response during
P. syringae-induced HR [8]. Genes and arrays were both clustered via
hierarchical clustering revealing that about 2/3 of the genes showed
similar directions of expression across the three treatments (Figure
1). The clustering also indicated that the overall gene expression
changes in HR were more similar to the expression patterns induced
by glyphosate, than by bentazon. A similar clustering pattern was seen
when using the gene list generated from the HR-significant gene list
(Supplemental Figure 1).

The expression clusters in Figure 1 can be split into 4 major groups.
Group 1 contains genes generally decreased across all three treatments,
whereas group 2 contains genes that generally increased. Group 3
contains genes that tended to decrease in HR but increased in bentazon
treatment, and not differentially expressed in glyphosate treatment.
Group 4 contains genes sharing a similar expression pattern between
HR and glyphosate treatment but weakly differentially expressed in the
bentazon treatment. Groups 3 and 4 genes seem to have had the largest
effect on determining that the HR expression pattern was more similar
to glyphosate than bentazon treatment. In Group 4, there are about
400 genes (1/10th of the total studied) strongly decreasing in HR and
glyphosate but not strongly or consistently differentially expressed in
bentazon. It includes seven auxin-down-regulated genes. Interestingly,
this group also contains more than 30 photosynthetic electron transport
and light harvesting related genes, showing a marked difference in
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Figure 1: Hierarchical clustering of gene expression data from soybeans
undergoing herbicide stress and HR. Gene list was derived from genes
showing significance in the benatzon and/or glyphosate study.

how photosynthetic components are more noticeably affected in HR
and glyphosate than after bentazon treatment, reflective of HR and
glyphosate treated leaves destined for cell death, but battling to recover
from bentazon treatment. Also in Group 4, there are around 150 genes
(1/27th of total studied) strongly increased in HR and glyphosate
treatment but weakly reduced or unchanging in response to bentazon.
These genes include ones encoding for enzymes of the phenylpropanoid
pathway, starvation associated message 22 (SAM22), genes associated
with phytohormone starvation [28], adenine nucleotide translocator
(ANT), a cell-death inducer [29], and phosphopyruvate hydratase, an
enzyme participating in glycolysis.

Therefore, although the glyphosate experiment provoked a
much weaker genomic modulation than the HR-inducing pathogen
experiment (more than 10-fold fewer statistically significant genes
identified in that published study), it seems that these two treatments
shared many general similarities in expression patterns for genes
related to photosynthesis components, phytohormone signaling,
phenylpropanoid biosynthesis, and cell death. These similarities
might be attributed by timing of sampling, as in both treatments the
plants were headed down a path toward cell death and perhaps had
already reached the point of no return [30]. The HR treatment being
more intense and many cells would be dead within 24 hrs, whereas
the glyphosate response would be less intense, with cells dying over a
several day period. In contrast, in bentazon treatment, the cells were
apparently continually attempting to recover [17].

Specific HR vs bentazon comparisons

A detailed analysis of comparisons between genomic response to
HR and the initial effects of bentazon, can help identify gene expression
modulations related to PSII inhibition, and might be informative to
understanding how plants differentiate biotic and abiotic stresses, as

well as how plants respond to oxidative stress provoked from different
possible sources. To examine more closely the events upstream of the
cell death pathway that might be shared between HR and bentazon
treatments, a closer focus was taken on specific comparisons involving
only the studies on HR and bentazon.

HR vs bentazon: differential expression of photosynthesis
related genes

PSII is the primary target of bentazon, and the interruption of
electron transport in PSII caused by bentazon resulted in modulation
of 56 photosynthesis related genes [17]. The HR provoked by P.
syringae repressed expression of 93 photosynthesis related genes
within 8 hours post inoculation [8]. However, the number of genes
overlapping between both HR and bentazon treatments that were
deemed statistically significant in both studies was low. One cDNA of
interest that was significantly differentially expressed in both studies
encoded an FTSH (Gm-r1070-2561; Glyma04g02100.1), one of two
proteases involved in the removal of photodamaged PSII subunit DI.
This gene was significantly down 2 fold in HR at 8 hpi, and significantly
up 2 fold in bentazon at 4 hpi. The other protease that teams with FtsH
to degrade and remove D1 from PSII to allow for its replacement with
healthy D1, is DEG2, and a gene encoding a DEG2 (Gm-r1088-1574;
Glyma02g17130.2) had a very similar expression pattern as FTSH, and
was significant in the bentazon study [17] but missed the significance
cutoff in the HR study [8]. D1 is of interest in both HR and bentazon
studies as both treatments are believed to induce oxidative damage to
D1, which would lead to enhanced ROS production if not replaced.
Seems that the genes encoding the proteases required to ensure
removal of damaged D1 were actively transcribed by 4 hpi of bentazon
treatment [17], but not actively transcribed in response to HR where
their expression was down at 8 and 24 hpi [8].

To obtain a clearer overview of activity of other photosynthetic
genes in the two experiments, all photosynthesis related genes printed
on soybean cDNA microarrays that were significant in either study,
minus duplications realized by the more recent genome sequencing
project [31] were compiled and their corresponding gene expression
data from the two experiments were compared. The heatmap (Figure
2) of expression from these 61 genes shows that virtually all of these
photosynthetic genes were reduced in the HR by 8 hpi, but in the
bentazon treatment half (30 of 61) of these genes were generally
increasing, with the other half either not changing much or tending
to be down-regulated. That the only increases in expression were in
the bentazon treatment, the 2 hpi P. syringae treatments, or from the
compatible (vir) interaction, supports that photosynthesis repair is not
happening in HR, but it is being attempted in the bentazon treatment.
This data also supports that this possible lack of repair is much weaker
in the compatible (vir) than for the incompatible (HR) strain.

The genes in Figure 2 were grouped by functional annotation,
and one can see that for each group, the trend was for the genes to be
down in both the compatible and incompatible interactions (but much
more reduced in incompatible HR), and generally up in response to
bentazon. One of the gene groups was FtsH. There were two FtsH
genes following this pattern, and a third FtsH homolog was down in all
samples. An increase in FtsH expression would imply the need of more
FtsH for the degradation and repair of damaged D1. That these genes
are not being induced at 8 and 24 hpi for HR would be consistent with
damaged D1 not being replaced. Interestingly, these FtsH that were up
in bentazon treatment, appeared to be up in expression in the 2 hpi P.
syringae samples, implying that the cells might have been attempting
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Figure 2: Hierarchical clustering of 61 photosynthesis related genes in
soybeans undergoing infection by P. syringae or photosystem Il inhibition
induced by bentazon.

D1 replacement in the early stage of pathogen defense, but this
expression stopped by 8 hpi. A similar pattern of expression was also
seen for another gene involved in PSII repair, a photosystem stability/
assembly factor HCF-135 (Glymallgl0710.1). Western blotting of D1
in response to P. syringae also showed that D1 is not being noticeably
degraded during the HR [32]. These differences in gene expression
indicate recovery from bentazon, but no such recovery in HR, and are
consistent with the hypothesis proposed by van Doom [30] that it is the
health of the chloroplast, and whether or not injured/non-functional
ones are repaired or replaced, that determines whether or not a plant
cell will undergo autophagic programmed cell death (PCD). The gene
expression is consistent with the chloroplast becoming non-functional
during the P. syringae induced HR and PCD is eminent, whereas under
bentazon treatment in soybean, the chloroplast were being repaired,
and recovering without initiating massive PCD.

HR vs bentazon: similar oxidative stress and antioxidant
accumulation

There were 130 and 206 genes related to oxidative stress that were
differentially expressed in soybean treated with bentazon and HR-
inducing bacteria, respectively; 41 of which were statistically significant
in both treatments. The hierarchical cluster of these 41 significant

genes displayed three distinct patterns between the HR-inducing and
bentazon treatments (Figure 3). The most striking feature of this cluster
was that 12 of the 19 genes that were strongly induced by both HR and
bentazon were various glutathione S-transferases (GSTs), which are
critical for quenching of free radicals and often involved in conjugation
of herbicides, leading to herbicide resistance [33,34]. Furthermore,
GSTs are effective antioxidants against oxidative stresses generated
from toxins, ozone, and pathogen attack [35,36]. As these GSTs tend
to modify a range of substrates, including foreign molecules such as
some herbicides, it might be of benefit to the plant to simply express
as many of these enzymes as possible during biotic or toxic stresses,
increasing the odds that one will be able to modify and detoxify any
introduced toxins.

Another noticed similarity in this group of oxidative-stress-
related genes was that, of the 11 genes that were down-regulated in
both treatments, five were peroxidases and two were genes encoding
a respiratory burst NADPH oxidase homolog. Although NADPH
oxidase has been shown to be needed for the initial oxidative burst
observed within the first hour or two of compatible and incompatible
interactions, it is also believed to be a negative regulator of PCD in
some cases [37].

In addition to these 30 genes that had shared expression patterns
between HR and bentazon treatments, there were 11 of the 41 genes
showing opposite expression patterns, with eight (two of which were
lipoxygenases) being down in HR and up in bentazon, and three (two
of which were peroxidases) were up in HR and down in bentazon.

HR vs bentazon: similar regulation of signaling components

There were a total of 71 signaling related genes that were
differentially expressed in both the HR and bentazon treatments with
statistical significance. The majority of these genes shared very similar
expression patterns as shown in Figure 4. This similarity is emphasized
by the reduction of a variety of signaling genes in both experiments such
as protein kinase, gibberellic acid related proteins, and myo-inositol-
1-phosphate synthase (MIPS). The most prominent co-reduction of
signaling-related genes was seen with the six cONAs encoding MIPS.
MIPS catalyze the reaction from glucose-6-phosphate to 1-myo-
inositol-1-phosphate, which is the rate-limiting step for the synthesis
of inositols [38]. Inositols play critical roles in signal transduction for a
variety of mammalian hormones and growth factors [39], and in plants
have been reported to decreased upon pathogen infection [40].

Three jasmonic acid (JA) related genes encoding
12-oxophytodienoate reductase (OPR) were significantly increased in
abundance in both experiments. 12-oxophytodienoate reductases are
enzymes involved in JA biosynthesis [41,42] and the expression of the
OPR3 gene was shown to be induced by a variety of stresses including
UV-light, touch, wind, wounding, and the application of detergent.
Additionally, two ethylene genes were also up in response both HR
and bentazon. Although it is well documented that JA and ethylene
play important roles in signaling when plants are attacked by many
necrotrophic pathogens and insects [43], the general induction of some
genes related to these pathways in both bentazon treated or P. syringae
infected leaf tissue, supports that in these plants, JA may also function
as signals during general oxidative stress caused by PSII inhibition.

Another instance where HR and bentazon showed similar
regulation of signaling components included the induction of ethylene
responsive elements such as beta-cyanoalanine synthase and ethylene
response factor 1. An ACC oxidase increased especially at early time
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Figure 3: Hierarchical clustering of 41 redox related genes in soybeans
undergoing HR and photosystem Il inhibition by bentazon.
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Figure 4: Hierarchical clustering of 71 signaling related genes in soybeans
undergoing HR and photosystem Il inhibition by bentazon.

points and then incrementally decreased at 8 hours in bentazon
treatment, but this gene was not differentially expressed in the HR
study. However, another ACC oxidase was overexpressed in HR. This
result may indicate that the ethylene-mediated pathway was induced in
both HR and bentazon treatment.

One of the noteworthy observations in the signaling category
were the high number of genes related to auxin, and that although six
showed a common direction of expression (down in both treatments),
nine auxin related genes had opposite directions of expression, with
seven of the nine being down in HR but up after bentazon treatment.
Auxins are naturally synthesized plant hormones that regulate growth
and development, and have also been implicated in several defense
responses. Asan important signal transduction component, auxins have
shown the ability to either induce or repress various genes. In soybean,
three families of auxin down-regulated genes were characterized and
their expression was found to be regulated in a tissue/organ-specific
manner by the level of auxin as well as light [44]. The overexpression
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of auxin repressed genes is presumably caused by a reduction of auxin
in the leaf tissue in bentazon treatment, whereas the reduction of auxin
repressed genes in HR would indicates that auxin accumulated.

HR vs bentazon: general induction of WRKY transcription
factors

Cluster analysis identified 28 genes with homology to transcription
factors that were statistically significantly expressed in both HR and
bentazon treatment (Figure 5). The most impressive data was that, even
though WRKYs are often thought of as being specific to biotic stresses,
all the transcripts that encoded for WRKY transcription factors that
were significant in both treatments, increased in abundance. WRKYs
have been found in many plant species [45], and function by binding
to conserved WRKY domains in the promoters of numerous defense
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Figure 5: Hierarchical clustering of 28 transcription factor genes in soybeans
undergoing HR and photosystem Il inhibition by bentazon.

related plant genes [46,47]. Therefore, many WRKYs are considered
to regulate the response to pathogen infection. The induction of
WRKYs due to herbicide treatment was reported in soybean treated
with glyphosate [23], but the role for WRKY transcription factors in
plants treated with bentazon is unknown. However, WRKYs were
found to be significantly expressed on the onset of leaf senescence [48],
which could be indicative of regulation related to senescing or dying
tissue. Therefore, we suspect that the induction of WRKYs could be
caused by a provocation similar to leaf senescence induced by herbicide
treatment in support of a discovery that WRKY can be induced by
both pathogen infection and leaf senescence [49]. Alternatively, there
might be a common signal triggered in both herbicide treatment and
pathogen infection that leads to increased WRKY transcripts, such as
oxidative stress. It was also found that certain WRKYs act upstream
of NPRI1 and positively regulate its expression during the activation
of plant defense responses [50]. The induction of NPR transcript in
our herbicide study is consistent with this hypothesis. Other increased
transcription factors included ones homologous to MYB and NAM,
which are also transcription factors induced by various stress [50].

HR vs bentazon: differential regulation of phenylpropanoid
biosynthesis

It is well recognized that many components in the phenylpropanoid
pathway are induced at the transcript level upon pathogen infection,
as they act as potent antimicrobial compounds [51]. The clustering
of phenylpropanoid biosynthesis related genes between HR and
bentazon treatments revealed both similarities and major differences
(Figure 6). In order to obtain a clearer image of the activities of
individual genes in this complex pathway, the three main branches
of the phenylpropanoid pathway: isoflavanones, anthocyanins and
lignin biosynthesis, were drawn and the increased or decreased
modulation of each gene was indicated (Figures 7 and 8). During
the HR, the isoflavanones biosynthetic branch was up regulated as
reflected by increased transcript abundance for a series of genes
specifically expressed within the pathway such as: isoflavone synthase
(IES), isoflavone reductase (IFR), isoflavone-O-methytransferase
(IOMT), and 2-hydroxyisoflavanone dehydratase (2HID). Enzymes
at the start of the pathway, such as phenylalanine ammonia-lyase
(PAL), 4-Coumarate--CoA ligase (4CL), chalcone synthase (CHS),
and chalcone isomerase (CHI) likewise showed increased transcript
levels during HR. Conversely, the anthocyanins biosynthesis branch
was attenuated as genes involved in this pathway were reduced at
the transcript level, reflected in the reduced expression of: flavanone
3-hydroxylase (F3H), flavonoid-3’, 5’-Hydroxylase (F3’5’H), flavonol
synthase (FLS), dihydroflavonol-4-reductase (DFR) and UDP-glycose:
flavonoid glycosyltransferase (UFGT). The repressed anthocyanin
pathway indicates that the anthocyanin and flavonol products are not
necessary for plant defense against P. syringae infection and that their
repression could divert the chalcone molecules for the synthesis of
isoflavanones and phytoalexins, which are important for defense. In the
lignin biosynthesis branch, genes displayed a mixed expression pattern.
Cinnamoyl-CoA reductase (CCR) was under-expressed and caffeic
acid O-methyltransferase (COM), cinnamyl-alcohol dehydrogenase
(CAD) and laccase showed both increased and decreased levels of gene
expression for different cDNA clones within the microarray. The mixed
pattern of gene expression could be attributed to family members with
different subcellular locations or tissue specific regulation [52].

In contrast to the HR, the entire phenylpropanoid pathway in
leaves treated with bentazon was generally repressed (Figures 6 and 7).
In addition to the reduction of pathway entry enzymes such as PAL,
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Figure 6: Hierarchical clustering of 38 genes in the phenylpropanoid pathway
in soybeans undergoing HR and photosystem Il inhibition by bentazon.
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Figure 7: Expression patterns of genes from the phenylpropanoid pathway in
soybeans undergoing HR and photosystem Il inhibition by bentazon. H: HR;
B: bentazon; Red: induced; Green: reduced.

CHS, CHI and CHR, genes specially functioning in the isoflavones
biosynthesis pathway branch including IFS, IFR, IOMT and 2’HID
were all repressed. Likewise, the anthocyanins and flavonol biosynthesis
were reduced concurrently as enzymes F3H, F3’H, F3’5’H, FLS, DFR
and UFGT decreased significantly in transcript levels. Furthermore,
expression of genes related to lignin biosynthesis was reduced including
genes homologous to the key enzyme CCR, COMT and laccase. These
genes were all repressed at all time points examined. It is suggested
that induction of the phenylpropanoids is advantageous for plants to
eliminate oxidative stress caused by pathogen infection, in addition to
their antimicrobial toxicity [51]. The reduction of phenlypropanoid
products in herbicide stress indicates that phenlypropanoid products
are probably not essential antioxidant sources for oxidative stress
caused by PSII inhibiting herbicide bentazon, and that perhaps the
phenolic-based substrates for these pathways were diverted for other
needs. These striking differences in expression of the multiple branches
of the phenylpropanoid pathway, is one of the clearer differences in
how plants responded to the P. syringae attack versus PSII inhibition
induced by bentazon and shows that the induction of these genes in
soybean is independent of PSII inhibition.

HR vs bentazon: mixed patterns of defense related genes

The clustering of defense related genes across the two experiments
revealed both similar and contrasting expression patterns (Figures 5
and 6). Defense related genes that increased in both HR and bentazon
treatments included two non-expression of pathogenesis resistance
(NPR) homologs. NPR plays an essential role in salicylic acid (SA)-
mediated local resistance and systemic acquired resistance when plants
are infected by pathogens [53-55]. In addition to plant defense, SA also
plays a role when plants are under adverse environmental stresses, such
as salt and osmotic stress, by potentiating the production of ROS [56].
The main downstream component of SA is the NPR1 gene product,
which is an activator of some defense-related transcription factors such
as TGA [55]. The induced expression of the NPR gene in bentazon
treatment suggests SA mediated signaling pathways may play a role in
xenobiotic stresses as well as biotic. Other genes that increased in both
experiments include several pathogenesis-related (PR) proteins.

Transcripts encoding beta-1,3-glucanase were increased in the
HR but decreased in bentazon treatment. Beta-1,3-glucanases can
release cell-wall fragments that serve as defense activating signals in
defense response [57], but the reason for beta-1,3-glucanase repression
by herbicide is unclear. Similarly, induction of PR-5 (thaumatin) is
pathogen specific in this study. The adenine nucleotide translocator
(ANT) was also induced in HR but reduced in the bentazon treatment.
ANTSs are mitochondrial proteins cooperating with BAX, an apoptosis
molecule, to increase mitochondrial membrane permeability and
trigger cell death [29]. The reduced levels of ANT transcripts observed
in the bentazon treatment may reduce programmed cell death (PCD),
compared to the increased ANT transcripts in HR which may reflect
the effort of plants to induce PCD for defense to this hemi-biotrophic
pathogen.

Several defense-related genes were repressed in both experiments.
These genes included homologs to dirigent-like protein and class I
chitinases. Interestingly, the class III acidic chitinases were regulated
differentially, as they increased in HR but decreased in bentazon
treatment.

Conclusion

Expression patterns for these two studies overlapped greatly,
roughly 67%, but there were still a lot of inconsistencies in expression
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Figure 8: Hierarchical clustering of 41 defense related genes in soybeans
undergoing HR and photosystem Il inhibition by bentazon.

between the two treatments. The best possible explanation for why the
gene expression correlation between the two treatments was not higher,
even though both involve photoinhibition, would be that the dynamic
interaction during HR involves too many other signaling events that
also alter host gene expression. Plants make a multitude of responses
and adjustments to an infection by a living pathogen (a pathogen that
is also responding and making adjustments to the plant) as they both
battle for life. Examples of important defense genes that were not
induced by PSII inhibition, and yet were induced by the pathogen, were
genes of the phenylpropanoid pathway. Perhaps these important genes
were induced by other mechanisms, such as plant response to PAMPS.

Several studies support a role PSII inhibition in plant defense,
including the measurement of reduced PSII efficiency at 8 hpi [8]. The
observation that reducing levels of FtsH, a protease that degrades the
D1 subunit of PSII prior to its replacement with healthy D1, enhanced
resistance to TMV, pointed to a role of D1. One possibility was that
damaged D1 would lead to blocked electron flow from Q, to Q,, and
that this would be enough to enhanced defense. However, based on
the gene expression comparisons here, of PSII inhibition induced by
P. syringae, versus PSII inhibition induced by herbicide treatment that
blocks Q, to Q, electron transfer in D1, one has to conclude that the
enhanced ROS in HR defense, is most likely not solely the result of
blocking D1 function, but more likely due to inefficient repair and
replacement of photodamaged components.
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