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ABSTRACT

Background: Atrial Fibrillation (AF) is the most common sustained cardiac arrhythmia in clinical practice and 
has a well-established association with Coronary Artery Bypass Graft (CABG) surgery. Being able to predict Post-
Operative Atrial Fibrillation (POAF) may improve surgical outcomes. This study aims to understand the efficacy 
of incorporating intraoperative medication data to predict first-time POAF in patients undergoing CABG surgery.

Methods: This study aims to understand the efficacy of incorporating intraoperative medication data to predict 
first-time POAF in patients undergoing CABG surgery. A large cohort of 3807 first-time CABG patients with no 
known history of atrial fibrillation was retrospectively assembled to study factors that contribute to occurrence of 
post-operative atrial fibrillation, in addition to testing models that may predict its incidence. To do so, several clinical 
features with established relevance to POAF were extracted from the electronic health record, along with a record of 
medications administered intra-operatively. Tests of performance with logistic regression, decision tree, and neural 
network predictive models showed slight improvements when incorporating medication information.

Results: Analysis of the collected set of clinical and medications data indicate that there may be effects contributing 
to POAF incidence captured in the medication administration records. However, a definitive causal relationship 
between the medications and POAF incidence is not established.

Conclusions: Our results show that improved predictive performance is achievable by incorporating a record of 
medications administered intra-operatively, but further investigation is needed to understand the implications of 
this for clinical practice.

Keywords: Atrial fibrillation; Coronary artery bypass graft; Enterprise data warehouse; Chronic obstructive 
pulmonary disease; Least absolute shrinkage and selection operator

INTRODUCTION

Atrial Fibrillation (AF) is the most common sustained cardiac 
arrhythmia in clinical practice and has a well-established association 
with Coronary Artery Bypass Graft (CABG) surgery. Several 
studies have shown greater morbidity, mortality, and increased 
utilization of care resources in patients with Post-Operative Atrial 
Fibrillation (POAF) [1-5]. Previous efforts to predict POAF have 
explored well-known clinical risk factors, including age, race, BMI, 
blood pressure, tobacco use, and history of myocardial infarctions 
and AF [6-8]. Other factors such as genetic risk associations with 
AF, various biomarkers, Electrocardiogram (ECG) data, and 
cardiovascular disease medication usage have been incorporated 
with varying degrees of success in improving model accuracy [5-

13]. Studies incorporating many or all these factors have presented 
models having moderate predictive ability, with areas under 
the curve Appropriate Use Criteria (AUCs) in the range of 0.6-
0.8 [5,6,10,14]. Prediction of new-onset AF in AF-naïve patients, 
however, has generally been more challenging, with correspondingly 
lower (<0.7) AUC performance [10,14]. The physiologic stress 
of surgical operations can result in AF-naïve patients, generally 
healthier than patients with past AF, nevertheless developing AF 
post-surgery [15]. However, prior AF has consistently been a strong 
predictor of POAF and predicting POAF in AF-naïve cohorts 
remains challenging. 

Better understanding POAF in AF-naïve patients would offer 
potential paths for improving outcomes among patients that 
are perceived with lower risk. Prior studies have highlighted 
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four-class categorical variable: Caucasian, African American, Asian 
and others.

Intra-operative medication data

Patient medication records were extracted from the EDW. 
Intraoperative medication was determined as medication 
administered on the day of surgery. Medication quantities were 
recorded in the database as either one-time dose (e.g., “5 mg IV 
push”) or continuous, finite-duration administration (e.g., “250 
ml/hour, 60 minutes”). All records included start/end times. 
Similar medications were aggregated based on their RXCUI 
Ingredient code. For instance, different sodium bicarbonate salt 
solutions were aggregated into the same class of medications. The 
top 30 most common medications were selected based on their 
incidence rate in the cohort population. Dosages were imputed 
for medication records lacking dosage information (2% of dataset) 
using most common dosage for each type.

Data preparation

Four data representations were created for model training and 
testing. The first representation contained only the traditional 
clinical variables. The second included the clinical variables 
and binary variables indicating whether each of the 30 most-
common medication categories was administered. The third 
representation included the clinical variables and continuous-
valued representations of the medication administrations. The 
final representation included a matrix composed of the temporal 
sequence of the intraoperative medication. For each patient and 
each medication, dosages over 24-minute segments on the day of 
surgery were specified. Missing PR interval values were imputed 
using Predictive Mean Matching (PMM) over 10 iterations. In 
our third dataset, medication dosages were scaled relative to the 
median, since median dosages of different medications vary greatly. 
All datasets were split randomly at a 7:3 ratio into training and 
testing datasets.

Predictive modelling

Four classification methods were selected to explore the utility of the 
addition of medication for predicting POAF, which include Logistic 
Regression (LR), Least Absolute Shrinkage and Selection Operator 
(LASSO), Extreme Gradient Boosting (XGBoost) and a Neural 
Network (NN) architecture (Figure 1). Given the large number 
of predictors in our model, LASSO was performed to improve 
model performance and interpretability. The LASSO model was 
optimized via selecting the penalty parameter yielding the greatest 
AUC via 10-fold cross validation. XGBoost is a gradient-boosted 
decision tree method [18]. Hyper parameters were tuned by grid 
search for highest test AUC values. The LR, LASSO, and XGBoost 
models were each applied to the first three data representations: 
clinical variables only, clinical plus binary medications, and clinical 
plus medication dosages. We evaluated the utility of including 
medication information for POAF prediction by comparing the 
AUC for each method and each dataset [19]. The model trained on 
the clinical variables only dataset served as the benchmark for each 
method. The NN model was applied to the clinical plus temporal 
medication dosage data. To use both the structure of sequential 
medication dosage measurements and clinical variables, we created 
a mixed input neural network architecture combining a perceptron 
with several fully-connected layers [20,21] (Figure 1). The NN model 
was used to extract temporal patterns for each medication with a 

the possible contributions of hemodynamic instability and 
inflammation in development of POAF [15-17]. However, there has 
been relatively limited study of how perioperatively administered 
medications affect AF incidence. The incorporation of medications 
information into prior work has mostly been limited to studying 
beta-blockers. Here, we have leveraged Electronic Medical Records 
(EMRs), which capture a rich set of clinical features that can 
be combined with previously identified predictors in order to 
improve prediction accuracy. We hypothesize that the inclusion 
of other medications typically used around the time of CABG 
surgery may improve the ability to predict POAF. As an initial 
exploration of how intraoperative medications information affects 
probability of POAF occurrence, we assembled a retrospective 
data set of first-time CABG patients with no history of AF. We 
included traditional clinical risk factors, such as, smoking history 
and patient co-morbidities. Additionally, we included information 
about medication administrations on the day of surgery for CABG 
procedures. We tested the collected features as variables in multiple 
prediction models to observe the potential for intraoperative 
medications to provide a more accurate model for new-onset POAF 
in CABG patients.

METHODS

Study population

The study cohort was assembled retrospectively from de-identified 
patient EMR using the Enterprise Data Warehouse (EDW) of 
North-western Memorial Hospital (NMH) in Chicago, Illinois, 
USA. Patients undergoing first-time CABG surgery between 
January 2003 and July 2019 were identified by ICD-9, ICD-10 
and CPT billing codes. First time procedures were identified by 
absence of previous records for the surgery in the EDW, and only 
such patients were included to create an AF naïve cohort. Cases 
of post-operative AF were confirmed by any diagnosis via billing 
codes or ECG reading notes prior to their discharge. Additionally, 
patients who did not have any medication information recorded 
in the EDW were removed. Analysis for this study was conducted 
on de-identified records with Institutional Review Board (IRB) 
exemption for informed consent.

Clinical factors data

Patient demographics and other potential clinical predictors of 
POAF reported in previous literature were extracted from the 
EDW. The variables include age, gender, race, and smoking history, 
diagnosis for Chronic Obstructive Pulmonary Disease (COPD), 
prior AF, hypertension, Diabetes Mellitus (DM), and Pulmonic 
Regurgitation (PR) interval. Pre and post-operative ACE inhibitors, 
aspirin and beta-blocker usage were also included as binary 
variables. PR intervals were extracted from the NMH cardiology 
department’s ECG data management system. Post-operative beta-
blocker use was defined as any use of beta-blocker between surgery 
and discharge date. Diagnoses for co-morbidities such as COPD 
were extracted using ICD-9/10 codes. Procedure codes (CPT, 
ICD9PCS, ICD10PCS) were used to determine concurrent valve 
repair or replacement surgery on the day of CABG by matching 
additional procedure codes on the same date. Valve surgeries were 
categorized based on the valve (mitral versus aortic) operated on. 
Patients with procedure codes for both valves on the day of CABG 
were given a third category (both valves). Dummy variables were 
created for the presence of each co-morbidity. Race was treated as a 
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controls, average PR intervals were 170 ms. The 30 most common 
intraoperative medications based on the incidence rate among the 
entire patient population are shown in Supplementary Table 1. 
Many intraoperative medications were found to have statistically 
significant differences in administration patterns between case and 
control patients. Most of those medications also had statistically 
significant different administered dosages between groups, except 
for epinephrine.

Prediction modelling

AUC values of prediction models are shown in Table 2. Overall, 
the inclusion of intraoperative medications provided some 
improvement in the predictive power of models compared to the 
models that only included traditional clinical variables. In models 
that used LR and LASSO, clinical only models had AUC values 
around 0.67-0.69 (95% CI: 0.63-0.73), while models that included 
any form of medication information had AUC values of 0.70-
0.71 (95% CI: 0.66-0.75). The XGBoost models showed similar 
improvements; the clinical variables only model had AUC of 0.65 
(95% CI: 0.63-0.67), and models with medication information had 
a higher AUC of 0.67-0.68 (95% CI: 0.64-0.70), although they had 
an overall lower predictive power than LR. However, there was no 
clear performance differences between the models that used binary 
medication variables and the models that used medication dosages 
in our LR, LASSO, and XGBoost models. The NN model, using 
temporal medication sequence data, yielded AUC of 0.70, similar 
performance to that of the LR and LASSO models that used only 
aggregate dosage data for intraoperative medications. LR, LASSO, 
and NN had overall better performance than XGBoost. 

temporal convolution layer to produce a tensor of outputs, followed 
by max pooling and relu activation [22]. The convolutional branch 
output was flattened and combined with the perceptron output 
from patient clinical information. The combined dense layer then 
was followed by two additional dense layers, and final output 
generated by sigmoid activation function. Binary cross entropy 
was used as the loss function. Batch size, learning rate, optimizer, 
neuron/layer/filter count, max pool size, number of epochs were 
tuned to optimize the performance of the model. Drop out and 
batch normalization were also tuned to avoid overfitting. Statistical 
software R (Version 4.0.2) and Python 3.7 was used for the data 
processes and statistical analysis. LASSO was performed using the 
R glmnet package [18]. XGBoost was performed and tuned using 
the python xgboost and sklearn package respectively [19]. The NN 
model was performed and tuned using Keras in Python 3.7 [20-22]. 
All performance was assessed by prediction AUC on a test subset 
of data, with a split of 70% used for training and 30% used for 
testing.

RESULTS

Patient characteristics and medications

Baseline patient characteristics are presented in Table 1. Our 
AF naïve study population included 3807 unique patients, 
POAF was observed in 789 (21%) patients (cases; all others were 
controls). In our study population, the mean age was 66 years, 
75% of patients were male, 55% were hypertensive, and 26% were 
diabetic (Table 1). Mitral valve disorders occurred in 10% of case 
patients, significantly different from control patients (5%, p<0.01). 
Average PR intervals were higher in cases at 179 ms, whereas in 

Figure 1: Neural Network Architecture. The left branch takes clinical variables and several fully connected layers were applied. The right 
branch takes input from time-series measurements of intra-operative medication dosage.
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be negatively associated with development of POAF across all or 
most LR and LASSO models. XGBoost feature-importance plots 
are presented in (Figure 2a). Features such as age and average PR 
interval are consistently ranked highest across all models. Features 
highlighted in the XGBoost medication dosage model exhibit 
significantly different variables compared to the other two models. 
Medications such as albumin, aspirin, dextrose, fentanyl, and 
propofol were considered as most important features in addition to 
age and PR interval. The XGBoost importance rankings for each 
predictor in each model are shown in (Figure 2b).

Coefficients of LR and LASSO models are presented in Table 
3. Age and male sex were found positively associated with the 
development of POAF. Longer PR intervals was positively associated 
with our outcome. Having mitral valve disease was also a strong 
positive predictor for development of POAF, while significant 
relationships were not found in other comorbidities. Pre-operative 
beta-blocker use was found to be positively associated with POAF 
incidence. Having concurrent valve repair or replacement surgeries, 
particularly on the aortic valve or on both valves, was found to 
have a positive relationship with POAF onset. Medications such 
as albumin, cefazolin, and chlorhexidine gluconate were found to 

Variables Overall (N=3807) Cases (N=789) Controls (N=3018) P-Value

Average Age y, Mean (SD) 66.3 (10.7) 70.6 (9.58) 65.1 (10.6) <0.01

Gender Female 2589 (75.1%) 585 (74.1%) 2274 (75.3%) 0.516

Smoking Status 630 (16.5%) 116 (14.7%) 514 (17.0%) 0.13

Chronic Obstructive 
Pulmonary Disease 

453 (11.9%) 103 (13.1%) 350 (11.6%) 0.287

Hypertension 2084 (54.7%) 455 (57.7%) 1629 (54.0%) 0.07

Diabetes 997 (26.2%) 186 (23.6%) 811 (26.9%) 0.067

Mitral Valve Disease 221 (5.8%) 82 (10.4%) 139 (4.6%) <0.01

Heart Failure 747 (19.6%) 177 (22.4%) 570 (18.9%) 0.029

Myocardial Infarction 2510 (65.9%) 506 (64.1%) 2004 (66.4%) 0.248

Pre-Operative ACEi Use 1283 (33.7%) 311 (39.4%) 972 (32.2%) <0.01

Pre-Operative Aspirin Use 1586 (41.7%) 330 (41.8%) 1256 (41.6%) 0.948

Pre-Operative Beta-Blocker 
Use

1461 (38.4%) 345 (43.7%) 1116 (37.0%) <0.01

Post-Operative ACEi Use 1921 (50.5%) 392 (49.7%) 1529 (50.7%) 0.653

Post-Operative Aspirin Use 2421 (63.6%) 471 (59.7%) 1950 (64.6%) 0.012

Post-Operative Beta-Blocker 
Use

3011 (79.1%) 586 (74.3%) 2425 (80.4%) <0.01

Average PR Interval, Mean 
(SD)

172 (31) 179 (38) 170 (29) <0.01

Race - - - 0.014

  White 2882 (75.7%) 630 (79.8%) 2252 (74.6%) - 

  Black 287 (7.5%) 45 (5.7%) 242 (8.0%) - 

  Other 180 (4.7%) 28 (3.5%) 152 (5.0%)  -

  Unknown 458 (12.0%) 86 (10.9%) 372 (12.3%)  -

Table 1: AUC values of the predictive models in the testing dataset.

Prediction Method
AUC by Dataset Type (95% Confidence Interval)

Clinical Only Binary Meds Med Dosages Med Sequence

LR 0.67 (0.63-0.71) 0.70 (0.66-0.73) 0.70 (0.66-0.73) N/A

LASSO 0.69 (0.65-0.73) 0.71 (0.67-0.75) 0.71 (0.67-0.75) N/A

XGBoost 0.65 (0.62-0.67) 0.67 (0.64-0.69) 0.68 (0.65-0.70) N/A

Neural Network N/A N/A N/A 0.70 (0.69-0.71)*

Table 2: AUC values of the predictive models in the testing dataset.
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Variables Clinical Model (A) Binary Medication Model (B) Medication Dosage Model (C) LASSO (D)

OR CI P-Value OR CI P-Value OR CI P-Value (A) OR (B) OR (C) OR

Age 1.04 1.04-1.05 < 2e-16 1.05 1.04-1.06 <0.01 1.05 1.04-1.06 <0.01 1.04 1.04 1.04

Gender Male 1.19 0.98-1.45 0.08 1.24 1.02-1.52 0.03 1.22 1.00-1.50 0.05 - - -

Smoker 1.03 0.81-1.30 0.83 0.98 0.76-1.25 0.87 0.98 0.77-1.25 0.9 - - -

COPD 1.13 0.87-1.45 0.36 1.14 0.88-1.48 0.31 1.15 0.89-1.49 0.28 - - -

Hypertension 0.88 0.72-1.08 0.23 1.02 0.84-1.23 0.88 0.99 0.82-1.20 0.96 - - -

Diabetes 1.02 0.85-1.23 0.81 0.85 0.69-1.05 0.14 0.86 0.70-1.06 0.15 - - -

Mitral Valve Diseases 1.63 1.16-2.27 0 1.65 1.16-2.34 0.01 1.66 1.17-2.34 <0.01 - - -

Heart Failure 1.06 0.86-1.31 0.57 0.95 0.76-1.19 0.67 0.96 0.77-1.19 0.69 - - -

Myocardial Infarction 0.86 0.72-1.04 0.12 0.91 0.75-1.11 0.35 0.91 0.75-1.10 0.33 - - -

Post-Operative ACEi 
Use

1.09 0.90-1.32 0.37 0.95 0.78-1.16 0.59 0.96 0.79-1.18 0.71 - - -

Post-Operative Aspirin 
Use

1 0.82-1.23 1 0.98 0.79-1.22 0.87 0.99 0.80-1.23 0.93 - - -

Post-Operative Beta-
Blocker Use

0.84 0.66-1.07 0.16 1.02 0.79-1.31 0.9 1 0.78-1.29 1 - - -

Pre-Operative ACEi 
Use

1.18 0.96-1.46 0.12 1.07 0.86-1.33 0.54 1.09 0.88-1.35 0.43 - - -

Pre-Operative Aspirin 
Use

0.83 0.68-1.01 0.06 0.85 0.69-1.04 0.12 0.83 0.67-1.02 0.08 - - -

Pre-Operative Beta-
Blocker Use

1.33 1.08-1.64 0.01 1.34 1.07-1.66 0.01 1.34 1.08-1.66 0.01 - - -

Concurrent Mitral 
Valve Operation

1.66 1.18-2.32 0 1.34 0.94-1.90 0.1 1.34 0.36-1.01 0.1 1.38 1.06 1.01

Concurrent Aortic 
Valve Operation

1.74 1.41-2.13 0 1.57 1.26-1.94 <0.01 1.57 0.30-0.90 <0.01 1.71 1.44 1.41

Concurrent Both Valve 
Operation

3.32 2.04-5.39 0 2.7 1.63-4.46 <0.01 2.59 0.23-0.64 <0.01 2.69 1.97 1.79

Average PR Interval  
(per 5 ms)

1.02 1.00-1.03 0.01 1.02 1.01-1.03 <0.01 1.02 1.01-1.03 <0.01 1.01 1.01 1

Albumin (g) - - - 0.63 0.51-0.78 <0.01 0.96 0.95-0.98 <0.01 - 0.77 0.98

Aminocaproic Acid (g) - - - 0.93 0.65-1.34 0.71 1 0.97-1.03 0.94 - - -

Aspirin (mg) - - - 1.12 0.92-1.36 0.26 1.01 0.99-1.02 0.46 - - -

Calcium Chloride (mg) - - - 1 0.80-1.26 0.98 1 0.99-1.02 0.54 - - -

Cefazolin (mg) - - - 0.71 0.52-0.96 0.03 0.98 0.96-1.00 0.02 - 0.83 0.99

Cefuroxime (g) - - - 1.07 0.86-1.34 0.53 1.01 0.98-1.03 0.63 - 1.15 1.01

Chlorhexidine 
Gluconate (mg)

- - - 0.52 0.34-0.78 <0.01 0.94 0.90-0.97 <0.01 - 0.63 0.95

Cholecalciferol (g) - - - 0.99 0.78-1.27 0.95 1 0.97-1.02 0.79 - - -

Dextrose (g) - - - 1.08 0.76-1.52 0.67 1.01 1.00-1.03 0.17 - 1.19 1

Epinephrine (mg) - - - 1.16 0.82-1.66 0.4 1 0.99-1.01 0.74 - - -

Fentanyl (mg) - - - 1.16 0.90-1.49 0.26 1 0.99-1.00 0.24 - - -

Table 3: Odds Ratios of the a) Clinical Only Model, b) Binary Medication Model, c) Medication Dosage Model, and d) the Model with variable selection 
using LASSO. Odds Ratios that are statistically significant are highlighted in black.
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Furosemide (mg) - - - 1.17 0.89-1.54 0.26 1.01 0.99-1.03 0.25 - - -

Heparin (g) - - - 1.08 0.65-1.75 0.75 1.04 1.00-1.09 0.06 - - -

Hetastarch (g) - - - 0.75 0.55-1.00 0.06 0.97 0.94-1.00 0.08 - - -

Insulin (mg) - - - 1.14 0.81-1.61 0.46 1.01 0.98-1.04 0.39 - - -

Lidocaine (mg) - - - 1.17 0.91-1.49 0.22 1.01 0.99-1.04 0.36 - 1.03 -

Magnesium Sulfate (g) - - - 1.08 0.84-1.38 0.56 1 0.99-1.01 0.66 - - -

Midazolam (mg) - - - 1.11 0.82-1.51 0.51 1 0.99-1.00 0.39 - - -

Mupriocin (mg) - - - 1.06 0.84-1.34 0.61 1 0.98-1.01 0.82 - - -

Nitroglycerin (mg) - - - 1.05 0.78-1.41 0.74 1 0.99-1.01 0.78 - - -

Norco (mg) - - - 1 0.66-1.54 0.98 0.99 0.95-1.04 0.8 - - -

Norepinephrine (mg) - - - 1.29 0.85-1.98 0.24 1 0.99-1.01 0.8 - - -

Ondansetron (mg) - - - 1.19 0.81-1.74 0.36 1.02 0.98-1.06 0.37 - - -

Potassium Chloride 
(mg)

- - - 0.92 0.73-1.15 0.45 1 0.99-1.01 0.99 - - -

Propofol (mg) - - - 1.32 0.98-1.78 0.07 1.02 1.00-1.03 0.01 - - -

Protamine Sulfate (mg) - - - 0.61 0.39-0.94 0.03 0.98 0.94-1.03 0.48 - - -

Rocuronium (mg) - - - 0.77 0.35-1.69 0.51 0.98 0.92-1.04 0.44 - - -

Sodium Bicarbonate 
(mg)

- - - 1.25 0.99-1.57 0.06 1.02 1.00-1.04 0.1 - 1.21 1.02

Tylenol (mg) - - - 1.12 0.81-1.56 0.48 1.02 0.99-1.05 0.15 - - 1

Vancomycin (g) - - - 0.92 0.73-1.16 0.47 1 0.99-1.01 0.64 - - -

Figure 2a: XGBoost Feature Importance Plot of the traditional clinical variables.
Note:  Clinical only;  -Binary meds;  -Meds dosage

Figure 2b: XGBoost Feature Importance Plot of the intra-operative medications.
Note:  -Binary meds;  - Meds dosage
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AF-naive CABG patient populations, which have demonstrated 
predictive ability with AUC in the range of 0.60-0.68 [10-13]. 
The improvement in predictive accuracy after incorporating 
intraoperative medications suggests a potential effect of common 
intraoperative medications on development of POAF after CABG 
surgery. However, lack of difference in predictive performance 
between models using binary indicator variables for intraoperative 
medications and models using net dosages, with LR, or time-
sequence information, in a neural network, suggests that the binary 
characterization of intraoperative medications largely describes 
whatever effect they have. It may be that medicines’ sodium or 
mineral content influences patient hydration or isotonicity to 
influence heart muscle function [30]. Alternatively, it may be that 
medications themselves do not directly affect POAF incidence; 
instead, they may be indicating clinical circumstances corresponding 
to more physiologically stressful operative conditions. For example, 
prior studies have shown clamp time during CABG predictive of 
POAF [31,32]. Here we did not have access to operation duration 
information, but medication administration profiles may be 
dependent upon it or other factors. There was positive association 
of POAF with undergoing of concurrent valve operations (e.g., 
mitral valve replacement), which would cause more physiologic 
stress. Significant associations with POAF of medication 
administrations that were observed concomitantly with concurrent 
valve operations may represent independent effects, or they may 
be capturing secondary procedural influences. For example, from 
an informatics perspective, medications administrations could be 
capturing specific pre-operative procedures of patients or variations 
in procedure by different care teams. Overall, the exact nature of 
causality between these medications and development of POAF 
is unclear. Furthermore, there may be inaccuracies in some of 
the recorded quantities administered, as they are derived from 
clinicians’ manual input of start and stop times in the electronic 
record, rather than a direct measurement of the quantity. While 
there could be pharmacological or other influences on patients’ 
physiology captured by medications information, a study with more 
directly-recorded data for medications would be more effective in 
testing this hypothesis. The results presented in this study indicate 
that deeper understanding of the causes for POAF and potential 
for improving clinical prediction models would be accessible 
through further investigation of medication administrations and 
other intra-operative procedures for AF-naive CABG patients.

CONCLUSION 

This study used a retrospective data set for first-time CABG 
patients to investigate factors associated with POAF and potential 
predictive performance of several prediction models. Across 
models, advanced age, mitral valve disease, and increased average 
ECG PR interval were significantly associated with increased 
POAF incidence, which is consistent with the findings of other 
studies. Additionally, incorporation of intra-operative medication 
administration data was shown to improve predictive performance 
of all models tested. The findings presented here contribute to 
general understanding of POAF as having complex, multifarious 
influences. They indicate that improving performance for 
models to predict POAF incidence is possible by introducing 
information about medications administered intra-operatively, and 
they demonstrate the potential effects upon POAF incidence of 
several commonly used medications. However, this study did not 
identify causal relationships between the medications administered 
and POAF outcomes. Generally, as POAF is associated with 

DISCUSSION

We have presented an exploration of incorporating intraoperative 
medications to improve the accuracy of models that predict POAF 
in patients receiving CABG surgery, testing the hypothesis that 
intraoperative medication information may be used to improve 
prediction of new-onset POAF incidence. Leveraging the rich 
clinical information available in the EMR, we constructed a large 
study cohort dataset, including 3,807 first-time AF CABG patients. 
The dataset included patient comorbidities and intraoperative 
medication administration profiles. Four statistical and 
machine learning methods were trained and tested on different 
representations of our dataset with varying levels of information. 
LR and LASSO models trained with basic clinical information 
had AUC values in the ranges similar to those reported in other 
studies with different feature sets, while XGBoost performed 
comparatively worse. Incorporation of intraoperative medications 
improved predictive accuracy (AUC) across all models. The relative 
performances indicate that intra-operative medications data do 
influence predictive performance, but the time-series medication 
data did not provide more predictive information than aggregated 
dosages did.

In our LR and LASSO models, age was the most significant predictor 
of POAF, which is consistent with findings of other studies [6, 12]. 
Mitral valve disease was found be a significant predictor of POAF 
in our patient cohort. Other cardiovascular conditions, such as 
myocardial infarctions, heart failure, hypertension and several other 
comorbidities, including, diabetes and COPD contributed to the 
predictive ability of the model but were not found to be statistically 
significant, as has also been observed in other studies. Our model 
showed longer PR intervals are a positive predictor for POAF. This 
is also consistent with the results of previous studies [23-25]. In 
our models, some variables had coefficients that suggested inverted 
effects towards POAF based on previous reports. For instance, 
smoking status and hypertension predictors consistently showed 
negative relationships towards POAF across our two models. 
The incidence rate of hypertension (58% vs. 54%) and current 
smoker (15% vs. 17%) were higher in the control group compared 
to the case group, though both were not statistically significant 
differences. The study cohort was mostly matched in incidence for 
clinical POAF risk factors found in other studies, such as smoking, 
hypertension and diabetes, but effects observed were not significant 
for many of these variables [6,12]. The cohort in this study was 
AF-naïve, which differs from some previous studies. Medication 
information has been investigated to a limited extent previously 
in relations to POAF. Pre-operative and post-operative beta-blocker 
use had been found to have an effect on the development of POAF. 
In our models, we did find a negative relationship between post-
operative beta-blocker use and onset of POAF, but no significant 
relationship was observed with pre-operative use. This corroborates 
knowledge of beta-blockers’ prophylactic properties-with regard to 
AF [15,16,26-29]. Note that although we attempted here to examine 
factors contributing to POAF incidence, our dataset did not permit 
clear distinction of post-operative beta-blocker use before or after 
the onset of POAF, which tends to confound the observed effects. 
It is possible that some post-operative beta-blocker use was in 
response to AF incidence, which would have increased observed 
rates of use in our case group and diminished observed differences 
between cases and controls.

The baseline predictive accuracy from models using only clinical 
data variables is comparable to that shown in other studies of 
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10.	 Pollock BD, Filardo G, da Graca B, Phan TK, Ailawadi G, 
Thourani V, et al. Predicting new-onset post-coronary artery bypass 
graft atrial fibrillation with existing risk scores. Ann Thorac Surg. 
2018;105(1):115-121.  

11.	 Sigurdsson MI, Muehlschlegel JD, Fox AA, Heydarpour M, Lichtner 
P, Meitinger T, et al. Genetic variants associated with atrial fibrillation 
and PR interval following cardiac surgery. J Cardiothorac Vasc 
Anesth. 2015;29(3):605-610.  

12.	 Thorén E, Hellgren L, Jidéus L, Ståhle E. Prediction of postoperative 
atrial fibrillation in a large coronary artery bypass grafting cohort. 
Interact Cardiovasc Thorac Surg. 2012;14(5):588-593. 

13.	 Chen L, Du X, Dong J, Ma CS. Performance and validation of a 
simplified postoperative atrial fibrillation risk score. Pacing Clin 
Electrophysiol. 2018;41(9):1136-1142. 

14.	 Cameron MJ, Tran DT, Abboud J, Newton EK, Rashidian H, Dupuis 
JY. Prospective external validation of three preoperative risk scores 
for prediction of new onset atrial fibrillation after cardiac surgery. 
Anesth Analg. 2018;126(1):33-38. 

15.	 Bidar E, Bramer S, Maesen B, Maessen JG, Schotten U. Post-operative 
atrial fibrillation–pathophysiology, treatment and prevention. J Atr 
Fibrillation. 2013;5(6). 

16.	 Yadava M, Hughey AB, Crawford TC. Postoperative atrial fibrillation: 
incidence, mechanisms, and clinical correlates. Heart Fail Clin. 
2016;12(2):299-308. 

17.	 Zakkar M, Ascione R, James AF, Angelini GD, Suleiman MS. 
Inflammation, oxidative stress and postoperative atrial fibrillation in 
cardiac surgery. Pharmacol Ther.  2015;154:13-20.  

18.	 Friedman J, Hastie T, Tibshirani R. Regularization paths for 
generalized linear models via coordinate descent. J Stat Softw. 
2010;33(1):1. 

19.	 Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In 
Proceedings of the 22nd acm sigkdd international conference on 
Knowl Discov Data. 2016.785-794. 

20.	 Keras: the Python deep learning API. Accessed. 2020.

21.	 Team K. Keras documentation: The Functional API. Accessed. 2020.

22.	 Team K. Keras documentation: Conv1D layer. 2020.

23.	 Steinberg JS, Zelenkofske S, Wong SC, Gelernt M, Sciacca R, 
Menchavez E. Value of the P-wave signal-averaged ECG for predicting 
atrial fibrillation after cardiac surgery. Circulation. 1993;88(6):2618-
2622. 

24.	 Amar D, Shi W, Hogue CW, Zhang H, Passman RS, Thomas B, et 
al. Clinical prediction rule for atrial fibrillation after coronary artery 
bypass grafting. J Am Coll Cardiol. 2004;44(6):1248-1253. 

25.	 Tsikouris JP, Kluger J, Song J, White CM. Changes in P-wave dispersion 
and P-wave duration after open heart surgery are associated with the 
peak incidence of atrial fibrillation. Heart lung. 2001;30(6):466-471. 

26.	 Arsenault KA, Yusuf AM, Crystal E, Healey JS, Morillo CA, Nair GM, 
et al. Interventions for preventing post-operative atrial fibrillation 
in patients undergoing heart surgery. Cochrane Database Syst Rev. 
2013;(1):3611. 

27.	 Connolly SJ, Cybulsky I, Lamy A, Roberts RS, O’brien B, Carroll 
S, et al. Double-blind, placebo-controlled, randomized trial of 
prophylactic metoprolol for reduction of hospital length of stay after 
heart surgery: The β-Blocker Length Of Stay (BLOS) study. Am Heart 
J. 2003;145(2):226-232. 

28.	 Iliuta L, Christodorescu R, Filpescu D, Moldovan H, Radulescu 
B, Vasile R. Prevention of perioperative atrial fibrillation with 
betablockers in coronary surgery: betaxolol versus metoprolol. 
Interact Cardiovasc Thorac Surg. 2009;9(1):89-93. 

higher care resource usage, the ability to predict and mitigate its 
incidence would be valuable. The results of this investigation can 
support further study into the role of intra-operative medications, 
potentially enabling identification of operational changes that may 
decrease POAF incidence.
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