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Abstract

Recently, growing evidences have shown that chronic inflammation is the major cause of carcinogenesis.
Inflammation signaling pathways can facilitate evolution and development of cancers in a variety of aspects, such as
proliferation, metastasis, and apoptosis, etc. Nuclear factor-kappa B (NF-κB), janus-activated kinase (JAK)-signal
transducers and activators 3 (STAT3), mitogen-activated protein kinase (MAPK), phosphatidylinositol-3-kinase/
protein kinase B (PKB, also known as Akt)/ mammalian target of rapamycin (PI3K/Akt/mTOR), Wnt/ β-catenin, and
transforming growth factor (TGF)-β/Smad signaling pathways have been well studied, which are implicated in
inflammation-induced carcinogenesis. Although tremendous of researches have reported these signaling pathways,
few has explained the mechanism by which inflammation signaling pathways sustain activation during
carcinogenesis. In this review, we summarized the present knowledge of 6 well known inflammation signaling
pathways, especially their roles in chronic inflammation-induced carcinogenesis, reasons for the persistent
inflammation, and potential inhibitors targeting key molecules for cancer therapy. This review will help in improving
our understandings of how these inflammation signaling pathways take part in carcinogenesis, thus paving the way
for the prediction of occurrence and prognosis as well as targeting therapy of cancers.
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Pleckstrin Homologous; PI3K: Phosphatidylinositol-3-Kinase;
PI(3,4)P2: Phosphatidylinositol 3,4-Bisphosphate; PI(3,4,5)P3:
Phosphatidylinositol 3,4,5-Trisphosphate; PI(4)P: Phosphatidylinositol
4-Phosphate; PI(4,5)P2: Phosphatidylinositol 4,5-Bisphosphate; PKB:
Protein Kinase B, also known as Akt; PTEN: Phosphatase and Tensin
Homolog; PTK: Tyrosine Kinase; RHD: Rel Homology Domain;
RXRα: Retinoid X Receptor α; SAPK: Stress Activated Protein Kinase;
SH2: Scr Homology 2; SHP1/2: Src Homology-Containing
Phosphatase1/2; SOCS: Suppressor Of Cytokine Signaling; TAK1:
TGF-β-Activated Kinase 1; TGF-β: Transforming Growth Factor-β;
TLR: Toll-Like Receptors; TNF-α: Tumor Necrosis Factor-α; TNFR:
TNF-α Receptor

Introduction
The cause of malignant tumors has not been fully understood.

Epidemiological studies and clinical observations have demonstrated
that the environment has an important influence on the occurrence of
human malignant tumors. It is estimated that more than 80% of the
malignant tumors are closely related to environmental factors, such as
microbial infection, chronic stimulation with chemicals, ionizing
radiation, and toxin, etc. In addition to the impact of environmental
factors, the occurrence of cancers is also associated with internal
agents such as genetic predisposition, immune conditions, endocrine
states, etc. When the organism is stimulated by persistent
environmental factors whose impacts cannot be efficiently eliminated
by the immune system, chronic inflammation might occur. Many
chronic inflammatory diseases can lead to increased risks of cancers.
Chronic hepatitis, for instance, are closely related to the occurrence of
most hepatocellular carcinomas (HCC) in the world [1]. Inflammatory
colonic diseases such as Crohn’s disease and ulcerative colitis can also
lead to an increased risk of colon adenocarcinoma [2-4]. Chronic
pancreatitis caused by heavy alcohol consumption is responsible for an
increased risk of pancreatic cancer [5,6]. Chronic inflammation of
esophagus such as gastroesophageal reflux disease and Barrett’s
esophagus can cause a serious of somatic and epigenetic changes,
which may ultimately lead to the occurrence of esophageal carcinoma
[7]. Chronic bronchitis and emphysema increase the risks of lung
cancer [8,9]. Helicobacter pylori infection and colonization can lead to
chronic gastritis related gastric cancers [10]. Parasites infections such
as Schistosoma hematobium in bladder, Opisthorchis viverrini,
Opisthorchis felineus, and Clonorchis sinensis in gallbladder can cause
local chronic inflammation, which can ultimately lead to the
occurrence of cancers [11, 12]. Chronic inflammation contributes to

Hou et al., J Cell Signal 2015, 1:1

Review Article Open Access

J Cell Signal
ISSN: JCS, an open access journal

Volume 1 • Issue 1 • 1000104

Jo
ur

na
l of Cell Signaling

ISSN: 2576-1471
Journal of Cell Signaling

mailto:caoguangwen@yahoo.com
http://dx.doi.org/10.4172/jcs.1000104


cancer initiation and progression via generating a tumor-supporting
microenvironment. It initiates cancer development via inducing
reactive oxygen and nitrogen species which are usually associated with
DNA mutations. Because the persistent inflammation exists, mutations
accumulate, of which some are driver mutations that can promote cell
growth, survival, or reduce cell apoptosis [13]. During chronic
inflammation, a variety of inflammation signaling pathways remain
persistent activation. These include the nuclear factor-kappa B (NF-
κB), Janus-activated kinase (JAK)-signal transducers and activators 3
(STAT3), mitogen-activated protein kinase (MAPK),
phosphatidylinositol-3-kinase (PI3K)/ Protein Kinase B (PKB, also
known as Akt)/ mammalian target of rapamycin (PI3K/Akt/mTOR),
Wnt/β-catenin, and transforming growth factor (TGF)-β/ Smad
signaling pathways. In order to prevent and control inflammation-
caused cancers potently, it is quite important to learn how internal
inflammatory signaling pathways affect the occurrence and
development of cancers.

NF-κb Signaling Pathway and Carcinogenesis
In mammal cells, NF-κB family contains 5 members, namely p65

(RelA), p50 (NF-κB1), p52 (NF-κB2), RelB, and cRel. These proteins
have a same amino terminal, which is composed of about 300 amino
acid residues, called Rel homology domain (RHD), with DNA binding
site and dipolymerization site inside. IκB is a kind of repressor protein
of 36kDa, which can interact with the amino acid residues of RHD,
masking the translocation signal nuclear sequence in RHD, and
preventing NF-κB translocation to preserve it in the cytoplasm. The
mechanism of NF-κB activation is a complex process. Upon
stimulation, Ser32/36 in the regulation region of IκB amino terminal is
phosphorylated by the inhibitor of IκB kinase (IKK) complex, which
results in IκB ubiquitination and subsequent degradation induced by
proteasome complex [14,15]. Free from IκB, NF-κB dimmers can
translocate to the nucleus and activate the expression of genes
encoding cytokines, chemokines, and antiapoptotic factors which play
a key role in several cellular functions, like inflammation, cell survival,
proliferation, apoptosis, angiogenesis, and innate and acquired
immunity [16]. When the NF-κB is continually activated, chronic
inflammation occurred, which contributes to the tumor-supporting
microenvironment formation. Since NF-κB is a potent inducer of the
caspase-8 homolog FLICE-interacting protein, a repressor of death
receptor-induced apoptosis, under chronic inflammation
circumstances, it can bring abnormal transcription of this apoptosis
repressor gene [17]. Thus, abnormal NF-κB activation can facilitate
carcinogenesis via promoting cell growth as well as decreasing
apoptosis. A recent research showed that the inhibition of NF-κB and
MAPK signaling pathways could result in strong inhibition of
pancreatic tumor cell growth but not apopotosis [18]. The extract from
Sabdariffa leaf displays an inhibition function on the expression of
matrix metalloproteinase-9 (MMP-9) which facilitates cancer
invasiveness via inhibiting Akt/NF-κB/MMP-9 cascade pathway [19].
These two studies give us good examples that inhibiting NF-κB
signaling pathways continued activation brings results in
carcinogenesis suppression. It confirmed that blocks the chronic
inflammatory process, tumor initiation or development encounters a
big issue because the loss of tumor-supporting microenvironment.
Supernatant of tumor-infiltrating c isolated from the resection of
colorectal cancer (CRC) patients increases the growth rate of CRC cell
lines via activating NF-κB and STAT3 signaling pathways, which
indicates that abnormal activation of NF-κB and STAT3 signaling
pathways can facilitate carcinogenesis [20]. Hepatocyte IKK/NF-κB

promotes HCC development by maintaining liver inflammatory
responses [21]. The inflammatory process triggers hepatocyte NF-κB
through upregulation of TNF-α in adjacent endothelial and
inflammatory cells. NF-κB inhibition by anti-TNF-α treatment or
induction of IκB super repressor in later stages of tumor development
results in apoptosis of transformed hepatocytes and failure to progress
to HCC, which confirmed that abnormal activation of NF-κB signaling
pathway contributes to HCC development [22]. Serum levels of IL-6
and TNF-α have been found to be significantly higher in HBV-infected
patients with liver cirrhosis and HCC than those without and in
accordance with the progress of the disease phases [23,24]. All of these
researches proved that chronic inflammation induced by persistent
activation of NF-κB signaling pathway facilitates carcinogenesis.

Importantly, NF-κB signaling pathway has complex interactions
with other signaling pathways. Stimuli that can activate NF-κB
pathway include lipopolysaccharide and anti-inflammatory cytokines
such as tumor necrosis factor-α (TNF-α) and interleukin-1 (IL-1),
which work via binding to toll-like receptors (TLRs) and to the TNF-α
receptor (TNFR) or IL-1 receptor (IL-1R), respectively [14,25]. Upon
stimulated by the corresponding ligands, TNFR-associated death
domain, TNFR-associated factor, and receptor-interacting protein 1
can be rapidly assembled at the TLR/IL-1R or TNFR to form
complexes, which recruit and activate TGF-β-activated kinase (TAK)
1. TAK1 subsequently phosphorylates IKK-β and MAPK kinase 4/7
(MKK4/7), which in turn cause the activation of NF-κB and c-jun-
NH2-kinase (JNK) [26-28]. Since JNK signaling pathway promotes cell
proliferation and inhibits apoptosis, the interaction of this pathway
with NF-κB signaling pathway might amplify the tumor-promoting
effects. That is to say, chronic inflammation may bring activation of
different signaling pathways via interaction between them, resulting in
amplify pro-tumorigensis results.

JAK-STAT3 Signaling Pathway and Carcinogenesis
JAK family contains four members including JAK1-3, molecules

belonging to tyrosine kinase (PTK) family [29]. Once IL-6 binds to its
receptor, the intracellular portion of the receptor were dipolymerized,
after which JAK binds to the box function region of the receptor dimer
and is activated via phosphorylation. Activated JAK further induces
the activation of substrates surrounding the receptor dimer, including
other JAK family members and STATs. STATs belong to substrates of
JAK, and at the same time are kinds of DNA binding proteins with scr
homology 2 (SH2) function domain. STAT can bind to tyrosine site of
receptor dimer as well as KLD functional domain of JAK via SH2
domain. JAK phosphorylates tyrosine sites in the Y function region of
STATs, causing STATs activation. With the help of SH2 functional
regions, such as SIF-A (composed of STAT3 and P48), SIF-B
(composed of STAT3 and STAT1), and SIF-C (composed of two
STAT1s), activated STATs in the cytoplasm forms homologous or
heterologous dimmers. These dimers are shifted to the nuclei and
activate a variety of targeted oncogenes, leading to malignant
progression of cancers [21,30]. One of the most investigated STATs
molecules is STAT3. A zebrafish tumorigenesis model has been applied
to explore the relationship between IL-6/STAT3 signaling pathway and
hepatocarcinogenesis. Overexpression of IL-6 specifically in zebrafish
livers results in a massive infiltration of inflammatory cytokines and
cells, which facilitates hepatocarcinogenesis. PI3K/Akt and JAK-
STAT3 pathways are activated in this model. Of the pathways,
PI3K/Akt is mostly reactive to the infiltrated inflammatory cells,
whereas the JAK-STAT3 is mostly implicated in hepatocarcinogenesis.
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Taking the results stated above together, it is clear that JAK-STAT3 and
PI3K/Akt pathways are related to inflammation-induced HCC [31]. In
addition, the activation of STAT3 can also predict poor prognosis. For
instance, long-term use of indomethacin leads to activation of NF-κB
and JAK-STAT3 pathways which in turn results in poor prognosis of
HCC [32]. STAT3 signaling pathway not only predict prognosis of
cancer, but also serve as a therapeutic target. For instance, the high
level of STAT3 has been associated with advanced tumor stage and
decreased survival in patients with pancreatic ductal adenocarcinoma
(PDAC). Inactivation of STAT3 leads to tumor growth inhibition in
animal model.

Inhibition of STAT3 increases the therapeutic response in PDAC,
which will be a potential adjuvant therapy for PDAC [33]. MiR-34a can
inhibit STAT3 signaling pathway for cancer treatment. It has been
shown that miR-34a induced by p53 inhibits epithelial-to-
mesenchymal transition (EMT). Activation of IL-6R/STAT3/miR-34a
feedback loop promotes EMT, invasion, and metastasis in vitro and in
vivo. The expression of miR-34a can suppress tumor progression via
inhibiting chronic inflammation induced by STAT3 signaling pathway
[34]. Thus, activation of STAT3 signaling pathway promotes cancer
occurrence, and prognosis, while inhibition of this pathway may lead
to cancer regression.

STAT3 signaling pathway has interactions with other signaling
pathways. In human liver cancer tissues, for instance, STAT3 and IκB
signaling pathways are negatively correlated to each other [30]. Src
homology-containing phosphatase1/2 (SHP1/2) takes part in feedback
inhibition of STAT3 activation. Blocking of NF-κB leads to the
oxidation of SHP1/2 via elevating reactive oxygen species level.
Oxidized SHP1/2 has no enzymatic activity on JAK2 substrate,
resulting in continued activation of JAK-STAT3 pathway [35]. Thus,
JAK-STAT3 may promote malignant transformation via interacting
with other signaling pathways.

MAPK Signaling Pathway and Carcinogenesis
MAPK, a kind of serine/threonine kinases, can phosphorylate

various cytoplasmic proteins and move from the cytoplasm to the
nucleus to regulate the activities of some transcription factors. MAPK
activation is a critical step in the cascade reaction of phosphorylation.
The classical MAPK cascade is initiated by MAPKKK activation.
MAPKKK belongs to serine/threonine kinase, which can activate
MAPKK. MAPKK in turn phosphorylates and activates MAPK.
Generally, MAPK has 5 major subgroups, namely ERK (ERK1/ERK2),
JNK/SAPK, p38MAPK (p38α, p38β, p38γ and p38δ), ERK3/ERK4 and
ERK5 [36]. Mediated by a number of tyrosine kinase and cytokine
receptors associated with G proteins, MAPK signaling pathway is
involved in regulation of a variety of cell behaviors, like proliferation,
differentiation, survival, and apoptosis.

One of the most investigated MAPKs is JNK. JNK proteins are
encoded by three genes, JNK1, JNK2, and JNK3. The former two are
ubiquitously expressed, whereas the latter one is restricted mainly to
testis and brain. JNK plays an important role in cell apoptosis and
proliferation. It is normally activated by MKK7 and MKK4 [37]. Like
other MAPK cascades, the JNK signaling pathway regulates cell
behavior in many ways, among which the cell growth regulation and
carcinogenesis function of c-Jun and JNK are widely investigated.
Studies have clearly established the role of JNK in cell proliferation or
apoptosis induced by some inflammation cytokines, such as TNF-α,
IL-10, etc. [38-40]. Under sustained expression of inflammation

cytokines, like TNF-α and IL-10, JNK can phosphorylate various
substrates, including c-Jun, JunB, JunD, ATF2, p53, Bcl2, Bcl-xL, Bid,
Bad, and Bax proteins, thus regulating cell growth and death [41].
Since phosphorylated JunD could stimulate the transcription of potent
apoptosis repressor gene cIAP2, which contains a composite promoter
with tandem apoptosis protein 1 (AP-1) and NF-κB binding sites, JNK
activation could bring JunD/Fos and NF-κB dimers cooperation and
transcription in a synergistic manner [42]. This generates a positive
feedback regulatory circuit. NF-κB and JNK-activated JunD induces
cIAP expression, which promotes K63-linked polyubiquitination of
upstream signaling molecules, leading to TAK1 activation. TAK1 in
turn phosphorylates IKK-β and MKK4/7 to activate NF-κB and JNK
[42]. Although the initial JNK activation mediated by TNFR1
promotes cell survival and proliferation transiently, the effect turns to
be opposite when JNK activation is sustained for prolonged period.
Sustained JNK activation induces Bax/Bak-dependent apoptotic
pathway, which can cause mitochondrial outer membrane
permeabilization, and subsequently release of cytochrome C, initiating
apoptosis [43,44]. JNK can also activate apoptosis via transcriptional
activation of apoptosis-inducing genes such as TNF-α, Fas-L and Bak,
or via phosphorylation of tumor suppressor p53 and E3 ubiquitin
ligase Itch homolog [45-48]. Thus, when JNK is activated for a short
time, it promotes cell survival and proliferation transiently, but when
JNK activation is sustained for prolonged period, it will results in cell
apoptosis or tumor suppression. JNK signaling pathway plays a
complex role in carcinogenesis.

Other well-known MAPKs are p38 proteins. The p38 family has
four members, namely p38α, p38β, p38γ, and p38δ, also called stress
activated protein kinase (SAPK) 2a, 2b, 3, and 4, respectively, which are
distributed in different tissues [36]. The p38 MAPK is selectively

activated by MAPKK (MKK3/6), mediated by dual phosphorylation
at the Thr-Gly-Tyr motif [49]. The p38 MAPK and JNK pathways can
interact at several levels. For instance, a research based on the matched
primary and metastatic pancreatic cancer tissues from 36 patients
discovered that high expression of pp38 MAPK was significantly
associated with improved postoperative survival (median overall
survival 27.9 months, P=0.041). Inhibition of p38 via SB202190
enhances cell proliferation. Meanwhile, p38 activity is related to low
levels of pJNK expression, and vice versa. Furthermore, inhibition of
JNK using SP600125 significantly decreases xenografts growth of
tumors with high p38 activity compared with those without p38
expression. In general, p38 MAPK promotes pancreatic cancer
malignancy via activating JNK signaling pathway [50]. In fact,
cytokines including TNF-α, IL-1, IL-6, IL-8, MCP-1, and GM-CSF that
are activated in chronic inflammation and tumor angiogenesis,
adhesion, invasion and metastasis are all regulated by p38 MAPK.
Thus, p38 signaling pathway plays an important role in promoting
chronic inflammation and carcinogenesis.

PI3K/Akt/mTOR Signaling Pathway and
Carcinogenesis

In the process of carcinogenesis, PI3K/Akt/mTOR pathway often
turns to be dysregulated because of mutation, deletion, amplification,
methylation, and post-translation modifications. It is an intracellular
signaling pathway that promotes tumor progression, metastasis,
apoptosis inhibition, malignant transformation, and radioresistance
[51,52]. Phosphatase and tensin homolog (PTEN) is a negative
regulator of PI3K/Akt/mTOR pathway [53]. It is also a quite effective
tumor suppressor and is often mutated, deleted or epigenetically
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silenced in different human cancers [54,55]. According to their
different structure, regulation function, and in vitro lipid substrate
specificity, PI3K family can be divided into three major classes, namely
class I, class II, and class III [56]. As class I PI3K promotes
carcinogenesis, it is well-studied. Class I PI3Ks are heterodimers which
are composed of a 110-kDa catalytic subunit (p110) and a regulatory
subunit. There are 4 p110 isoforms (p110a, p110b, p110g, and p110d)
encoded by different genes and 7 regulatory subunits (p85a, p85b,
p55a, p55g, p50a, p101, and p87) produced by a combination of
different genes and alternative start codons [57]. The regulatory
subunits can inhibit the kinase activity in normal situation by binding
to the p110 catalytic subunits and stabilizing the PI3K protein
heterodimers. PI3K is responsible for phosphorylating a range of
membrane phospholipids including phosphatidylinositol 4-phosphate
(PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2),
catalyzing transfer of ATP-derived phosphate to the D-3 position of
the inositol ring of membrane phosphoinositides, thereby forming the
second messenger lipid phosphatidylinositol 3,4-bisphosphate
(PI(3,4)P2) and phosphatidylinositol 3,4,5-trisphosphate (PI(3,4,5)P3)
[58]. PI(3,4,5)P3 subsequently recruits a subset of signaling proteins
with pleckstrin homologous (PH) domains binding to the membrane,
including 3-phosphoinositide-dependent protein kinase-1 and
Akt/PKB [59-62]. Continued expression of some inflammation
cytokines, like IL-3, IL-6, IL-7, etc. could cause abnormal activation of
Akt, which has the ability to phosphorylate a variety of downstream
proteins including mTOR, GSK3, and IRS-1 [63], so that PI3K/Akt
signaling pathway can join in multiple cellular processes such as
apoptosis, therapeutic resistance, glucose metabolism, cell migration,
transcription, and cell proliferation [64,65]. In addition, activation of
mTOR can up-regulate the expression of multiple proteins such as
cyclin D1 [66] and vascular endothelial growth factor (VEGF) [67],
leading to increased carcinogenesis. In a recent study enrolling 71
gastric cancer (GC) patients whose lesion samples were tested for the
expression of PI3K/AKT/mTOR pathway-related proteins by
immunohistochemistry indicated that PI3K, AKT, p-4E-BP1, p-AKT,
p-mTOR, eIF-4E, p-eIF-4E, P70S6K1, and p-P70S6K1 proteins were
significantly over-expressed in gastric cancer tissues; whereas, the
expression of PTEN protein, one of the inhibitors of PI3K, was lower in
tumor tissues compared with non-tumoral tissues, indicating that the
PI3K/AKT/mTOR pathway is activated in GC [68]. Another similar
study raised the hypothesis that the expression of PI3K/AKT/mTOR
signaling pathway may promote GC progression [69]. These researches
all proved that activation of PI3K/AKT/mTOR is involved in
carcinogenesis.

Wnt/β-catenin Signaling Pathway and Carcinogenesis
The name Wnt is combined by two terms, namely int and wg, two

highly homologous genes in mice and Drosophila, respectively [70-72].
Wnt protein initiates signaling by binding to the Frizzled protein (a
seven-span transmembrane receptor) and either LRP5 or LRP6 (two
members of the low-density-lipoprotein receptor-related protein
family) proteins. Wnt signaling pathways are divided into two
categories, β-catenin-dependent and non-β-catenin-dependent
signaling cascades. A hallmark of the β-catenin-dependent signaling is
the stabilization of cytoplasmic β-catenin and translocation into nuclei,
while the non-β-catenin-dependent signaling is mediated by planar
cell polarity pathway and small GTPase proteins. High levels secretion
of TNF-α, IL-1β and IL-6 cytokines contribute to Wnt/β-catenin
signaling pathway activation. It has been discovered that miR-26b
could reduce the secretion of TNF-α, IL-1β and IL-6 cytokines via

inhibiting Wnt/β-catenin pathway activation, leading to malignant cell
proliferation suppression and apoptosis elevation, which proves that
chronic inflammation induced by Wnt/β-catenin could promote
malignant cell proliferation and reduce cell apoptosis [73]. Indeed,
activation of Wnt/β-catenin signaling pathway is evident in various
cancers. For instance, a subset of osteosarcoma cell lines displays
specific activation of Wnt/β-catenin pathway [74]. Mutations of β-
catenin are detected in approximately 30% of primary HCC, raising
the possibility that activation of Wnt/β-catenin signaling contributes to
hepatocarcinogenesis [75]. It has been found that the expression of
CyclinD1 is reduced via inhibiting Wnt/β-catenin signaling pathway
when Retinoid X Receptor α (RXRα) is knocked down. RXRα can also
upregulate the expression of proliferating cell nuclear antigen via
activating NF-κB signaling pathway and down-regulating the p21 level.
Thus abnormal activation of Wnt/β-catenin and NF-κB pathways
stimulated by RXRα may promote the proliferation of
cholangiocarcinoma [76]. High level expression of miR-1207 can cause
activation of Wnt/β-catenin signaling pathway via inhibiting negative
regulators including AXIN2, secreted Frizzled-related protein 1, and
inhibitor of β-catenin and TCF-4 (ICAT), leading to tumorigenesis.
Thus, activation of Wnt/β-catenin signaling pathway induced by
miR-1207 could promote carcinogenesis via inhibiting associated
negative regulators [77]. These researches indicate that activation of
Wnt/β-catenin signaling pathway could promote carcinogenesis.

It has been discovered that Wnt/β-catenin and NF-κB have
complicated interactions. Overexpression of β-catenin is inversely
correlated with NF-κB and human inducible nitric oxide synthase
(hiNOS) activity. Under the circumstances of β-catenin absence, an
increased activation of NF-κB can be seen [78]. Thus, Wnt/β-catenin
signaling regulates hiNOS expression through interaction with NF-κB,
playing an important role in the athophysiology of inflammation-
associated carcinogenesis.

TGF-Β/Smad Signaling Pathway and Carcinogenesis
At the early stage of carcinogenesis, TGF-β acts as a tumor

suppressor via blocking cell growth cycle; during the progression
process of carcinogenesis, with the decay of tumor suppressor
function, TGF-β turns to promote cell proliferation. For instance, in
normal pancreatic cells, high levels of TGF-β can inhibit cell
proliferation via G1/S phase retardation [79]. While under chronic
inflammation circumstances, TGF-β could activate JNK, which
contributes to carcinogenesis. Compared with the parental cell line,
mitochondrial-depleted ρ0 cells derived from the Hep3B
hepatocarcinoma cell line display more aggressive characteristics of
invasiveness and migration. This is regulated by TGF-β/Smad pathway
via induction of c-Jun/AP-1 expression and activity [80], which is the
downstream gene in JNK signaling pathway. These data demonstrate
that TGF-β acts as a tumor suppressor factor in non-cancer cells,
however it may also promote tumorigenesis under chronic
inflammation circumstances.

Oncogenic Mechanisms in Chronic Inflammation and
Abnormal Activation of Signaling Pathways in Cancer
Prediction and Prognosis

Homeostasis is maintained by balance of immune system.
Disturbance of homeostasis, caused by tissue injure or infection, will
initialize immune response, imbalance of which can lead to chronic
inflammation, causing neoplastic transformation [81]. Experiments in
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animal models have shown that modulation of the immune system can
affect angiogenesis, cell proliferation, tumor volume, and overall
cancer incidence [82,83]. Based on our experience of HBV-HCC, the
classic example of chronic inflammation induced carcinogenesis,
together with the related advances in this field, we presented a
scientific hypothesis termed as Cancer Evolution-Development (Evo-
Dev) [84]. As this hypothesis described, the process of carcinogenesis
occurs in the microenvironment of non-resolving inflammation are
abided by Darwinian evolution theory: mutation-selection-adaptation.
The roles of inflammation signaling pathway alteration in the process
of carcinogenesis can be analyzed through the lens of Cancer Evo-Dev
hypothesis.

First, proinflammatory factors are responsible for the generation of
genome instability. As a part of the immune reaction, the activation of
inflammation related signaling pathways can be observed in many
diseases. Although the temporary stimulation is beneficial, the
persistence activation of these inflammation signaling pathways
usually leads to side effect. Persistence inflammation can increase DNA
mutation rates and cause overall genetic instability, via reducing
expression and activity of DNA mismatch repair genes mutS homolog
2 and 6. Nucleic acid editing enzymes, such as the human
apolipoprotein B mRNA-editing enzyme catalytic polypeptides
(APOBECs) family of cytidine deaminases, are powerful endogenous
mutagenic factors and can be found in signaling pathways of both
innate and acquired immune system [85,86]. The enzymes of this
family may increase the number of somatic mutations to a threshold
that exceeds the repair ability and starts the cancer Evo-Dev process.
That has been validated in transgenic animal models [87]. During the
chronic inflammation, pathways like NF-κB are persistently activated,
consequently leading to high level of APOBECs expression and human
genome injury. Besides, persistent inflammatory response can also
increase the expression of DNA methyltransferases, methylating the
genome globally. It can lead to promoter silencing of genes including
the DNA mismatch repair gene hMLH1 and tumor suppressor genes
such as APC, CDKN2, BRCA1, Rb and MDM2 [88,89]. DNA
hypermethylation can be observed in a variety of chronic
inflammatory diseases including ulcerative colitis and Barrett’s
esophagus. Colonization of H. pylori in the gastric mucosa can also
lead to hypermethylation of tumor suppressor genes [90,91]. These
findings suggest that genetic and epigenetic changes induced by
proinflammatory factors are involved in the process of carcinogenesis.

Second, somatic mutations confer survival advantages to cells by
altering critical inflammation signaling pathways. There are a
tremendous number of mutations in cancer genome, which can be
categorized as passenger mutations and driver mutations. Most of
them belong to passenger mutations which do not contribute to
carcinogenesis. In contrast, driver mutations can promote the cancer
evolution [92]. These mutations were usually found in evolutionarily
conserved signaling pathways as we mentioned above. The alteration of
these pathways can promote cell growth, proliferation, and migration,
conferring survival advantages to mutant cells. However, the catalogue
of driver mutations with similar function varies in different individuals
and the incidences of specific mutations in a single gene are not high
among patients population. The clinical application of a single
mutation is limited by the low detection rate. For example, mutation
rates of ARID1A and ARID2, two genes with classic HCC related
genetic variations, are 16.8% and 5.6% respectively in tumor tissues
[93].

Figure 1: The Schematic figure of the basic framework of Cancer
Evo-Dev. a. Inflammation related signaling pathways can be
stimulated by different environmental exposures including viral
infection, ultraviolet rays, cigarette, injury etc. Persistence
inflammation can increase DNA mutation rates and cause overall
genetic instability via inducing expression of AID/APOBECs. b.
Distinct mutant lineages are selected by inflammatory
microenvironment. Most somatic mutations are passenger
mutations which do not contribute to carcinogenesis. Only a small
part belongs to driver mutations conferring survival advantages to
cells by altering critical signaling pathways. c. Mutants with
characteristics of stem cells live through the survival selection and
evolve to tumor-initialing cells by altering the signaling network.
The process of cancer Evo-Dev is triggered consequently and is
characterized by "reverse evolution" and "dedifferentiation". (The
depth of the color represents the activation degree. The deeper the
color is, the greater the activation degree is.)

Therefore, different somatic mutations with similar function may
influence the same signaling pathway. Those mutant cells which obtain
characteristics of "stemness" by altering these signaling pathways can
survive the selection and function as cancer-initiating cells. It is well
established in many inflammation induced cancers that the abnormal
activation of these signaling pathways can predict effective of therapies
and the prognosis of patients. For instance, the alteration of some
inflammation signaling pathways, such as PI3K/AKT/mTOR, NF-κB,
MAPK, and Wnt/β-catenin is predictive and prognostic for HCC and
PDAC [32-34,85,94-96]. The expression of periostin (POSTN) can
significantly promote proliferation, growth, invasion, and chemo-
resistance of colorectal carcinoma (CRC) cells. It has a high
discriminatory performance for the prognosis of CRC. Besides, this
evolution promoting effect is counteracted via targeting to PI3K/Akt or
Wnt/β-catenin signaling pathway [97]. All researches proved that
abnormal activation of these inflammation signaling pathways can be
utilized in the prediction and therapeutic intervention of cancer
occurrence and prognosis.

Mechanisms of Abnormal Activation in Inflammation-
Related Signaling Pathways and Cancer Therapy

Although inflammation-related signaling pathways are not specific
in cancers, they are more activated in cancers compared with normal
tissues. One possible reason is that inflammation-related mutations
can persistently activate certain inflammation signaling pathways [75].
Another possible reason causing high activation of inflammation
signaling pathways is epigenetic modifications. DNA methylation is
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the most extensively studied modification for epigenetic modification.
Cluster of methylation in GC rich region termed as CpG island usually
happen in promoter region of oncogenes, which frequently cause
reduced gene expression. For instance, promoter methylation of
suppressor of cytokine signaling (SOCS)-1 in GC causes SOCS-1
reduced expression, (SOCS-1 takes part in feedback inhibition of
STAT3 activation) which in turn activates JAK/STAT3 signaling [98].
With the increasing maturity of the next generation sequencing
technology, increased mutations or epigenetic modifications associated
with cancers are discovered. Via bench-to-top next generation
sequencer and bead array technology, a variety of mutations or DNA
methylations occurred in breast cancer that may cause inflammation
signaling pathways aberrant activation were discovered. For instance,
Wnt pathway is activated possibly by aberrant methylation of negative
regulators SFRP1 and DKK3, AKT/mTOR pathway is often activated
through PIK3CA gene mutation, and Notch pathway is activated
potentially by NOTCH1 and NOTCH2 gene mutations [99]. Two
recent researches investigated the relationship between signaling
networks and cancer in a systematic way. To draw a global picture of
how signaling pathways influence carcinogenesis, a global analysis
method is applied, mainly focusing on accumulation of mutations or
determinants of specificity on signaling networks based on ovarian
cancer cell lines and global cancer genome repository. A computational
platform (ReKINect) is designed to predict the underlying signaling
mechanisms or perturbations in cancer, via identifying network-
attacking mutations and systematically interpreted the exomes and
quantitative proteomes. Finally, the newly unknown network-attacking
mutations as well as the presence of mutational hotpots were
discovered [100,101]. This method may help in elucidating kinome-
wide inflammation network-attacking mutations, thus facilitating the
understanding between these events and cancers. Since the
inflammation signaling pathways are not specifically activated in
cancers but also in normal tissues, it's wise to explore the possible
treatment focusing on abnormally expressed inflammation pathways.
In two cell lines with PIK3CA mutations, after cytosolic phospholipase
A2α (cPLA2α) is overexpressed, the AKT phosphorylation level and
the cell proliferation rate increase. Consistently, after the cell lines
stated above are treated with Efipladib or siRNA to silence the
expression of cPLA2α, the AKT phosphorylation level and the cell
proliferation rate decrease. In vivo experiments show the similar
results. In addition, compared with adjacent normal mucosa, human
CRC tissue displays a higher level of cPLA2α expression. Thus cPLA2α
is responsible for sustaining AKT phosphorylation and cell
proliferation on conditions that PI3K mutation exists, which provides
us a potential therapeutic target for CRC [102]. Aspirin consumption is
involved in better clinical outcome and prognosis in PIK3CA-mutated
CRC, which confirm that PI3CA mutation is a possible therapeutic
target for CRC [103]. JAK2 gain-of-function mutations (V617F) are
responsible for myeloproliferative diseases. Thus, it appears that JAK2
will be a fruitful strategy for this kind of diseases [104].

Recently, a unique inhibitor, NT157, which targets STAT3, has been
found to contribute to cell malignant inhibition. It can decrease cancer
cell proliferation, increase cancer cell apoptosis, and reduce the
expression of pro-tumorigenic cytokines, like TGF-β, IL-6, etc [105].
Another TAK1 inhibitor 5Z-7-Oxozeaenol (5Z-O) could inhibit TAK1
activation, leading to the suppression of downstream signaling
pathways, including p38, JNK and NF-κB. While knockdown TAK1
binding protein in mice could attenuate tumor growth and metastasis
[106]. These two inhibitors targeting TAK1 have efficient effect on
cancer treatment stimulated by chronic inflammation. Currently, a

specific p38γ pharmacological inhibitor pirfenidone has been found to
suppress proinflammatory cytokine expression and colon
tumorigenesis, which could be used in colon cancer prevention and
treatment [107]. PRT062070 [4-(cyclopropylamino)-2-({4-[4-
(ethylsulfonyl)piperazin-1-yl]phenyl}amino)pyrimidi ne-5-
carboxamide hydrochloride], an orally active kinase inhibitor targeting
JAK has potent antitumor activation via inhibiting JAK1-3 associated
signaling pathways both in vivo and in vitro. It has been carried on a
phase I dose escalation study in patients with B-cell leukemia and
lymphoma, which will be utilized in autoimmune and malignant
diseases therapy [108]. TEL03, a dual inhibitor, blocks the expression
of both STAT3 and HIF-1α. Since TEL03 could inhibit both HIF-1α
and Stat3 simultaneously, it has dramatically inhibition function on
tumor growth in vivo, which could be a promising strategy for breast
and pancreatic cancer therapies [109]. SLC1 is a recombinant inhibitor
consisting an E-selectin targeting domain which selectively inhibit NF-
κB activation in endothelial cells in vitro and in vivo. It's a cell type-
specific inhibitor of inflammation signaling pathways, which will
promote the effectiveness and reduce the risk ratio of inflammatory-
induced cancer treatment [110]. Although majority of the novel
inhibitors targeting key molecules of inflammation signaling pathways
are under preclinical investigation or assessment, we believe that in the
near future, more inhibitors targeting abnormally activated
inflammation signaling pathways will undergo clinical tests for cancer
treatment.

Conclusion
Inflammation signaling pathways play a pivotal role in

carcinogenesis. The most investigated inflammation signaling
pathways include NF-κB, JAK-STAT3, MAPK, PI3K/Akt/mTOR, Wnt/
β-catenin, and TGF-β/Smad. These signaling pathways not only
function as biological regulator along, but also interact with each other.
For example, the NF-κB and JNK, NF-κB and JAK-STAT3, Wnt/β-
catenin and NF-κB, TGF-β and JNK are all pathways with cross-talk
effects. All these can contribute to the formation of inflammatory
molecular networks. Under normal circumstances, inflammatory
molecular networks function well in a balanced way, maintaining the
homeostasis. Once the chronic inflammation was induced by the
alteration of signaling networks resulted from tissue injury and/or
infection, aberrant somatic mutations or epigenetic modifications may
occur, increasing the risk of carcinogenesis. Understanding the
mechanisms by which inflammation signaling pathways facilitate
carcinogenesis can be helpful to explore the possible targets for cancer
prediction, prognosis, and treatment. Nowadays, some novel inhibitors
targeting inflammation signaling pathways have undergo preclinical
investigation or assessment, we believe that in the foreseeable future,
cancer patients can benefit from those potent inhibitors.
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