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Abstract
T cells protect us from a large number of infectious diseases. Several lines of evidence indicate that T cells 

can also eliminate malignant cells and alter the progression of tumors. These two types of immune responses 
were traditionally viewed to involve different types or qualities of T cells. Pathogen-specific immune responses 
were thought to be predominantly mediated by T cells bearing high affinity T cell receptors (TCRs) specific for 
microbial-derived antigens. In contrast, anti-tumor immunity or autoimmune diseases normally involve TCRs with 
intermediate-to-low affinity to self-antigens, and lower affinity T cells are believed to have severely reduced effector 
T cell potential. However, recent findings illustrate that the repertoire of pathogen-specific T cells is more diverse 
than previously considered and that significant numbers of differentiated and fully functional lower affinity effector 
T cells arise during infections. In this review, we will summarize our current understanding of the importance and 
the effector capacity of low affinity T cells during infection, autoimmunity and anti-tumor responses. We will discuss 
how T cell function is influenced by TCR affinity and TCR signal strength, and we will focus on how the expression 
of inhibitory and activating receptors impact the function of T cells with different antigen affinity. Manipulating T cell 
activity through engaging or blocking these pathways bears an enormous potential to alter the clinical outcome of 
malignant diseases, chronic infections, and autoimmune disorders. 
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The Naïve T cell Repertoire Contains Significant 
Numbers of Auto-Reactive T cells

T cells express antigen receptors that are randomly generated in 
the thymus through somatic gene-rearrangement [1]. This creates 
an enormously diverse receptor repertoire, but only cells bearing 
receptors that at least weakly interact with self-peptide presenting 
MHC molecules mature (positive selection) and are exported from 
the thymus [2]. At the same time, thymocytes or T cells that express 
receptors that respond strongly to self-peptide MHC molecules 
are forced to undergo apoptotic cell death in the thymus (negative 
selection) [1,3,4] and also in the periphery [5,6]. 

It has long been considered that the vast majority of T cells that 
are capable of mounting an effector T cell response to self-antigen 
are eliminated in the thymus. In contrast, several lines of evidence 
indicate that the elimination is incomplete and it is meanwhile well 
established that a large number of auto-reactive T cells escape negative 
selection without causing any pathology in the majority of individuals 
[7-10]. This incomplete elimination is also illustrated by the fact that 
immune tolerance is critically dependent on the presence of regulatory 
T cells, which control the auto-reactive potential of T cells that escaped 
negative selection [11]. The occurrence of T cell mediated organ-specific 
autoimmune diseases, for which in most cases no major impairments 
in negative selection have yet been reported, further indicates the 
failure of negative selection to eliminate all auto-reactive T cells. 

The decision whether or not an auto-reactive T cell becomes 
eliminated depends on the strength of recognition with self-peptide 
MHC complexes. The most aggressive T cells, which strongly react 
to self-antigen [high affinity or avidity T cells, for simplicity reasons 
subsequently only referred to as high affinity T cells], are effectively 

eliminated, whereas T cells, which react with lower or intermediate 
affinity or avidity [referred to as low affinity T cells] are spared from 
elimination [10] and can be found in the periphery. Moreover, there 
seems to be a sharp affinity threshold, above which cells are eliminated 
and below which negative selection does not occur anymore [12-14] 
(Figure 1). Likely, most relevant for the development of autoimmunity 
are those cells, whose affinity for self-antigen is just below or at the 
threshold of negative selection (Figure 1). When T cells match the 
negative selection threshold, the decision whether or not a cell becomes 
deleted is a stochastic process and in this case a large fraction of cells 
escapes negative selection [15]. As discussed in detail in the following 
sections these escaping low affinity T cells bear the potential to cause 
tissue damage but there are a large number of peripheral restrictions in 
place that prevent them from getting activated and cause autoimmune 
pathology in healthy individuals.

Do We Benefit from the Presence of Low Affinity Auto-
Reactive T cells?

The failure to eliminate all auto-reactive T cells poses the danger of 
developing autoimmunity. This raises the question why such leakiness 
in thymic selection has evolved and what is the evolutionary benefit 
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from it? One argument has long been that these low affinity T cells could 
also be beneficial for immune responses against pathogens. In fact, even 
though the T cells weakly react with self-antigens, they might cross-
react with high affinity to foreign-antigens (Figure 1, orange arrow). If 
these T cells would be rigorously eliminated by negative selection then 
the clonal diversity in the T cell repertoire might be strongly reduced. 
Such a scenario could have a negative impact on the immune system’s 
ability to handle pathogen infections as this often critically relies on 
high clonal TCR diversity. In particular, for viruses, which can establish 
persistent infections, correlations have been made linking limited 
clonal diversity in the population of viral epitope specific T cells with 
the emergence of viral escape variants and the development of chronic 
infection [16-19]. Theoretical considerations also imply that a reduced 
clonal diversity would likely also restrict the number of possible 
epitopes that T cells could recognize. Thus, allowing thymic egress 
of T cells that weakly respond to self-antigen may enhance the ability 
of the immune system to better handle the diverse set of pathogens 
that we become exposed to, but probably, at the expense of developing 
autoimmunity. In other words, we normally assume that most T cells, 
which are activated by pathogen, respond with an affinity to self-antigen 
that is below the threshold for triggering an effector T cell response 
(blue arrow and cell in Figure 1). However, there are likely also cells 
responding to a foreign-antigen which show stronger reactivity to self-
antigen and which resemble the pattern illustrated in orange in Figure 
1. This scenario sounds very similar to what is understood under the
concept of molecular mimicry [20] but there are subtle differences.
Molecular mimicry proposes that structural similarities between self- 
and foreign-antigen may result in the activation of T cells that cross-

react between these two types of antigen. However, T cells might also 
cross-react between self- and foreign-antigen in the absence of larger 
structural similarities in antigenic motifs. Thus, it could be that a T cell 
which has low affinity for a self-antigen may become activated because 
it responds with high affinity to a structurally unrelated pathogen 
derived antigen. As explained in more detail below, once activated by a 
foreign-antigen, these low affinity T cells can mount a self-destructive 
effector T cell response. However, the extent and magnitude at which 
autoimmune destruction triggered by these mechanisms might occur 
remains unknown. Nonetheless, the known phenomenon of bystander 
damage during infection and sometimes excessive tissue destructions 
might be related to the action of such auto-reactive T cells that get 
activated during infection. In the following sections, we will discuss the 
mechanisms that could counteract the autoimmune responses by such 
low affinity auto-reactive T cells.

Besides that, the escape of low affinity T cells from negative 
selection is also beneficial for anti-tumor immune responses. This 
type of immune response targets tumor-associated antigens such as 
cancer-testis antigens (e.g. MAGEs or NY-ESO-1, expressed by several 
tumors) [21] or differentiation antigens (e.g. Melan-A/MART-1, gp100 
or tyrosinase expressed in melanoma cells) [22,23]. Although the term 
tumor-associated antigen suggests that these epitopes are somehow 
special, most of them are normal self-antigens and an anti-tumor 
immune response therefore targets mostly non-mutated self-epitopes. 
As tumor-associated antigens appear all to be expressed in the thymus 
[24], the T cell repertoire is similarly deprived of high affinity tumor-
antigen reactive T cells, as it is the case for any self-antigen. Therefore, 
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Figure 1: Comparison of the T cell repertoires available to respond to self- and foreign-antigen. Developing T cells generate T cell receptors that range from 
very weak to very strong self-reactivity. Negative selection eliminates thymocytes bearing a TCR that responds to self-antigen with an affinity that is above the negative 
selection threshold. The remaining fraction constitutes the peripheral repertoire. For most foreign-antigens, the peripheral repertoire contains naïve T cells that cover 
the entire affinity spectrum from very weak to very strong reactivity (indicated in green and yellow). The dashed line indicates the threshold for stimulating an effector 
response in peripheral T cells. 
It is important to consider that peripheral T cells differ in their level of self-reactivity and that two T cell clones with similar reactivity to a foreign ligand could substantially 
differ in their auto-reactive potential, as depicted in orange and blue, for two examples of T cell clones. Thus, when a cell like the one shown in blue would become 
activated during an infection, it would not cause autoimmunity as its affinity for self is below the peripheral activation threshold. This is different for the orange cell 
which is above the threshold and whose activation can cause autoimmunity. Thus, the orange cell represents the low affinity auto-reactive T cells referred to in the text.  
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the leakiness in eliminating low affinity auto-reactive T cells in the 
thymus allows the presence of T cells, which may spontaneously or 
after vaccination respond to tumors. 

Kinetic Aspects of Antigen Recognition by Low and 
High Affinity T cells

The dissociation constant, Kd describes the affinity with which 
two molecules bind each other and Kd is defined as the ratio of the 
dissociation and association rate. Despite the fact that we refer to cells 
as “high affinity” T cells, the strength with which the T cell receptor 
binds to peptide-MHC complexes is relatively low. “High and low 
affinity” T cells usually show a Kd in the range of 100 to 1 µM [3]. These 
have been determined for the monomeric interaction of the three 
molecules (peptide, MHC, TCR) by surface plasmon resonance, but the 
measured Kd value can significantly vary depending on the temperature 
and experimental system used to determine the Kd.

For positive selection, even Kd values higher than 100 µM may 
apply [25]. The threshold for negative selection is considered to be a Kd 
of 6 µM (at 37°C and at the surface of T cells) or a half-life of interaction 
between the TCR with pMHC of about 2 s [13]. Thus, when we speak 
about low affinity T cells in the context of tumor-or autoimmunity, we 
are referring to cells that are below the threshold of negative selection 
(Figure 1) and likely have a Kd higher than 6 µM or t1/2 times shorter 
than 2s. 

What remains still unknown is the peripheral affinity margin 
below which the cells do not respond anymore during an infection. We 
recently observed that there is a larger mismatch between the threshold 
of negative selection and peripheral T cell activation (as illustrated in 
Figure 1). Accordingly, peptide-MHC ligands that are far weaker in 
stimulating T cells than the thymic threshold still effectively activate T 
cells in the periphery during an infection and support effector function 
and the formation of memory T cells [15,26]. 

Largely puzzling questions are how T cells sense the differences in 
the affinity with which a TCR interacts with different peptide-MHC 
complexes but also what characterizes an optimal TCR ligand? High 
affinity binding (low Kd) can result from a very slow dissociation rate. In 
case of T cells, such interaction would allow a long time of interaction 
between the TCR and the peptide-MHC ligand (dwell time). The 
kinetic proofreading of TCR activation predicts that T cells sense how 
long this interaction lasts and that a minimum dwell time is needed 
before the cell receives an activating signal. Moreover, it is thought that 
the dwell time needs to be long enough to allow the recruitment of 
the co-receptor towards the TCR. Insufficient co-receptor recruitment 
signals the cell that the TCR had encountered a lower affinity ligand 
[14]. This model is supported by several in vitro experimental systems 
[27-29]. In its simplest form, it predicts that there is no upper affinity 
limit for TCR stimulation. According to this model, even very strongly 
binding ligands would efficiently activate T cells [30].

Alternatively, the productive hit rate model stipulates that multiple 
bindings and serial triggering of the TCR are required to activate T 
cells [31,32]. This model integrates the following TCR-pMHC binding 
characteristics: (i) TCR-pMHC interactions must be long enough to 
initiate productive TCR signaling and (ii) TCR-pMHC bonds must 
be released quickly enough to enable serial triggering, that is multiple 
engagement of a single pMHC to different TCRs [33,34]. TCR with 
fast association rates for pMHC would be able to rebind rapidly to 
the same pMHC after dissociation, extending the effective half-life or 
confinement time of the interaction [35]. Combined, this led to the 

prediction that extremely short or long interaction half-lives would 
reduce the activation potential [36], and that cumulative effects 
of individual productive TCR-pMHC interactions would predict 
functional T cell outcome rather than the absolute duration of TCR 
interaction. As higher affinity pMHC binding by the TCR goes usually 
along with longer t1/2 times and thus with a lower extent of receptor 
re-engagements per time, the productive hit rate model proposes the 
existence of an affinity optimum and when this is exceeded, T cell 
activation would decline to levels reached with lower affinity ligands. 

Therefore, the critical question which of these two models might 
most suitably describe the requirements for T cell activation depends on 
whether or not there is an optimum affinity range for T cell activation. 
Evidence has been provided which questioned the existence of such an 
upper limit [30], but newer observations suggest that it indeed exists. 
It has been reported that a superagonist may result in suboptimal 
stimulation of CD4+ T cells [37] and the same applies to CD8+ T cells 
[38]. We used a panel of CD8+ T cells equipped with engineered TCRs 
of incremental affinities for an NY-ESO-1 derived peptide presented 
in the context of HLA-A2. We saw that T lymphocytes expressing 
highly supraphysiological TCR affinities responded less well to antigen 
stimulation than the natural lower affinity TCR [38], (MH and NR, 
unpublished observations). This observation argues in favor of the 
productive hit rate model but it needs to be said that this notion does 
not allow concluding that there is an absolute need to serially stimulate 
the TCR when activating a T cell. Instead, it could also be that too long 
lasting interactions simply over stimulate T cells and that this leads to 
a suboptimum response.

Moreover, there are in vivo observations that cannot be explained 
by both models. This includes the very efficient in vivo activation of T 
cells by very low affinity TCR ligands (which will be discussed in detail 
below). Interestingly, those initially induce a similar rapid proliferation 
and similar differentiation as very high affinity ligands [26] though the 
pMHC binding kinetics are largely different from high affinity ligands. 

The Proximal TCR signaling Complex - a Sensor and 
Regulator of T cell Function to Low and High Affinity 
Antigen

During an infection, the T cell signaling machinery needs to be able 
to precisely discriminate between the overwhelming amount of TCR 
and self-peptide MHC engagement and related signaling background 
noise and the rare number of foreign-antigens that are presented 
among the many self-antigens. In other words, T cells need to ignore in 
the periphery those self- peptide-MHC complexes that stimulate T cells 
during postive selection in the thymus or during lymphopenia driven 
proliferation [39]. This illustrates the large need of the TCR signaling 
apparatus to adapt to different stimulation conditions and we have just 
begun to understand how those are achieved. 

The binding of the TCR to the peptide-MHC complex triggers the 
phosphorylation of immunoreceptor tyrosine-based activation motifs 
(ITAM) in the TCR-associated CD3 subunits, which is mediated by the 
Src family kinases Lck and Fyn [40]. How ligand engagement by the 
TCR facilitates this phosphorylation is still not clear. So far, clustering 
of the TCR, the induction of a conformational change in the TCR [41] 
along with the recruitment of the CD4+ or CD8+ T cell co-receptor, to 
bring Lck in closer proximity to the TCR, are thought to be responsible 
for initiating TCR mediated T cell activation. Besides strong support 
that TCR clustering is required for T cell activation in vitro, this mode 
of activation is somewhat challenged by observations that the presence 
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of a single or very few peptide-MHC ligands on the surface of a cell is 
sufficient to activate a T cell [42-45].

In response to in vitro stimulation, a special organization of surface 
and intracellular signaling molecules, known as the immunological 
synapse, can typically be observed. A characteristic feature of the 
synapse is the special separation of the TCR, the co-receptor, Lck and 
Fyn and the phosphatase CD45. So far, it remained unknown if the 
spatial exclusion of CD45 is a consequence of TCR stimulation and 
cell activation or a requirement for transducing TCR stimulation 
into a cellular response. A recent report elegantly shows that the 
latter appears to be the case and that the special separation of CD45 
is needed to shift the kinase-phosphatase balance in close proximity 
to the TCR and to activate the signaling cascade downstream of the 
TCR. Moreover, the binding energy of TCR-pMHC interaction is 
sufficient to generate the exclusion force needed to segregate the rather 
large CD45 transmembrane protein away from the TCR [46]. After 
the initial phosphorylation of ITAMs in the CD3 chains ZAP-70 is 
recruited and it phosphorylates and activates LAT and SLP-76. This 
leads to the assembly of several proteins that propagate the initial signal 
resulting in calcium flux seconds after TCR engagement and eventually 
full activation of the T cell [40,47]. 

The important question is how T cells can adapt these signaling 
pathways to different stimulation conditions and different requirements 
for antigen sensitivity? As mentioned above, the first event after TCR 
triggering is the phosphorylation of CD3 ITAM by Lck. The activity of 
Lck is controlled by a balance of kinases and phosphatases. It is negatively 
regulated by Csk and positively regulated by TSAD and CD45. However, 
CD45 can also limit the extent of Lck activity by dephosphorylating an 
activatory tyrosine residue [47]. The activation state of Lck is thought 
to act as a sensor for the strength of TCR engagement. Weak binding of 
the TCR triggers Lck-dependent activation and recruitment of SHP-1, 
which in a classical feedback loop inactivates Lck and downregulates 
TCR signaling. In contrast, stronger TCR activation induces an Erk-
dependent Lck phosphorylation that impairs the inhibitory SHP-1 
recruitment and thus reinforces TCR signaling [48]. Lower activity 
of SHP-1 decreases the threshold for activating T cells and converts 
antagonists into partial agonists [48]. Interestingly, using the above-
mentioned normal and supraphysiological TCRs that are HLA-A2/
NY-ESO-1 specific, we saw an upregulation of SHP-1 phosphatase 
level in T cells with the supraphysiological TCRs and an impaired T 
cell function [38], and (MH and NR, unpublished observations). This 
suggests that SHP-1 may play a dual role and restricts not only T cell 
signaling at the low but also at the very high range of TCR stimulation. 

There are further phosphatases that act on the proximal TCR 
signaling such as Lyp, a PTPN22 encoded phosphatase. This 
phosphatase was shown to act together with Csk to inhibit T cell 
activation likely through dephosphorylation of the activating tyrosine 
on Lck and ZAP-70 [49]. The importance of PTPN22 is highlighted 
by the fact that PTPN22 deficient mice have augmented TCR-induced 
phosphorylation and activation [50]. Moreover, a point mutation in 
PTPN22 is associated with several autoimmune diseases [51]. The 
exact role of PTPN22 in T cell activation is not known and there 
is contradictory data on the effect of the polymorphism found in 
autoimmune patients and whether or not it causes a loss or gain of 
function [52].  

These TCR affinity-dependent feedback mechanisms are likely part 
of a tunable instrument that enables T cells to adapt their reactivity 
to different conditions but the question is how can this be achieved? 

At the stage when thymocytes become positively selected, they are 
known to be very sensitive to antigen, which enables them to effectively 
respond to the very weak peptide-MHC interactions involved in 
positive selection [53]. The increased sensitivity to low affinity ligands 
is thought to be caused by a decrease in the negative regulation of 
TCR signaling. miR-181a – a micro RNA that is highly expressed in 
double-positive (DP) thymocytes and which decreases in later stages of 
T cell development – is considered to mediate this incerase in antigen 
sensitivity in developing thymocytes [54]. In the thymus, the expression 
of miR-181a has been shown to decrease the amount of PTPN22, SHP-
2, DUSP5, and DUSP6 phosphatases. This results in an elevated steady-
state level of phosphorylated proteins of the TCR signaling cascade 
and therefore a reduction in the TCR signaling threshold [54,55]. 
Furthermore, the mRNA levels of the negative regulator SHP-1 are 
lower in DP thymocytes compared to mature T cells [40,56]. Whether 
or not enforcing miR-181a expression can be used to modify the 
sensitivity of peripheral T cells needs to be determined.

Moreover, SHP-1 and SHP-2 can be recruited by multiple 
inhibitory surface receptors in T cells, and inhibit TCR signaling 
through dephosphorylation of proximal targets including Lck and 
ZAP-70 [57]. For instance, Yokosuka et al. recently showed that 
upon PD-L1 binding, ITIM-containing PD-1 could directly inhibit 
TCR-mediated signaling by recruiting SHP-2 phosphatase in a TCR 
stimulation strength-dependent manner [58].

How Do Differences in Affinity Impact the T cell 
Response and How Effective are Low Affinity T cells?

Several studies have shown that both the quality and the quantity 
of agonist pMHC engagement by the TCR impacts T cell activation 
[37,59] and it has long ago been recognized that high affinity T cells 
are superior in executing effector function than low affinity T cells 
[60,61]. Despite of this, we know that even low affinity auto-reactive 
T cells are able to eliminate tumors and mediate autoimmunity [8-
10,62]. The escape of low affinity T cells from negative selection and 
their ability to cause autoimmunity have been shown in experimental 
systems in which pathogen derived or model antigen are expressed 
as neo self-antigen such as the nucleoprotein from the Lymphocytic 
choriomeningitis virus (LCMV) [9] and later also ovalbumin [10]. The 
advantage of expressing these neo self-antigens is that one can directly 
compare which affinities of T cells can be found in the presence or 
absence of the self-antigen. Nevertheless, it remained rather difficult to 
judge how effectively these T cells can execute effector T cell function. 
Obviously, their effector capacity is below that of higher affinity T cells, 
but by how much?

In cancer patients, self/tumor-antigen specific CD8+ T cells can 
undergo considerable clonal expansion, persist during several years at 
relatively high frequencies, and differentiate to memory and effector 
cells, and they are in principle able to lyse tumor cells [21,63]. In 
parallel to these findings with human self-specific T cells, we recently 
intensively studied T cells responding with low affinity to pathogen-
derived antigen. We achieved this by using an approach in which TCR 
transgenic OT-1 T cells are stimulated during an infection by ligands 
that gradually differ in the strength of binding to the OT-1 TCR. Thus, 
with this system we can mimic high, intermediate or low affinity 
stimulation, as it would be the case with polyclonal T cells of which 
some respond with high and others with low affinity to pathogen-
derived antigen [26]. 

To our large surprise, we saw that the OT-1 T cells initially responded 
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similar to peptide-MHC complexes that very differently stimulate the 
OT-1 TCR. In fact, even very low affinity complexes induce the same 
initial rapid proliferation as high affinity ones. Low affinity stimulated 
OT-1 T cells were early on phenotypically indistinguishable from cells 
stimulated by high affinity complexes. They even expressed effector 
molecules such as granzyme B and were able to execute effector T cell 
functions and form memory cells [10,64]. We could recently show 
that very low affinity stimulated T cells support pathogen elimination 
(SO and DZ, unpublished observations). That low affinity T cells can 
eliminate pathogens was also observed in mice which express Ova 
as a neo self-antigen and in which Ova-specific high affinity T cells 
were eliminated by tolerance enforcing mechanisms. In these mice 
protection against Ova-expressing pathogen was mediated by low 
affinity T cells [7]. Overall, our observations indicate that lower affinity 
T cells fully participate in the immune response. A major difference 
between low and high affinity T cells is that weaker stimulated T cells 
undergo fewer rounds of division and decline in numbers faster than 
high affinity stimulated T cells. This results in lower absolute numbers 
of low affinity primed effector T cells, with the consequence that high 
affinity T cells dominate in numbers at the peak of the T cell expansion 
phase [26]. 

In particular, the large numbers of high affinity T cells at the peak 
of the immune response have so far distracted us from exploring 
the relevance of low affinity T cells during infection and, obviously, 
one could question their importance given their lower numbers. 
Nonetheless, there are several kinetic aspects that need to be 
considered and which in our opinion indicate that low affinity T cells 
are more important than previously appreciated. High affinity T cell 
clones specific to any given foreign-antigen are rare in the naïve T cell 
repertoire. In contrast, theoretical considerations imply that there are 
likely more low than high affinity T cell clones. Given that low and high 
affinity clones expand equally at the beginning, there should be a larger 
number of low than high affinity effector T cells in the early phase of the 
T cell response, which is what we observed in our experimental systems. 
The above-mentioned dominance of high affinity T cells develops later, 
and only because these cells overgrow the lower affinity T cells in the 
late T cell expansion phase [26]. Most importantly, we noticed that 
low affinity T cells leave secondary lymphoid organs earlier than high 
affinity T cells, suggesting that the earliest wave of effector T cells that 
enter peripheral organs is predominately composed of low affinity T 
cells. Thus, the critical early containment of a pathogen infection could 
be to a large extent involve immune responses mediated by low affinity 
T cells [26]. 

Moreover, there are possibly also foreign epitopes against which 
only low affinity T cells respond and which we normally ignore when 
analyzing a T cell response. Importantly, while the number of low 
affinity T cells responding to one of such epitopes might be low, there 
could be many of these epitopes which cumulatively might result in 
a reasonably sized population of low affinity effector T cells. These 
observations and considerations are suggesting that low affinity T cells 
play a more important role during infection than previously anticipated, 
and that their effector potential has been underestimated so far. Their 
participation in pathogen responses and their full differentiation into 
effector T cells also strongly support the notion that low affinity self-
reactive T cells can effectively mount an anti-tumor immune response. 

Despite of these observations, we need to be aware that there are 
several challenges or difficulties associated with activating low affinity 
T cells. Low affinity T cells require higher numbers of presented 

peptide-MHC complexes than high affinity T cells before they become 
activated and for mounting an effector T cell response. It also likely 
takes more excessive DC interactions before they receive sufficient 
TCR triggering and co-stimulation to undergo proliferation. Another 
limitation is that following stimulation, lower affinity T cells divide 
less vigorously than high affinity T cells and therefore lower numbers 
of cells will be obtained after vaccination. Given these limitations, we 
need to find better ways to more effectively activate these T cells, which 
may enhance their functionality, and selectively interfere with any 
mechanism that prevents them from interacting with tumors. 

Manipulation of TCR Binding Kinetics to Enhance T 
cell Responses to Tumor-Antigen

Since tumor-associated antigens are essentially self-antigens, 
the T cell repertoire becomes in both the thymus and the periphery 
deprived of high affinity tumor-antigen reactive T cells. Given this 
situation it is for experimental and/or therapeutic purposes appealing 
to improve the function of tumor-reactive T cells by modulating the 
kinetics of TCR-pMHC binding and/or by manipulating the signaling 
cascades downstream of the TCR. Adoptive transfer of T lymphocytes 
(ATC) into patients with metastatic cancer is a promising therapeutic 
approach which generates objective responses in late-stage melanoma 
patients [65]. Nevertheless, there is a strong need to increase the 
efficacy of these treatments. As mentioned above, the reduced affinity 
of tumor antigen-reactive T cells is a major limitation in ATC therapy. 
This problem could be bypassed by engineering T cells to express TCRs 
with increased affinity for tumor-antigens. This approach turned out 
to augment the functional and protective capacity of tumor-antigen 
reactive T cells [66-72]. However, TCR engineering also bears the risk 
that the normal tissue could be harmed. It has been shown that T cells, 
whose TCR binds to peptide-MHC complexes with a Kd < 1 nM, can 
become cross-reactive [30,71,73] and could mount harmful cytotoxic 
immune responses in vivo. As such, TCR optimization through affinity 
alteration has to include the evaluation of optimal T cell responsiveness 
and lack of cross-reactivity. Yet, it needs to be highlighted that 
unexpected auto-reactive responses cannot be completely excluded. 
Nonetheless, the high therapeutic potential and the severity of 
malignant diseases justify in our opinion the use of such therapies.

As mentioned above, we recently generated a panel of human CD8+ 
T cells expressing engineered TCRs of optimized affinities against the 
tumor-antigen NY-ESO-1. These were obtained through structure-
based rational predictions [74,75]. We characterized the functional 
potential of these T cells [38,76] and found that T cells expressing TCRs 
with affinities in the upper natural limit (Kd from 5 to 1 µM) displayed 
greater biological responses when compared to those expressing 
intermediate wild-type TCR (Kd at 21.4 µM) or very low affinity (Kd 
> 100 µM). Largely unexpected, we noticed that T cells which express 
TCR with supraphysiological affinity (Kd from 1 µM to 15 nM) showed 
a severe decline in their functionality, but retained their antigen 
specificity without broad cross-reactivity as observed in other studies 
[30]. Similarly, other in vitro and in vivo studies also reported maximal 
T cell responses at an optimal TCR-pMHC off rate (koff) or Kd while 
attenuation of intracellular signal transmission, impaired expansion 
potential and responsiveness were observed when kinetic parameters 
extended above the natural range [36,37,77-80]. 

In summary, these observations show that maximum T cell 
responses occur at intermediate TCR/pMHC binding parameters. 
This supports the productive hit rate model of T cell activation [31,32]. 
Moreover, these observations are corroborated by mathematical 
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models showing that the existence of an optimal response (Emax) as 
a function of the dissociation rate (koff) or Kd at a fixed antigen dose 
is predicted only by the productive hit rate model, independently of 
whether a parameter of TCR internalization was included or not [81]. 

Role of Activating and Inhibitory Surface Receptors in 
Modulating T cell Immune Responses

T cell responses are under the influence of several surface 
molecules that either positively or negatively impact T cell responses. 
T cell co-stimulation is the oldest known mechanism that prevents T 
cell anergy, a state of unresponsiveness that is induced after stimulation 
of T cell only through their TCRs. Co-stimulation of T cells through 
interaction of CD28 with its ligands B7.1 (CD80) and B7.2 (CD86) 
expressed on an antigen presenting cell (APC) has also been shown 
to lower the threshold for T cell activation, thus allowing increased 
IL-2 production and promoting cell proliferation and survival [82]. 
At the molecular level, CD28 ligation stimulates T cell function by 
activating phosphoinositol-3-kinase (PI3K) and protein kinase C theta 
(PKCθ) and the downstream Akt, mTOR, and Ras signaling pathways, 
which eventually synergize with TCR signaling [47]. In parallel, T cell 
activation induces surface expression of CTLA-4, which outcompetes 
CD28 in binding B7.1 and B7.2 due to its much higher binding affinity 
for these ligands [83]. In addition, it has been reported that CTLA-4 
directly triggers inhibitory signaling by interacting with SHP-1, SHP-
2 and PP2A phosphatases, resulting in downregulation of the TCR 
signaling pathway [84]. Other mechanisms of CTLA-4 inhibition may 
also occur indirectly via retro-signaling through B7.1 and B7.2 and 
production of IDO in APCs [85]. Interestingly, accumulation of CTLA-
4 at the immunological synapse was shown to depend on the strength 
of TCR triggering, suggesting that CTLA-4 preferentially inhibits T cell 
responses under conditions of more potent TCR signaling [86].  

Similar to CTLA-4, PD-1 (programmed death-1) is also highly 
upregulated in T cells following TCR stimulation. However, unlike 
CTLA-4, PD-1 expression is not solely restricted to T cells, suggesting 
a broader role in immune regulation [87]. PD-1 interacts with at least 
two ligands, PD-L1 and PD-L2, which are expressed non-redundantly 
in different tissues and cell types. Due to the differential expression 
of CTLA-4 and PD-1 ligands, it was proposed that CTLA-4 plays a 
preferential role in limiting T cell function early during thymocyte 
development and in secondary lymphoid structures. In contrast, PD-
1-associated inhibition would be critical later in maintaining long-
term peripheral tolerance to self-antigens by preventing activation 
of self-reactive T cells that have escaped negative selection [88]. 
Accordingly, PD-1-deficient mice spontaneously develop milder 
forms of autoimmune diseases [89], while CTLA-4–deficient mice 
have lymphoproliferative disorders and early fatal multi-organ tissue 
destruction [90,91]. In humans, a regulatory polymorphism in PD-1 
is associated with susceptibility to systemic lupus erythematosus and 
multiple sclerosis [92,93], while polymorphisms of the CTLA-4 have 
been linked to multiple autoimmune diseases including asthma, 
systemic lupus erythematosus, Graves’ disease, and autoimmune 
thyroid diseases [94]. Finally, induction of PD-L1 ligand expression 
has been described in various tumor cells as a mechanism of cancer 
immune evasion [95], while a specific polymorphism of CTLA-4, 
which is protective for autoimmune disease, is associated with risk of 
multiple type of cancers [96]. 

The tumor necrosis factor receptor (TNFR) superfamily members 
represent another important group of co-stimulators, which mediate 
survival signals in T cells subsequently to the initial effects of CD28-B7 

interaction [97]. Among TNFR/TNF ligand pairs, multiple members 
have been shown to directly impact T cell function following TCR 
activation, namely CD27/CD70, OX40/OX40L, 4-1BB/4-1BBL GITR/
GITRL, and CD30/CD30L [98]. TNFR and their ligands are expressed 
on a variety of immune and non immune cells and are inducible and 
non-ubiquitous, suggesting that they are involved in modulating 
and coordinating global immune responses [99]. As such, they have 
also become the focus of intense translational and clinical research 
that aim to modulate T cell function in pathological settings such as 
autoimmunity and cancer (Figure 2). Ligation of TNFR by its ligand 
induces a series of bi-directional activating signaling pathways in both 
the APC and the T cell. In effector CD4+ and CD8+ T cells, recruitment 
of TNFR-associated factors (TRAF) activate the NF-κB signaling 
pathway and increase the expression of anti-apoptotic molecules, thus 
promoting cell survival [99]. Like CD28, TNFR signaling can also 
synergize with the TCR pathway to promote cell cycle progression and 
cytokine production. Of note, ligation of OX40 and 4-1BB has been 
shown to concomitantly block the generation of inducible regulatory T 
cells (Tregs), as well as to inhibit their suppressive activity [100].

HVEM is a particularly unique and interesting member of the 
TNFR superfamily. In addition to binding to its TNFR ligands LIGHT 
and lymphotoxin Ltα3, which are predominantly co-stimulatory and 
pro-inflammatory in T cells, HVEM also binds to BTLA and CD160, 
which are structurally similar to PD-1 and CTLA-4 and transduce 
inhibitory signals, in part through recruitment of SHP-1 and SHP-2 
phosphatases [101,102]. The individual effects of HVEM interaction 
with its different ligands are particularly complex to elucidate since 
both receptor and ligands can be expressed on the same T cell, as well 
as on other immune and epithelial cell types [103]. In vitro experiments 
using Hvem-/- and Btla-/- T cells showed that they were hyper-responsive 
to TCR stimulation, while in vivo, Hvem-/- and Btla-/- knockout mice 
had enhanced susceptibility to autoimmune diseases, suggesting a 
predominant inhibitory role in T cells during inflammatory conditions 
[101,104]. Furthermore, BTLA was found to inhibit tumor-antigen 
specific cytotoxic T cells in melanoma patients [105]. However, it was 
also shown that HVEM can interact in cis with BTLA, which is believed 
to interfere with HVEM activation by other ligands [106]. Thus, the 
ability of HVEM to mediate immune stimulation or inhibition in 
a switch-like, bi-directional and context-dependent mode suggests 
that the HVEM/LIGHT/BTLA/CD160 might represent an important 
regulatory network for controlling immune responses.

Collectively, TCR triggering and co-stimulation through CD28 and 
TNFRs primes the system for regulation by simultaneously inducing 
the expression of multiple negative regulators, like CTLA-4, PD-
1, and BTLA. This balancing act highlights the intricate regulatory 
network in place to control the immune system during steady-state 
and after pathogen encounter, and represents mechanisms that might 
be exploited therapeutically in various immuno-pathological settings 
[107,108]. 

Therapeutic Targeting of T cells for Regulating 
Activating or Inhibitory Signaling as a Strategy to Treat 
Autoimmune Diseases and Cancer 

Enhancing T cell function in cancer patients is a major therapeutic 
aim, given the promising ability of cytotoxic CD8+ T cells and T-helper 
type 1 [Th1] cells in eliminating cancer cells and in mediating long-term 
protection from disease [109]. Over the last years, basic immunology 
revealed a number of interesting pathways, including many of the 
aforementioned, that could be targeted to enhance the performance of 
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tumor-specific T cells. Most of them still need to be tested in clinical 
trials. Nonetheless, several immune based therapies are already used 
for cancer patients. For solid tumors, the currently most efficient 
therapy is by adoptive transfer of autologous tumor-antigen specific 
T cells [110]. This approach also permits molecular modification of T 
cells before transfer. The clinical usefulness of inserting TCRs [110] or 
chimeric antigen receptors [111] has been suggested by several small-
scale clinical studies. Currently, techniques are being improved [112-
115], which should soon allow applying cell transfer therapy for larger 
numbers of patients. 

Besides antigen receptors, lymphocytes can be targeted at the level 
of their co-receptors (Figure 2). Inhibitory receptors are particularly 
attractive, because blocking those can enhance T cell activity. 
Ipilimumab (Yervoy®) is a recently approved drug that follows this 
principle and that powerfully blocks the inhibitory receptor CTLA-4. It 
enhances numbers and function of tumor-specific T cells and improves 
the clinical outcome of melanoma patients [116]. Very recently, 
treatment with antibodies against PD-1 [117] or its ligand PD-L1 
[118] provided remarkable benefit for patients with advanced kidney 
cancer, non–small-cell lung cancer and melanoma [119]. Furthermore, 
antibodies that block LAG-3, TIM-3, B7-H3, or B7-H4 are under 
development [120]. Most likely, such novel approaches will continue 
to change the clinical oncology landscape during the next few years. 

While blocking T cell inhibition is practical for promoting anti-

tumor immunity, blocking co-stimulation is also feasible for reducing 
autoimmunity. Indeed, novel reagents have been developed e.g. 
for treating multiple sclerosis. Theoretically, several co-stimulatory 
molecules can be targeted [121]. CD28 and CD40 are the two pathways 
that are the most clinically validated (Figure 2). Prominently, hybrid 
CTLA4-Fc molecules have been generated, with or without enhanced 
affinity to CD80 and CD86. They are potent reagents blocking co-
stimulation via CD28, and have provided evidence for clinical activity 
in multiple sclerosis, systemic lupus erythematosus, and psoriatic 
arthritis [122,123]. Manipulating T cell function via injecting blocking 
or stimulating antibodies need to be established with enormous 
precaution as such treatments may cause severe and largely unexpected 
effects that might not be observed in animal models. The latter happened 
when anti-CD28 antibodies were injected into healthy humans [124]. 

Besides cell surface receptors, intracellular mechanisms may be 
targeted. There are many options for intervening with the complex 
signaling network. TCR related signals might be targeted via several 
different E3 ligases [125] (Figure 2). The SHP protein tyrosine 
phosphatases have been proposed as therapeutic targets [126]. The 
tyrosine phosphatase inhibitor-1 (TPI-1) is a member of a new class 
of SHP-1 inhibitors. TPI-1 has been shown to inhibit the growth 
of transplanted tumor cells in mice, due to immune mechanisms 
involving cytokine producing T cells [127]. However, SHP-1 and 
many other signal transducers are widely expressed which challenges 
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Figure 2: Overview of mechanisms and potential molecular targets to alter the function of self- and tumor-antigen reactive T cells.
T cell response to self-antigen during autoimmunity or to tumor-antigen in immunotherapy could be inhibited or augmented via manipulating similar mechanisms. These 
include receptors that positively or negatively regulate T cell function, cytokines and their receptors, but also intracellular signaling pathways. The figure illustrates such 
possible intervention points. 
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optimal targeting. SHP-1 may suppress e.g. hematopoietic tumors 
[128] and thus blocking of SHP-1 may not be suitable in these diseases. 
Currently, more specific targets need to be characterized, with the aim 
to enhance targeting to particular cell populations. This strategy has 
proven useful e.g. for tyrosine kinase inhibitors, a class of drugs that 
are now widely used to treat cancer [129-131]. Finally, novel treatments 
aim at modifying the functions of further immune cells (e.g. B cells), 
adhesion- and homing-receptors, or cytokines (e.g. IL-6, TNFα, 
interferons), as reviewed elsewhere [132-134].

The examples provided in this review illustrate recent progress in 
specifically manipulating T cell functions, but today we are just at the 
beginning of understanding the enormous potential that is associated 
with such treatments. Immunotherapy of cancer has made significant 
progress, with the introduction of anti-CTLA, anti-PD-1, and anti-
PD-L1 mAb treatments in cancer patients, and the presently developed 
personalized therapy options such as ATC. Besides the need to improve 
and further validate the different therapies, we need to be able to predict 
which new therapy option would be most suitable for which patient. In 
the field of tumor immunology, we need to develop algorithms that 
can predict which treatment option is the most suitable, based on the 
frequencies of tumor-reactive T cells, their ability to migrate to tumor 
sites, their affinity for antigen recognition, status of effector function 
and presence of inhibitory regulatory circuits. Unfortunately the novel 
therapies are very expensive and a large focus should be on developing 
effective lower cost anti-cancer therapies.
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