
Mancas, J Inform Tech Soft Engg 2013, S5 
DOI: 10.4172/2165-7866.S5-e001

Editorial Open Access

ISSN: 2165-7866 JITSE, an open access journalJ Inform Tech Soft Engg  Reverse Engineering

Should Reverse Engineering Remain a Computer Science Cinderella?
Christian Mancas*

Department of Mathematics and Computer Science, Ovidius University, Constanta, Romania 

*Corresponding author: Christian Mancas, Associate Professor, Department of 
Mathematics and Computer Science, Ovidius University, Constanta, Romania, Tel: 
+40722357078; E-mail: christian.mancas@gmail.com

Received December 21, 2012; Accepted December 27, 2012; Published 
December 29, 2012

Citation: Mancas C (2013) Should Reverse Engineering Remain a Computer 
Science Cinderella? J Inform Tech Soft Engg S5:e001. doi:10.4172/2165-7866.
S5-e001

Copyright: © 2013 Mancas C. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Reverse Engineering 
According to Miriam-Webster, reverse engineer (RE) means “to 

disassemble and examine or analyze in detail (as a product or device) 
to discover the concepts involved in manufacture usually in order to 
produce something similar”, was used for the first time in 1973, and 
is exemplified, at least apparently paradoxical, only by “They reverse 
engineered the software”.

Wikipedia, which contains some 10 A4 pages on RE, plus many 
other ones on Wikibooks and Wikimedia Commons, defines it as 
“the process of discovering the technological principles of a device, 
object, or system through analysis of its structure, function, and 
operation. It often involves taking something (a mechanical device, 
electronic component, computer program, or biological, chemical, 
or organic matter) apart and analyzing its workings in detail to be 
used in maintenance, or to try to make a new device or program that 
does the same thing without using or simply duplicating (without 
understanding) the original”.

Moreover, Wikipedia considers that RE originated in the analysis 
of hardware for commercial or military advantage and was only later 
applied to legacy software systems, not for industrial or defense ends, 
but rather to replace incorrect, incomplete, or otherwise unavailable 
documentation. My opinion is that, just like Molière’s Mr. Jourdain, Le 
bourgeois gentilhomme who discovered very late that he was speaking 
in prose for forty years without knowing it, mankind always reverse 
engineered and will continue to do it forever.

Buildings (from monuments, temples, churches, and devotion 
shrines to fortresses, castles, palaces, villas, houses, block of flats/
offices), as well as weapons (from the flint pre-historic ones to today’s 
missiles), furniture, clothes, dishes, vehicles, and craftsmanship (from 
pottery to jewelry), etc. were reverse engineered since the dawn of 
humanity, still are, and will always be.

Intelligent military and political leaders always tried to reverse 
engineer opponents’ and allies’ strategies and tactics, from their troops 
and weapons disposal on battle fields to their rhetoric, diplomacy, 
arming programs, life/social philosophy, etc.; could they ever stop 
it? Coaches were, are, and will always reverse engineer strategies and 
tactics of their competition, since at least the ancient Greek Olympic 
Games.

Philosophers, historians, anthropologists, ethnographers, 
sociologists, etc. are, axiomatically, reverse engineers of thoughts, 
beliefs, culture, behaviors, etc., just like physicists, mathematicians, 
astronomers, geologists, biologists, physicians, etc. are reverse 
engineering the laws, origin, evolution, and possible futures of the 
universe, as well as astronomic, micro-organism, vegetal, animal, and 
human bodies. Almost all of us living beings are very frequently, even 
if generally unconsciously, reverse engineering thoughts and behaviors 
of our children, parents, loved ones, friends, adversaries, colleagues, 
employers, employees, suppliers, customers, etc., and sometimes even 
of ourselves.

Motivation behind RE is impressive and ranges from espionage 
(military, technical, commercial, sports, etc.), analyzing potential 
patent infringement, nefarious industrial and service copying, malware 
and anti-malware design and development, to academic and scientific 

challenges, forensic investigations, dental or surgical prosthetics, tissue-
engineered body parts, surgical planning, architectural, construction, 
archaeology, paleontology, etc. documentation and measurement, 
legacy software and data files/bases deciphering, and pure, irrepressive 
curiosity.

Although software reverse engineering (SRE) was born at least 
some 32 years ago (see, for example [1-3]), Y2K proved [4], among 
others, that SRE was unacceptably under-developed and triggered a 
much more coherent approach in this field, from college and university 
curriculum, to tools design and development, as well as research. 
Dually, malware proliferation [5], fierce IT commercial competition, 
ethical and legal concerns are significantly impacting SRE negatively.

As this is an Editorial paper for a first issue of the Journal of 
Information Technology and Software Engineering dedicated to SRE, 
everything that follows is focused on SRE, for providing an overview of 
this sub-universe, its tools, and its ethical and legal connotations.

Software Reverse Engineering 
Basically, SRE [6] aims at figuring out what software that you have 

no or only partial source code (generally only “binary” one) for does, 
i.e. to derive its architecture and design information, to the degree that
you can either modify or reproduce it in another independent software
work.

SRE is generally considered to be of two types: software 
development and security related. In the general sense, ground-up 
reverse engineering is very hard, and requires several engineers and a 
good deal of support software just to capture all of the ideas in a system. 
In the first category fall, for example, interfacing to legacy code, adding/
modifying functionality to/of existing software, evaluating software 
quality and robustness (e.g. make sure that an operating system (OS) 
does not contain any major vulnerabilities, security flaws, etc., and 
make it as hard as possible to allow hackers to crack it), breaking copy 
protection (e.g. disabling time trials, defeating registration, etc., to 
“impress” your friends, colleagues, and/or the FBI and/or save some 
money by getting commercial software for free), while the second 
includes studying OS and any other software application for attacking 
and infecting them, as well as, dually, studying malware for designing, 
developing, and maintaining anti-malware applications.

Obviously, even if rarely considered as such, inferring conceptual 
data schemes not only from legacy hierarchical or network, but also 
from relational databases (dbs) [7] is also a SRE-type task: for example, 

Jo
ur

na
l o

f I
nf

or
m

at
ion Technology & Software Engineering

ISSN: 2165-7866

Journal of
Information Technology & Software Engineering



Citation: Mancas C (2013) Should Reverse Engineering Remain a Computer Science Cinderella? J Inform Tech Soft Engg S5:e001. doi:10.4172/2165-
7866.S5-e001

Page 2 of 3

ISSN: 2165-7866 JITSE, an open access journalJ Inform Tech Soft Engg  Reverse Engineering

MySQL does not provide Entity-Relationship type diagrams; MS SQL 
Server provides them, but with all foreign keys between two tables 
consolidated into a single one and without showing what column 
references which one; even in MS Access, which is providing all such 
information too, it is much more easier to understand all the details 
it encapsulates in its structure and associated constraints by reverse 
engineering its scheme into a higher level data model one (e.g., in 
the Elementary Mathematical Data Model [7], the facts that column 
Capital from table COUNTRIES, referencing any unique column from 
table CITIES, not allowing either nulls or duplicates are consolidated 
in the definition of the totally defined one-to-one mapping Capital : 
COUNTRIES↔CITIES, defined on COUNTRIES and taking values in 
CITIES).

Even if impossible to make it infallible, anti-reversing tries at least 
to make hackers life as hard as possible, hoping that they will eventually 
give up reversing, by eliminating symbolic information, encrypting 
code, obfuscating programs, and embedding anti-debugger code [6]. 
For example, MS Windows API also includes IsDebuggerPresent and 
NtQuerySystemInformation, two tools for detecting the presence of 
debuggers in user and kernel mode, respectively.

SRE Tools 
There are different kinds of SRE tools: many are specific to the types 

of protection that must be overcome to reverse binaries, while several 
others just make the reverser’s life easier. For the most part, SRE tools 
fit into the following 7 categories:

99 Disassemblers, which take the binary machine language codes 
and display them in a friendlier format, also extrapolating data 
such as function calls, passed variables, and text strings, thus 
making executables (hex bytes sets) look more like human-
readable code. Perhaps the most frequently used is IDA (free 
version available at [8]).

99 Debuggers, considered by many the SRE bread and butter, first 
analyze the binary, much like a disassembler, and then allow the 
reverser to step through the code, running one line at a time to 
investigate the results, which is invaluable for discovering how 
programs work. Some of them even allow certain instructions 
in the code to be changed and then run again with these changes 
in place. Ollydbg [9] and WinDbg [10] are one of the most used 
debuggers (but only for user, not kernel mode binaries).

99 Hex editors allow viewing and updating the actual bytes in 
binaries, searching for specific bytes, saving sections of binaries 
to disk, etc. HxD [11] is one of the free favorites of many.

99 Portable Executable (PE) and resource viewers/editors: MS 
Windows run binaries (and Linux for that matter) have a very 
specific beginning data section storing for the OS how to set 
up and initialize them (e.g. how much memory it will require, 
what support DLLs the program needs to borrow code from, 
information about dialog boxes, etc.), which is called the PE. 
Obviously, PEs are very important in SRE, as they give the 
reverser much needed information about binaries; moreover, 
eventually, one will want/need to change PE data, either to 
make programs do something different than what they were 
initially designed and developed for or to change them back 
into what they originally were (e.g. before a protector made the 
code really hard to understand). Similarly, programs resource 
sections (e.g. graphics, dialog and menu items, icons and 
text strings, etc.) are altered too with such editors. From the 

plethora of free PE and resource viewers/editors, CFF Explorer 
[12] and LordPE [13] are the most frequently used.

99 System Monitoring (SM) tools: especially for studying malware 
(but not only) it is of the utmost importance to see what 
changes a program makes to the system (e.g. are there registry 
keys and/or .ini files created or queried? are separate processes 
created, perhaps to thwart the program SRE?). Process Monitor 
[14], Process Hacker [15], and RegShot [16] are probably the 
most used SM tools.

99 Miscellaneous SRE tools and documentation, include scripts, 
unpackers, packer identifiers, etc, as well as Linux source code 
[17] and MS Windows API [18].

99 Databases RE tools are especially used for system reengineering, 
ranging from simple file managers (e.g. COBOL or RPG) to 
modern db management systems, such as the relational or 
object-oriented ones. For example, one might use the Database 
Reverse Engineering Tool [19] or MatBase [20].

SRE Ethics and Laws 
Today, the vast majority of all Fortune 500 companies have codes 

of ethics/conduct for helping guide of their employees’ behavior. For 
example, Texas Instruments (TI), has the reputation of enforcing a 
longstanding such code, written and published in 1961 and regularly 
revised since to cope with business environment evolutions; moreover, 
its employees also receive a copy of the TI Ethics Quick Test [21] on a 
business-card-size mini-pamphlet to always carry with them, reading: 
“Is the action legal? Does it comply with our values? If you do it, will 
you feel bad? How will it look in the newspaper? If you know it is 
wrong, don’t do it! If you’re not sure, ask. Keep asking until you get 
an answer”. The U.K. Institute of Business Ethics is publishing on its 
website [22] guidelines for content of business practice and ethics.

Such good examples abound, but, dually, as we all know, bad 
examples abound too, even in the U.S. (e.g. the IBM PC compatible 
industry starts, Intel vs. AMD, the Samba and Wine projects, etc.), not 
to mention China (nearly everything they manufacture is copied, from 
HMMWV cars, to fighter aircrafts, space rockets and vessels), Russia 
(e.g. their B-29 bomber copy re-baptized Tu-4, their AIM-9 Sidewinder 
missile copy re-baptized K-13/R-3S), Iran (their BGM-71 TOW missile 
copy re-baptized Toophan), etc. Generally, in the Western world 
learning from RE may be accepted, however, directly copying what 
you learned is considered as forgery and frowned upon, while in the 
Eastern one directly copying is rather a matter of national pride.

Legally, in the U.S. even for artifacts and processes protected by 
trade secrets, reverse-engineering them is generally lawful as long as it 
is obtained legitimately; however, SRE is generally a breach of contract 
and most EULAs specifically prohibit it; courts have found such 
contractual prohibitions to override the copyright law which expressly 
permits it (e.g. see Bowers vs. Bay-state Technologies). Sec. 103(f) of the 
1996 Digital Millennium Copyright Act (DMCA) [23] states that if you 
legally obtain a protected program, you are allowed to reverse-engineer 
and circumvent the protection in order to achieve interoperability 
between computer programs (i.e., the ability to exchange and make use 
of information). Article 6 of the 1991 EU Computer Programs Directive 
[24] allows reverse engineering for the purposes of interoperability, but 
prohibits it for the purposes of creating a competing product, and also 
prohibits the public release of information obtained through SRE. In 
2009, this Directive was superseded by a somewhat tougher version.

Legislation governing SRE is, for example, consolidated in [25]. 



Citation: Mancas C (2013) Should Reverse Engineering Remain a Computer Science Cinderella? J Inform Tech Soft Engg S5:e001. doi:10.4172/2165-
7866.S5-e001

Page 3 of 3

ISSN: 2165-7866 JITSE, an open access journalJ Inform Tech Soft Engg  Reverse Engineering

[26] is an excellent paper not only on legal, but also on economic
aspects of RE and, particularly, SRE.

Conclusion 
RE is fundamentally about discovery and learning. Engineers learn 

the state of the art not just by reading publications, attending technical 
conferences, and working on projects, but also by reverse engineering 
interesting products. Better and/or cheaper products, as well as know-
how advances come also from learning what has been done before. RE 
is generally a slower and more expensive way for information to spread 
through technical communities than patenting or publication, but it 
is nonetheless an effective and often invaluable source of information. 
RE is a form of dependent creation, but, if licit, this does not taint it, 
for in truth, all innovators, as Newton put it, “stand on the shoulders 
of giants”, as well as on the shoulders of other incremental preceding 
innovators. Publication, patenting, and RE almost equally contribute 
to dissemination of know-how, which is the foundation of progress in 
science and utilitarian arts.

In the software engineering world, IBM was the founder of both 
open and commercial source code: their mainframe customers had 
always relied up to the early 1980s on the source code for reference in 
problem solving and to tailor, modify, and extend their OS products; 
then, IBM decided that it would no longer release to its customers 
the source code for its mainframe computer OS, which triggered the 
famous IBM user group Share that read: “If SOURCE is outlawed, 
only outlaws will have SOURCE” (a word play on a famous argument 
by opponents of gun-control laws). Applied to current software, this 
points out that hackers and developers of malicious code know too 
many techniques for deciphering others’ software. Dually, it is trivially 
useful for the good guys to know these techniques, too.

As copying and distribution of digital products is essentially 
costless and almost instantaneous in today’s digital networked 
environment, vulnerability of information products to market-
destructive appropriations justifies some limitations on RE, but we 
should always keep in mind that RE is important to innovation and 
competition in all industrial contexts. Adapting intellectual property 
law so that it provides adequate, but not excessive, protection to 
innovations is a challenging task. Restrictions on RE ought to be 
imposed only if justified in terms of the specific characteristics of the 
industry, a specific threat to that industry, and the economic effects of 
the restriction. DMCA restrictions on RE propagated backwards and 
eroded longstanding rules, permitting RE in other legal regimes.

Even if RE and especially SRE are to some extent under legal fire, 
corresponding knowledge should be widespread. Especially when 
discussing specific RE features is illegal, we should discuss general 
approaches, so that it is within every motivated reverse engineer’s 
ability to obtain information locked inside the black box. It is a pity 
that SRE is a computer science Cinderella, both in colleges, universities, 
and research labs, with so few students working on theses like [27]. It is 
a shame to almost abandon SRE, except for the anti-malware industry, 
in the hands of hackers and software pirates. I am proud to study, 
work, and teach in the SRE field too, to be the handling editor of this 
special issue of the Journal of Information Technology and Software 
Engineering dedicated to RE and to have written this Editorial paper 
for it. I know that this special issue too will contribute to pushing 
SRE forward. In my opinion, SRE should not continue to remain a 
computer science Cinderella; on the contrary, it should gain adequate, 
that is important status and the sooner, the better.

References
1. Lehman MM (1980) Programs, life cycles and laws of software evolution. Proc 

of IEEE 68: 1060–1076. 

2. Chikofsky E, Cross J (1990) Reverse engineering and design recovery: A 
taxonomy. IEEE Software 7: 13–17. 

3. Baxter ID, Mehlich M (1997) Reverse Engineering is Reverse Forward 
Engineering. Proc 4th Work Conf on Reverse Eng, Amsterdam, The 
Netherlands. 

4. Muller HA, Jahnke JH, Smith DB, Storey MA, Tilley SR, et al. (2000) Reverse 
Engineering: A Roadmap. In: The Future of Software Engineering. ACM Press.

5. Zeltser L (2001-2012) Reverse Engineering Malware. 

6. Eilam E (2005) Reversing: Secrets of Reverse Engineering, Wiley Publication.

7. Mancas C (2013) A completely algorithmic approach to data analysis and 
conceptual modeling, database design, implementation, and optimization. 
Apple Academic Press. 

8. Hex rays, IDA disassembler.

9. Ollydbg debugger.

10.	WinDbg debugger.

11. HxD-Freeware Hex Editor and Disk Editor.

12.	CFF Explorer, NT Core.

13.	LordPE. 

14.	Russinovich M, Cogswell B (2012) Process Monitor. Microsoft.

15.	Process Hacker.

16.	RegShot. 

17.	Linux source code, The Linux Kernel Archives. 

18.	MS Windows API doc. Windows API List (Windows). 

19.	Database Reverse Engineering Tool.

20.	Mancas C, Mancas S (2006) MatBase Relational Import Subsystem. Proc 
IASTED Datab and Appl, Innsbruck 123-128. 

21.	Texas Instruments (1961) The Values and Ethics of TI.

22.	Institute of Business Ethics (1986) Codes of Ethics.

23.	US Congress (1996) 17 USC § 1201-Circumvention of copyright protection 
systems. 

24.	EU Council (1991) Directive 91/250/EEC of 14 May 1991 on the legal protection 
of computer programs. 

25.	Lambert M, Surhone, Mariam T, Tennoe, Susan F, et al. (2010) Software Law. 
Betascript Publishing. 

26.	Samuelson P, Scotchmer S (2002) The Law and Economics of Reverse 
Engineering. 

27.	Cipresso T (2009) Software reverse engineering education. M.Sc Theses, San 
Jose State University, 111 Yale Law Journal 1575.

http://users.ece.utexas.edu/~perry/education/SE-Intro/lehman.pdf
http://users.ece.utexas.edu/~perry/education/SE-Intro/lehman.pdf
http://www.cs.cmu.edu/~aldrich/courses/654-sp05/ReengineeringTaxonomy.pdf
http://www.cs.cmu.edu/~aldrich/courses/654-sp05/ReengineeringTaxonomy.pdf
http://www.semdesigns.com/Company/Publications/WCRE97.pdf
http://www.semdesigns.com/Company/Publications/WCRE97.pdf
http://www.semdesigns.com/Company/Publications/WCRE97.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.379
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.11.379
http://www.amazon.com/Reversing-Secrets-Engineering-Eldad-Eilam/dp/0764574817
http://www.hex-rays.com/
http://www.ollydbg.de/
http://www.windbg.org/
http://mh-nexus.de/en/hxd/
http://www.ntcore.com/exsuite.php
http://www.woodmann.com/collaborative/tools/index.php/LordPE
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://processhacker.sourceforge.net/
http://sourceforge.net/projects/regshot/
http://www.kernel.org/
http://msdn.microsoft.com/en-us/library/windows/desktop/ff818516%28v=vs.85%29.aspx
http://www2.gxtechnical.com/portal/hgxpp001.aspx?15,1,85,O,E,0,MNU;E;26;4;MNU
http://dl.acm.org/citation.cfm?id=1167012
http://dl.acm.org/citation.cfm?id=1167012
http://www.ti.com/corp/docs/csr/downloads/ethics.pdf?DCMP=TI-Ethics&HQS=Brochure+OT+values-ethics-at-ti
http://www.ibe.org.uk/index.asp?upid=57&msid=11
http://www.law.cornell.edu/uscode/text/17/1201
http://www.law.cornell.edu/uscode/text/17/1201
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:HTML
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:HTML
http://books.google.co.in/books/about/Software_Law.html?id=UaUXkgAACAAJ&redir_esc=y
http://books.google.co.in/books/about/Software_Law.html?id=UaUXkgAACAAJ&redir_esc=y
http://www.yalelawjournal.org/the-yale-law-journal/article/the-law-and-economics-of-reverse-engineering/
http://www.yalelawjournal.org/the-yale-law-journal/article/the-law-and-economics-of-reverse-engineering/
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=4730&context=etd_theses&sei-redir=1&referer=http%3A%2F%2Fwww.google.co.in%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3Dsoftware%2520reverse%2520engineering%2520education%26source%3Dweb%26cd%3D1%26ved%3D0CDEQFjAA%252
http://scholarworks.sjsu.edu/cgi/viewcontent.cgi?article=4730&context=etd_theses&sei-redir=1&referer=http%3A%2F%2Fwww.google.co.in%2Furl%3Fsa%3Dt%26rct%3Dj%26q%3Dsoftware%2520reverse%2520engineering%2520education%26source%3Dweb%26cd%3D1%26ved%3D0CDEQFjAA%252

	Title
	Corresponding author
	Reverse Engineering  
	Software Reverse Engineering  
	SRE Tools  
	SRE Ethics and Laws  
	Conclusion
	References

