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Introduction
A new study investigates about the activity of a new SFK inhibitor in

RMS. SI221 is a pyrazolo [3,4-d] pyrimidine derivative able to reduce
both apoptosis and differentiation in eRMS and aRMS. SFKs are
frequently overexpressed in RMS and their inhibition can be a good
strategy for RMS treatment.

Rhabdomyosarcoma (RMS) represents approximately half of the
total pediatric soft tissue sarcoma (STS), slightly more frequent in
males but equally distributed across racial groups [1].

RMS is characterized by the expression of genes involved in the
early myogenesis which fail to complete differentiation and cell cycle
arrest [2]. It can be divided into 2 major histological subtypes:
embryonal (eRMS), mostly found in childhood, and alveolar (aRMS)
common in both children and adults [1].

The outcome of RMS patients is improved in the last decades (5-
year survival rates of ~70%), however, patients with tumor relapse after
treatment or with metastasis at diagnosis are rarely cured [3,4].
Moreover, frequent toxicity and long-term side effects associated with
the therapy, dramatically affect the quality of life [1]. Consequently,
new specific therapeutic strategies, able to reduce toxicity and side
effects, are required for the treatment of RMS. The induction of
differentiation and/or cell death through the inhibition of specific
enzyme involved in carcinogenesis and tumor progression can be a
promising strategy for RMS patients. For instance, several studies focus
on the role of epigenetic changes in RMS with the purpose to
investigate if the modulation of the activity of some epigenetic enzyme
can help to induce apoptosis or differentiation in RMS cells [5-8].

Recently, Casini and coworkers analyzed effects of a new SRC family
kinase (SFK) inhibitor in RMS. This molecule called SI221 is a
pyrazolo [3,4-d] pyrimidine derivative that showed an antiproliferative
and pro-apoptotic activity in several tumors [9-11]. Casini et al.,
demonstrated that SI221 specifically inhibited SFKs and in particular
YES, a SKK member that have an oncogenic role in eRMS and aRMS
(described below) [12]. SI221 was able to induce apoptosis, to reduce
cell migration and invasion with low cytotoxic effects on normal cells.
Moreover, treated cells showed a partial rescue of muscular phenotype
and an increase of myogenic markers. These effects were dependent by
the activation of p38 pathway [13].

SFK is a family of non-receptor tyrosine kinases that includes c-
SRC, FYN, YES, BLK, YRK, FGR, HCK, LCK and LYN. These enzymes
are involved in several biological processes as cell proliferation,
adhesion, invasion and motility; their expression or activity is
frequently altered in cancer [14]. SKFs modulate adhesion, invasion
and cell motility mainly through the disruption of adherents and focal
junctions.

Adherent junctions are responsible for cell–cell adhesion and they
are composed by E-cadherin homodimers of adjacent cells connected
to the actin cytoskeleton through the complex α-catenin-β-catenin and
p120 catenin. c-SRC activated by protein tyrosine phosphatase 1B-
dependent de-phosphorylation, associates to this complex promoting
the disassembly of adherents junction. Focal adhesions are responsible
for the binding of cells to the extracellular matrix through
heterodimers α- and β-integrin. A cytoplasmic complex connects
integrins to the cytoskeleton. SFKs activate focal-adhesion kinase
(FAK) that in turn phosphorylate several component of the junctions
promoting cytoskeleton changes and focal adhesion disruption
(reviewed in [14]). Furthermore, c-SRC induces tyrosine
phosphorylation of RRAS, suppressing integrin activity, cell-matrix
adhesion and disrupting focal adhesion [15]

Moreover, SFKs induce phosphorylation, ubiquitylation and
endocytosis of E-cadherin, promoting the release of cells from the
matrix and from each other [16].

Several papers explore the role of SFK and associated pathways in
sarcomas.

A first screening showed that SRC is activated in human sarcomas
and sarcoma cell lines [17]. Moreover, global tyrosine phosphorylation
analysis in sarcoma cell lines and human tumor samples showed an
increase of the expression and phosphorylation of tyrosine kinases
including several members of SFKs as, for instance, c-SRC, LYN, and
FAK [18]. Furthermore, the treatment of several sarcoma cell lines with
Dasatinib, a SFK inhibitor, blocks SRC downstream pathways
inhibiting FAK and p130cas signaling. Dasatinib inhibited cell motility
and invasion, indicating SFKs as good targets for sarcoma treatment
[17] (Table 1).

Clinical phase (ClinicalTrials.gov)

Dasatinibi
b

eRMS,
aRMS

Phase 1/2 for several tumors, also in combination with
other drugs

PP2 eRMS,
aRMS

Preclinical

Saracatini
b

eRMS,
aRMS

Phase 2/3 for several tumors Phase 2 for RMS (Adult)

SI221 eRMS,
aRMS

Preclinical

Table 1: SFK inhibitors tested in RMS.

For what concern specifically RMS, it has been shown that SFKs
have a role in both eRMS and aRMS. For instance, SFC increases
oncogenic activity of Caveolin-1 through its phosphorylation
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(pCav-1), indeed high levels of pCAv-1 augment cell proliferation,
migration, invasiveness and chemoresistance of RMS cells. On the
contrary, treatment with PP2, a SFK inhibitor, decreases cell
proliferation [19].

Interestingly, aRMS SFKs are also involved in acquired resistance to
the PDGFRA inhibitors. Indeed treating the resistant cell cultures with
a combination of PDGFRA and inhibitors has a synergic effect on
cancer cell viability. Moreover, treatment with Sorafenib, targeting both
PDGFRA and Raf (downstream in the SFKs signaling), inhibits cell
growth and tumor progression in vitro and in vivo [20].

Similar mechanism happens also when RMS cells are treated with
insulin-like growth factor 1 receptor (IGF-1R) inhibitors. After
treatment with BMS-754807, eRMS and aRMS cells develop resistance
to IGF-1R blockage, a small molecular inhibitor of IGF-1R/insulin
receptor or with an antibody against IGF-1R (R1507). This process is
mediated by an increased activation of SFKs. Indeed the combination
of IGF-1R inhibition with the SFK inhibitor Dasatinib rescues
antitumoral activity of drugs [21].

In 2013, Yeung and coworkers performed a loss-of-function
screening in eRMS and aRMS identifying the CRLK-YES as a crucial
pathways for tumor growth [12]. CRKL is a member of the Crk adapter
proteins, a protein family involved in intracellular signaling pathways
able to transduce signals downstream of several receptor tyrosine
kinases. In this study, the authors demonstrated that CRKL signaling is
associated with the activity of YES kinase. Indeed loss of CRKL
decreased specifically level of phosphorylated YES in both eRMS and
aRMS. In addition, the treatment with SFK inhibitors, Dasatinib and
Saracatinib, decreased phosphorylation of CRKL and SFK confirming
the hypothesis of a functional relationship between SFK and CRKL in
RMS. The treatment with both SFK inhibitor suppressed RMS cell
growth in vitro and in vivo [12].

The important role of YES in RMS induced scientist to find
molecules more specific for this tyrosine kinase. For instance, Patel and
coworkers performed an assay to combine high throughput screening
with a biochemical assay for Yes kinase in order to identify new and
specific inhibitors [22].

SI221 is a new specific inhibitor of SFK and its ability to inhibit
specifically YES and to induce both apoptosis and differentiation
makes it a promising molecule for the treatment of RMS.
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