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Abstract
Background: Cold exposure is a permanent part of human life. Response to cold varies according to different 

factors and individual differences. The main factors potentially differentiating thermoregulation in men and women are 
the properties of female physiology, anthropometric characteristics, body composition, social behavior and physical 
working capacity.

Aim of the study: Detecting the effect of short term cold exposure or cold season on body weight, food consumption, 
and levels of TSH, T3, T4, insulin, glucagon, adrenaline, cortisol, testosterone, progesterone and estrogen. 

Material and methods: This study was carried out on 96 adult albino rats of local strain, half of them were males 
and the other half were females. The animals were divided equally into two control groups (males and females), and 
four experimental groups (two males and two females). Each group was divided into two equal sub-groups (one for 
morning experiment where blood samples were collected at 7:00 a.m to 8:00 a.m., and one for night experiment where 
blood samples were collected at 700 p.m to 8:00 p.m.). Blood samples were taken at the end of experimental period 
(7 days) for determination of TSH, T3, T4, insulin, glucagon, adrenaline, cortisol, testosterone, and progesterone and 
estrogen levels.

Results: Exposure of the body to cold produced the physiological responses according to the degree of cooling. 
The more severe the exposure to cold, the more marked were the effects that can be observed in body heat balance. 
Thyroid hormones increased through release of hypothalamus to TRH which led to release of TSH from the pituitary 
gland. Cortisol increased through stimulation of HPA axis. Adrenaline increased through stimulation of sympathetic 
nervous system and led to vasoconstriction and increased the release of fatty acids from adipose tissue to be used as 
energy substrates for heat production. Increased activity of the sympathetic nervous system during cold exposure led 
to decreased insulin secretion to increase blood glucose level which was used as a fuel for heat production. Activation 
of HPA was associated with increased progesterone hormone which has a role in thermogenesis. The increased needs 
for heat production in cold situations to keep body temperature constant led to increased food consumption, and the 
body weight showed no changes. This was because energy intake was used for heat production. Conclusion: Exposure 
to 4°C for 60 minutes for seven days cause significant increase in cortisol, adrenaline, estrogen, progesterone, insulin, 
T3 and TSH, while testosterone significantly decreased. Also, exposure to 15-17°C for seven days caused significant 
increase in cortisol, adrenaline, estrogen and progesterone, while testosterone hormone significantly decreased. No 
significant changes occurred in T4 and glucagon.
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Introduction
During the cold season, cold exposure is a permanent part of 

human life in circumpolar countries and occasionally also in the 
temperate zone as well. In some occupations, like in the mining 
industry, construction work, agriculture, forestry or seafaring, cold 
exposure may be considerable. There is also considerable cold exposure 
during indoor work, e.g. in the food industry. Evidently, circumpolar 
residents are exposed to cold in significant amounts in their everyday 
life [1].

Sexual dimorphism of body composition and physiological 
processes could result in differences in the male and female responses 
to cold [2]. Some of the differences in temperature regulation observed 
between men and women may be attributed to anthropomorphic 
characteristics. Compared to men, women tend to be of smaller stature, 
with resultant larger surface area-to-body mass ratio and lower total 
thermal mass. These contribute to a more rapid heat loss and decrease 
in core temperature when exposed to cold stress [3]. 

The main factors potentially differentiating thermoregulation in men 
and women are the properties of female physiology (e.g. sex hormones, 
body water regulation, exercise capacity, etc.), anthropometric 
characteristics (e.g. body mass and size), body composition (i.e. 
muscle and body fat content), and social behavior (e.g. daily physical 

activity). In conclusion, there are no substantial sex differences in 
the effectiveness of thermoregulation, except those that resulted 
from differences in body size and composition and physical working 
capacity. However, women show sex hormone-related fluctuations in 
body temperature and some thermoregulatory processes during the 
menstrual cycle and in the period of menopause. The mechanisms and 
site of female sex hormone action on thermoregulation are not fully 
understood and require further studies. The data are at some points 
confusing and, to say the least, incomplete [4]. 

The present study aimed to study the effects of cold season and 
short-term exposure on several hormonal parameters, i.e. TSH, T3, T4, 
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insulin, glucagon, adrenaline, cortisol, testosterone, progesterone and 
estrogen. 

Materials and Methods

Materials

Ninety-six adult albino rats of local strain, 70 days old, weighing 
100-110 g, were chosen as an animal model for this study. Half of the
rats were males and the other half was females. The rats were obtained
from one of animal houses in Cairo at Al-Azhar University. All rats
were kept under observation for two weeks prior to the experiments
to permit the animals to adjust to the environments. The animals were
housed in standard suitable cages (20 × 32 × 20 cm for every 4 rats) in
controlled temperature room (23°C ± 1°C) with normal light and dark
cycle. They were maintained on a standard diet of commercial rat chow 
and tap water.

Methods

Experimental Procedure: The animals were divided into six equal 
groups as follows:

A- Control groups:

1. Group I: Male rats which were kept at room temperature of 23°C ±
1°C for seven days.

2. Group II: Female rats which were kept at room temperature of 23°C 
± 1°C for seven days. B- Experimental groups:

3. Group III: Male rats which were kept in air-conditioned room at a
temperature of 15-17°C for seven days.

4. Group IV: Female rats which were kept in air-conditioned room at
a temperature of 15-17°C for seven days.

5. Group V: Male rats which were exposed to temperature of 4°C for
60 minutes daily for seven days.

6. Group VI: Female rats which were exposed to temperature of 4°C
for 60 minutes daily for seven days.

Each group was divided into two equal sub-groups:

Sub-group (a) was for morning experiment where blood samples
were collected at 7:00 a.m to 8:00 a.m.

Sub-group (b) was for night experiment where blood samples were 
collected at700 p.m to 8:00 p.m.

Food consumption was measured daily during the exprimental 
period (7 days). Body weight was measured at the beginning and at the 
end of the experiment. 

Blood sampling: At the end of experimental period (7 days), blood 
samples were collected from the retro-orbital venous plexus by using 
heparinized capillary tubes (about 0.75-1.0 mm internal diameter) 
inserted in the medial canthus. The collected blood samples were 
kept in dry graduated plastic centrifuge tubes until coagulated. Blood 
samples were centrifuged at 4000 rpm for about 10 minutes to separate 
the serum. The serum was sucked out into Eppendorf tubes and all 
specimens of sera were stored at -20°C until used for the determination 
of:

�� TSH [5]

�� T3 [6]

�� T4 [6]

�� Insulin [7]

�� Glucagon [8]

�� Adrenaline [9]

�� Cortisol [10]

�� Testosterone [11,12]

�� Progesterone [13]

�� Estrogen [14]

These hormones were measured by ELISA.

 Statistical analysis: One way ANOVA (Analysis Of Variance) test 
was used to do the following:

■ Calculation of the descriptive statistics in studied groups (means ±
standard deviations).

■ Detection of any significant difference between different groups and 
between different samples.

■ Performing multiple comparisons between each group and another
and each sample and another by using the “Post Hoc LSD” multiple 
comparison tests.

The computer program SPSS version “17” was used to perform
ANOVA test.

Results
Changes in body weight and food consumption (Figure 1): No 

significant difference in BW of experimental male – morning groups 
with corresponding controls at the beginning of the experiment. 
However, BW showed significant difference in experimental male 
– morning and night groups with corresponding controls at the end
of the experiment. Experimental female – morning and night groups
with corresponding controls at the beginning of the experiment
showed no significant difference at the beginning and at the end of
the experiment. However, BW showed significant difference between
experimental female – night groups with corresponding controls
at the end of experiment. In comparison between morning groups
with corresponding night groups in males and females, there was
no significant difference in food consumption between any of these
groups. There were significant differences in experimental groups with
corresponding controls.

Changes in thyroid hormones levels (Figure 2):T3: In comparison 
between morning groups with corresponding night groups in males 
and females, there was no significant difference in T3 level between 
any of groups. There were significant differences in experimental short-
term cold exposure groups with corresponding controls. However, 
there were no significant differences in comparing experimental cold 
weather groups with corresponding controls. In comparison between 
female with corresponding male groups there was no significant 
difference in T3 level between any of these groups. 

T4: In comparison between morning groups with corresponding 
night groups in males and females, there was no significant difference 
in T4 level between any of these groups. There were no significant 
differences in comparing experimental groups with corresponding 
controls. In comparison between female with corresponding male 
groups there was no significant difference in T4 level between any of 
these groups. 

TSH: In comparison between morning groups with corresponding 
night groups in males and females, there was no significant difference 
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in TSH level between any of groups. There were significant differences 
in comparing experimental cold weather groups with corresponding 
controls. However, there were no significant differences in comparing 
experimental cold weather groups with corresponding controls and in 
comparison between female with corresponding male groups.

Changes in insulin and glucagon levels (Figure 3): Insulin: There 
were significant differences in comparing experimental – short-term 
cold exposure groups with corresponding controls. There were no 
significant differences in comparing experimental - cold weather–
groups with corresponding controls. In comparison between morning 
groups and corresponding night groups in males and females, there 
were no significant differences in insulin level between any of these 

groups. b-Glucagon: There were no significant differences in glucagon 
level between experimental groups and their corresponding controls. 
In comparison between morning groups with corresponding night 
groups in males and females, there was no significant difference in 
glucagon level.

Changes in cortisol and adrenaline levels (Figure 4(: Cortisol: 
There were significant differences in comparing experimental groups 
with corresponding controls. In comparison between morning groups 
with corresponding night groups in males and females, there was no 
significant difference in cortisol level between any of these groups. In 
comparison between female with corresponding male groups, there 
was no significant difference in cortisol level between any of these 

Figure 1: Changes in body weight and food consumption (Mean ± SD).
(¥)=Significant change on comparing female control and exposed to cold weather at night. 
(∞)=Significant change on comparing female control and exposed to short-term cold at night. 
(O)=Significant change on comparing male control and exposed to cold weather at night. 
(®)=Significant change on comparing male control and exposed to short-term cold at night.
(@)=Significant change on comparing female control and exposed to cold weather at morning. 
(£)=Significant change on comparing female control and exposed to short-term cold at morning. 
(*)=Significant change on comparing male control and exposed to cold weather at morning. 
(©)=Significant change on comparing male control and exposed to short-term cold at morning.

Figure 2: Changes in thyroid hormone levels.
(Ω)=Significant change on comparing female control and exposed to short-term cold at night. 
(∞)=Significant change on comparing male exposed to short term cold at night with male exposed to cold weather at night.
(®)=Significant change on comparing female control and exposed to short-term cold at morning. 
(O)=Significant change on comparing male control and exposed to short-term cold at morning. 
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groups. Adrenaline: In comparison between morning groups with 
corresponding night groups in males and females, there were no 
significant difference (in adrenaline level between any of these groups. 
In comparison between female with corresponding male groups, there 
were no significant differences in adrenaline level between any of these 
groups.

Changes in sex hormones levels (Figure 5): E2: In comparison 

between morning groups with corresponding night groups, there was 
no significant difference in E2 level between any of these groups. There 
were significant differences in comparing experimental groups with 
corresponding control groups. Progesterone: In comparison between 
morning groups with corresponding night groups, there was no 
significant difference in progesterone level between any of the groups. 
There were significant differences in comparing experimental groups 
with corresponding control groups. Testosterone: In comparison 

Figure 3: Changes in insulin and glucagon levels (Mean ± SD).
(¥)=Significant change on comparing female control and exposed to short-term cold at night. 
(µ)=Significant change on comparing male control and exposed to short-term cold at night. 
(π)=Significant change on comparing female control and exposed to short-term cold at morning. 
(O)=Significant change on comparing male control and exposed to short-term cold at morning. 

Figure 4: Changes in cortisol and adrenaline levels (Mean ± SD).
(£)=Significant change on comparing female control and exposed to cold weather at night. 
(¥)=Significant change on comparing female control and exposed to short-term cold at night. 
(α)=Significant change on comparing male control and exposed to cold weather at night. 
(µ)=Significant change on comparing male control and exposed to short-term cold at night
(∞)=Significant change on comparing female control and exposed to cold weather at morning. 
(!)=Significant change on comparing female control and exposed to short-term cold at morning. 
(*)=Significant change on comparing male control and exposed to cold weather at morning. 
(O)=Significant change on comparing male control and exposed to short-term cold at morning.
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between morning groups with corresponding night groups, there was 
no significant difference in testosterone level between any of these 
groups. There were significant differences in comparing experimental 
groups with corresponding control groups.

Discussion
Thermoregulation is a complex system involving physical, 

chemical, and behavioral processes that allow the maintenance of 
body temperatures within a restricted range under conditions of 
variable internal or external heat loads [4]. When ambient temperature 
decreases below a thermoneutral temperature, the physiological heat 
producing mechanisms and the mechanisms that minimize the heat 
loss from the body become activated [15].

Chemical heat production is seen in the brown fat, Brown Adipose 
Tissue, (BAT). Brown fat can liberate its chemical energy directly in 
the form of heat. This process requires Uncoupling Proteins (UCP) 
which can be activated by thyroid hormones, catecholamines and 
the sympathetic nervous system [16,17]. Increase in noradrenaline 
concentration in the blood during cold exposure increases the 
production of cyclic AMP (cAMP), lipolysis and Free Fatty Acids 
(FFA). FFAs open the mitochondrial proton channel protein. Protons 
enter the mitochondria and inhibit ATP synthesis (uncoupling). This 
way, energy is transformed into heat instead of ATP [18,19].

The more severe the exposure to cold, the more marked are the 
effects that can be observed in body heat balance. Genes to cold 
tolerance, cold climate genes, promote adaptation to cold conditions 
and increase thermogenesis [20]. Marked individual differences have 
been found in the physiological responses to cold. The individual 
ability to protect against cold is affected by the shape and mass of the 
body, the amount of subcutaneous fat, physical fitness, age, sex, as well 
as some illnesses and medications [21]. These individual factors can 
also modulate the development of cold acclimatization. Habituation 
to cold usually produces reduced thermal discomfort and changes in 
circulatory as well as endocrine responses [22].

In the present study, there was a significant increase of T3 and TSH 
level in comparing experimental short-term cold exposure groups with 
corresponding controls. These results were compatible with the findings 
of O´Malley [23] who found that exposure to ambient temperature of 
4°C for 30–120 minutes increases serum T3 concentrations. Maurya [24] 
found that exposure to cold leads to increase of serum T3 levels. Rondeel  

[25] mentioned that thyroid hormone secretion is quickly activated by 
cold exposures. This may be due to activation of the thyroid gland which 
can be mediated via neuronal reflexes from the hypothalamus in mid 
brain. Hypothalamus increases TRH secretion which activates TSH and 
thyroid hormone release. Thyroid hormones exert their major effects 
on obligatory thermogenesis and resting metabolic rate, and seem to 
stimulate almost all reactions in the intermediary metabolism leading 
to heat production [26]. Thyroid hormones, particularly T3, stimulate 
a general increase in metabolism by increasing the activity of the 
enzyme Na+/K+ ATPase (the sodium pump) in the plasma membrane, 
decreasing the efficiency of oxidative phosphorylation (via changes in 
the properties of the inner mitochondrial membrane), and possibly 
increasing calcium ion cycling. T3 serves to increase heat production 
by two independent mechanisms: First, they work in conjunction 
with the sympathetic nervous system to stimulate heat production in 
brown adipose tissue. Second, they cause a generalized increase in the 
metabolic rate of all tissues by stimulating Na+/K+ ATPase-mediated 
ion transport across the plasma membrane [27]. Small mammals, like 
the mouse and rat, have a relatively high rate of heat loss, and at 4°C, 
the Resting Metabolic Rate (RMR) needs to double to maintain body 
temperature. Cunningham [28] and Quiroz [29] reported that thyroid 
hormones stimulated mRNA expression of UCP in skeletal muscles 
and the heart, and to a much lesser extent in spleen, lung or liver.

There were no significant differences in T4 level in comparing 
experimental short-term cold exposure groups with corresponding 
controls. This may be due to peripheral deiodination of T4 to T3 in 
response to cold exposure [30].

There was no significant differences in T3, T4 and TSH levels in 
comparing experimental cold weather groups with corresponding 
controls. Weeke and Gundersen [31] found that core cooling in a 
thermoneutral environment had no effect on circulating thyroid 
hormone or TSH levels. This was also in agreement with Young et 
al. [32] who stated that, in short –term exposure to cold (cold air at 
10°C) for 120 min, there are no changes in the serum levels of thyroid 
hormones indicating that cold stimulus is not enough to stimulate the 
secretion of these hormones. This may be due to that catecholamine 
thermogenesis in the adults obviates TSH and thyroid response [33].

In the present study, there was significant decrease of insulin level 
in comparing experimental – short-term cold exposure groups with 
corresponding controls. Galbo [34] and Seitz [35] found that cold 

Figure 5: Changes in E2, Progesterone and Testosterone levels (Mean ± SD).
(¥)=Significant Changes on Comparing Female control and exposed to cold weather at night.
(∞)=Significant Changes on Comparing Female control and exposed to short term cold at night.
(*)=Significant Changes on Comparing Female control and exposed to cold weather at morning.
(Ω)=Significant Changes on Comparing Female control and exposed to short term cold at morning.

http://www.ncbi.nlm.nih.gov/pubmed?term=Rondeel JM%5BAuthor%5D&cauthor=true&cauthor_uid=1749462
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exposure inhibits insulin secretion. This decreasing in insulin secretion 
may be due to increased sympathetic nervous activity, and the decrease 
in insulin level may be compensated by increased sensitivity of tissues 
to insulin.

In the present study, there was no significant change in insulin level 
in comparing experimental-cold weather with corresponding controls. 
Koska et al. [36] stated that cold weather has no effect on insulin 
secretion indicating that cold stimulus is not enough to stimulate 
sympathetic nervous system to the degree that decreases secretion of 
insulin hormone in cold weather.

In the present study, there was no significant change in glucagon 
level in comparing experimental groups and their corresponding 
controls. This may be due to the increase of blood cortisol level in all 
experimental groups. Cortisol reduces glucose metabolism in most 
cells except the brain [37]. Also, Maurya et al. [24] found that glucose 
increases in cold exposure. So, there is more glucose in the blood 
which suppresses glucagon secretion. Seitz et al. [35] and Cannon and 
Nedergaard [38] stated that plasma glucagon level increases during 
cold exposure.

In the present study, there was significant increase of cortisol level 
in comparing experimental groups with corresponding controls. This 
may be due stimulation of the sympathetic nervous system. This was 
in agreement with Pääkkönen and Leppäuto [39] who mentioned that, 
in a short-term exposure to cold, increased secretion of cortisol has a 
positive effect by increasing the blood glucose level and FFA levels as 
well as vascular tone. Ohno et al. [40] Gerra et al. [41] and Wittert et al. 
[42] reported that the cold exposure has to be severe enough to increase 
plasma corticotropin level (>30 min, 4°C). Cortisol hormone stimulates 
catabolic processes and suppresses utilization of glucose and other 
substrates. They play a key role in glycogen synthesis, gluconeogenesis, 
including stimulation of glucogenic amino acid release. In adipocytes, 
they stimulate lipolysis and reduce the number of glucose transporters. 
Cortisol hormone acts in concert with catecholamines and many 
other hormones including those involved in rapid reaction to external 
temperature changes. Most effects of cortisol hormone consist in their 
regulation of the expression of various genes through interaction 
with glucocorticoid receptors and their binding to Glucocorticoid 
Responsive Elements (GRE) in the DNA of regulated genes [43].

In the present study, there was significant increase of adrenaline 
level in comparing experimental groups with corresponding controls. 
These results were in agreement with the findings of Wagner et al. 
[44] who reported that plasma adrenaline level increased in response 
to cold exposure. This also was in agreement with Thomas et al. [45] 
who found that the cold exposure has to be severe or combined with a 
stressful task to increase plasma adrenaline.

In the present study, there was significant decrease of testosterone 
level in comparing experimental groups with corresponding control 
groups. These results were in agreement with the findings of Weeke 
and Gundersen [31], OۥMalley et al. [23] and Leppäluoto et al. [46] who 
mentioned that testosterone is potentially thermogenic hormone due 
to its ability to increase the metabolism, but its secretion is suppressed 
during cold exposure. The decreased testosterone level may be due to that 
stressors generally induce depression of hypothalamo-pituitary-testis 
system, mediated by activated hypothalamo-pituitary-adrenocortical 
system, resulting in fall in plasma LH and testosterone levels. CRH 
induces the release of endogenous opioids from hypothalamus, which 
along with corticosteroids suppresses the secretion of hypothalamic 
Gonadotrophin Releasing Hormone (GNRH). Suppression in secretion 
of GNRH causes reduced secretion of LH and FSH from pituitary, 

which in turn causes decrease in testosterone level. They suggested 
that increase in plasma level of glucocorticoids act via glucocorticoid 
receptors on testicular interstitial cells to suppress the testicular 
response to gonadotropins. There is a negative relationship between 
cortisol and testosterone [47].

There was significant increase of E2 level in comparing experimental 
groups with corresponding control groups. These results were in 
agreement with Stephenson and Kolka [48] who mentioned that the 
role of the reproductive hormones on thermoregulation in women 
has been well documented. Estrogens may also influence hormones 
involved in substrate metabolism or those that could affect the 
thermogenic response to cold.

In the present study, there was a significant increase of progestrone 
level in comparing experimental groups with corresponding 
control groups. Like cortisol, progestrone is released in response to 
Adrenocorticotropin Hormone (ACTH) In comparison between 
morning groups with corresponding night groups in males and 
females, there were no significant differences between any of these 
groups. Female with corresponding male groups showed no significant 
difference between any of these groups. These results were in agreement 
with Kaciuba-Uscilko and Grucza [4] who reported that there are no 
substantial sex differences in the effectiveness of thermoregulation, 
except those that resulted from differences in body size and composition 
and physical working capacity.

In the present study, there was significant increase in food 
consumption in comparing experimental groups with corresponding 
control groups. There was significant increase in body weight in 
comparing control groups at the beginning and at the end of the 
experiment, and there was significant increase in body weight in 
comparing control groups at the beginning and at the end of the 
experiment. This may be due to the increased of the energy expenditure 
in the cold exposure which led to increase of heat production to protect 
the rat from hypothermia in cold conditions. The increased energy 
expenditure stimulates appetite and causes enhanced energy intake, i.e. 
diet-induced thermogenesis, which is probably facultative and adaptive 
and due to brown adipose tissue activity [49]. The unchanged body weight 
may be due to that energy intake is the same as the energy expenditure in 
which energy intake is used mainly for thermoregulation [24].
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