
Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Jo
ur

na
l o

f I
nf

or
m

ati

on Technology & Software Engineering

ISSN: 2165-7866

Gupta and Gola, J Inform Tech Softw Eng 2016, 6:3
DOI: 10.4173/2165-7866.1000182

Research Article Open Access

Journal of
Information Technology & Software Engineering

*Corresponding author: Jaya Gupta, College of Science & Engineering,
Department of Computer Engineering, India, Tel: 9105102331191; E-mail:
mail2me17@gmail.com

Received June 04, 2016; Accepted June 21, 2016; Published June 30, 2016

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request
Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182. doi:10.4173/2165-
7866.1000182

Copyright: © 2016 Gupta J, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Cross site request forgery; Web application vulnerabilities;
CSRF gateway

Introduction
Cross Site Request Forgery (CSRF) is also known as “Session

Riding” or “One Click Attack”. This attack is a Malicious Exploit
type of attack against web application users. This attack has been
listed as 7th most exploitable among 10 top Web Attacks [1-3].
CSRF is an attack which allows an attacker to perform unauthorized
POST/GET arbitrary HTTP requests on behalf of victim that is
currently authenticated to the website. The fraudulent user performs
unauthorized activity on behalf of an authorized and authenticated
victim user. If the victim is authenticated, a successful CSRF attack
effectively by-passes the underlying authentication mechanism.
Depending on the web applications, the attacker could send post
messages or send emails/message on behalf of the victim or manipulate
with the login name or password. Account lock, account hijack, data
loss and fake online messages are common fraudulent activities using
the CSRF methodologies. Furthermore the results of the attack can be
more severe depending the usage scenario. But in contrast other well-
known web security attacks such as Cross Site Scripting (XSS) or SQL
Injection and Cross Site Request Forgery (CSRF) are appears to be a
problem known to the web developers [3].

CSRF attacks are broadly categorized into 2 types. First one is
launched from malicious site to a trustful website. In this type, attacker
can only send HTTP request to an authentic website but no secret
information can be obtained from the true website. The other type of
CSRF attack is based on JavaScript and AJAX. It is called the “Multi
Stage CSRF attack”, which involves a malicious script that generates
multiple HTTP requests and secretly sends the generated HTTP
requests asynchronously in the background. Detection and prevention
of CSRF attacks is challenging from browser’s side, the usage of same
origin policy (SOP) is not enough to prevent CSRF attack. Same
Origin Policy (SOP) is defined as the same scheme, host and the URL
of the host. There have been many server and client side protection
implementations, few protection plans are still relevant and existing
for protection, but unfortunately all these protection plans are not able
to protect web application completely for new CSRF exploits that have

come up with time. The Hybrid strategy for server side CSRF Gateway
implementation is an attempt to enhance the protection against CSRF
exploits with session and token approach. 		

In this paper, proposed solution called as CSRF Gateway, which
provides the Server Side protection to the most Open Source Web
Applications. This solution is intended to demonstrate the working
of CSRF Attack using different Attack Vectors on the real world
examples. This gateway methodology demonstration will provide the
clear picture about the subject, so that it will create a better picture to
understand the defensive mechanisms [4].

Here are some Real World examples of CSRF Attack

1.	 ING Direct (ingdirect.com)

2.	 YouTube (youtube.com)

3.	 MetaFilter (metafilter.com)

4.	 The New York Times (nytimes.com)

5.	 Gmail (gmail.com)

6.	 Netflix

Related Work
In previous years, there is lot of research work has been done in this

field. In the previous researches, researchers had proposed techniques
and solutions to prevent and defense against the Cross Site Request
Forgery.

Server Side Protection against Cross Site Request Forgery using CSRF
Gateway
Jaya Gupta* and Suneeta Gola
College of Science & Engineering, Department of Computer Engineering, India

Abstract
The E-Commerce and Social Media has become the new identity for millions of users across the globe. Ease of

services for Shopping, Travel, Internet Banking, Social Media, chat and collaboration Apps etc. have become part
of one’s life where these identities have name, media content, confidential notes, business projects and credit cards.
Convenience and connections brings the ease of connectivity and services so does come the concerns related to
unauthorized usage and fraudulent transactions that could be lead to loss of money, time, emotions and even life.
Web defacement, fake accounts, account hijacking, account lock and unavailability of services has become a common
online news and distress for many. There are different Web Attacks and exploits that have sprung up with time and
usage for different type of illegal actions performed everyday online. Cross Site Request Forgery Attack is one of the
Web top 10 exploited attacks for the past 5 years (Source OSWAP) which can maliciously exploit online services,
where unauthorized actions are performed by the fraudulent user on behalf of a trusted and authenticated account for
website. It forces the victim user to perform some unauthorized activity on behalf of attacker request. This research
work focuses on a new Hybrid strategy that will enhance the server side protection against CSRF attacks. CSRF
Gateway, is the proposed solution which provides the Server Side protection against Cross Site Request Forgery
(CSRF) Attack.

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 2 of 8

Section C: Content checking: Content checking relied on the
matching of the response of a suspected request with the expected
response. A suspected request often resided as part of an HTML tag
attribute value or within. A response page might contain various types
of elements (static HTML, JavaScript, and Style Sheets). As a result, they
relied on the content type of a webpage to differentiate an attack request
from a user initiated request based on the identified tag that contained
the request. The content type was often specified in the META tag of
a page and was accessible from the response header. After that they
discussed the comparison of the expected and the actual content type
and how to launch a suspected request in next 2 subsections.

1.	 Comparison between an expected and an actual response
content type.

2.	 Suspected request modification

Section D: Attack detection coverage and attribute checks: The
proposed approach was able to detect a variety of CSRF attacks. Some
non-exhaustive CSRF examples were highlighted and related with the
checks to detect them [10-16].

1.	 Visible form with field and no value

2.	 Invisible form with field and value

3.	 Static/Dynamic HTML tag and URL at tribute

4.	 Program state retrieval or modification

5.	 Pre- or post-rendering

CSRF guard
CSRF Guard was verifying the integrity of HTTP requests by

inserting a special security token to every active HTTP session
established among the authenticated client and the web server.
Essentially, the CSRF Guard was doing the filtration of the requests
coming in. It was executing following functionalities.

1.	 Inserted a token to the defined preserved resource.

2.	 This method did the verification of the token when the
preserved resource gets requested. The token origination and
certification was used to give the protection against the CSRF
attack.

Protection approach

Suggested approach was to protect against CSRF attacks by using
some or all of these:

1. Use of random tokens: To use random tokens each time with a
form submission could make very difficult for the attacker to guess the
next random pattern to fill in the URL.

2. Need to use Post method in form instead of Get: Get and Post
are the 2 methods of form submission. Post Method was secure for
form submission. In Get method anyone could see the variables and
values in URL as a query strings.

3. Limiting the lifetime of authentication cookies: Limit the
lifetime to a short period of time. If user was going on other website
then the cookies were expired after a short period of time. If the attacker
was trying to send any HTTP request to user which he was able to know
and he would not fill the password again.

4. Damage limitation: Damage limitation involved those steps
which reduced the damage from CSRF. For example if an attacker did
manage to perform CSRF on a website then any action done by him
was required an authentication every time to limit the damage.

Proxy based solution

In this approach, solution to the problem was to decouple the
necessary security mechanism from the application and to provide a
separate module that can be plugged into existing systems with minimal
effort. More precisely, they proposed a proxy that was placed on the
server side between the web server and the target application. This
proxy was very well sufficient to check and change the requests sent by
client and the replies to itself extend applications by using the shared
secret technique. In particular, the proxy had to ensure that replies
to an authenticated user had to modified in such a way that future
requests originating from (through hyperlinks and forms) should
contain a valid token, and take countermeasures against requests from
authenticated users that did not contain valid token. By decoupling
the proxy from the actual application, the XSRF protection could be
offered transparently for all applications [5-7].

Referrer privacy guard and defense technique

 In this approach, Defense mechanism included 2 techniques for
the solution.

Referrer privacy guard: The Referrer Privacy Guard revealed how
a constant flow of random HTTP requests could mess up the browsing
history at the server side, thus preventing infiltrators from getting
access to user browsing trends.

Detection and discouragement: In this section, the focus was
on how to detect CSRF signatures in web pages and stop it before
commencement. The defense attribute first verified the Client side code
before each and every page load and found the CSRF attack involved.

Attack detection using windows form

CSRF attack detection approach that was divided in multiple
sections.

Section A: Attack detection framework: In the section they
had assumed that a browser could have multiple windows. A trusted
website could be viewed by a user in window after performing an
authentication process and the session information was saved in the
browser. In this section the following processes were followed.

1.	 Request Checker

2.	 Window and form checker

3.	 Request Differentiator

4.	 Attack Detection policy

5.	 Attack handler module

Section B: Visibility checking: The proposed notion of visibility
relies on examining windows containing web pages and forms
presented in a browser. If a request was GET type, they checked
whether it contained any query string or not. If no query string was
present, no need to examine it further. However, if a query string was
present, then tokenize the string to identify the set of parameters and
values and related the extracted parameters and values with a webpage
containing forms with similar fields and values [7-9]. Note that the
form action or target field value should match with the resource file
of the suspected request. While examining a webpage, two possible
scenarios might arise. These were discussed below:

1.	 Window and no form

2.	 Window and form

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 3 of 8

session gets established then cookie sets. Then in between Bob visits a
site having malicious IMG tag that followed the site called “somesite.
com”. Behind the scene this link follows the URL which sends amount
to another account using Bob’s account authentication. The malicious
link can be sent either by GET method or POST method. In the
GET action all parameters send in the query string and in the POST
parameter goes separately to the server. Then in both the cases HTTP
request will be,

If action was a POST

POST/submitpage
Server: server.com

amount=1000&destination=MrHacker

If action was a GET

GET/submitpage?amount=1000&destination=MrHacker

Server: server.com
If attacker can predict all these parameters, then those parameters

can be used to get misused. The GET or POST request can be easily
forged by using various HTML elements, such as (img), (script) or
(iframe), (a) (hyperlink).

If attacker want to misuse GET then the malicious link will be

http://server.com/submitpage?amount=1000&destination=MrHacker

If attacker want to misuse POST then the malicious form will be

<form name=”evil” action=http://server.com/submitpage
action=”post”>
 <input type=”hidden” name=”amount” value=”1000”>
 <input type=”hidden” name=”destination”
value=”MrHacker”>
</form> 	

<Script>document.evil.submit () </script>

Because Bob does not know about this malicious link, he submits
the request which process the request to get submitted on the server
and get the money transfer done. Victim user gets to know only when
he see the bank statement or after the action gets committed. In this
way Cross Site Request Forgery attack takes place. But unfortunately
till that time this action cannot be undone.

Proposed Methodology
The Detection and Prevention of CSRF Attack is Challenging. The

previous research work is resulted only limited number of techniques
for mitigating CSRF vulnerabilities such as proxy solution, filtering the
contents of webpage, using cookies. Such techniques involves moreover
much work to perform the task and lengthy process. From the browser
perspective Same Origin Policy is not enough to protect against the
CSRF attack. Because mostly web applications are using Cross Origin
Policy. But even if Cross Origin Policy may not be configured acceptably
which can cause the defense or prevent ineffective.

To protect web applications against Cross Site Request Forgery
(CSRF) attack, this research work have proposed and implemented

5. Force user to use your form: It was forcing user every time
to use the form of website. Use of hidden fields was helpful for this
purpose. But this way of protection was easy to bypass.

Labeling mechanism: To prevent the CSRF attack, labeling
mechanism called Content Box; was suggested. The Content Box
consisted of a labeling function and UCC quarantine policies. The
labeling function was used to isolate the UCCs, while the UCC
quarantine policy enforces propagation rules for the labeled UCCs.
The CSRF attack could be prevented using the Content Box when an
untrusted UCC try to access a service that contains sensitive/private
information. The main idea was to divide the content into 2 different
types. One was called the “trusted contents”; these contents were
created by the web server administrator or the content viewer/user.
Since these contents were created by the rightful owner, it was that the
scripts within the contents were free from the CSRF attack [15]. The
other type was called the “untrusted contents” which were created by
other users. Since these contents were provided by users other than the
rightful owner, the scripts within these contents might cause the CSRF
attack. It was important to differentiate the contents of the webpage
since the client browser always trusted the contents of a web page
provided by the web server even if the authors of the contents were
not trusted by the client. In Content Box, they intended to distinguish
the untrusted contents and prohibiting the untrusted contents from
accessing web services that contain sensitive data.

Initially in web, UCC was the source of the CSRF attack problem.
However, most UCCs were harmless providing that if it was created
by the current client. This kind of UCC should be classified into
trusted contents since the CSRF attack rarely happened when both
of the attacker and the victim were identical. Labeling was used to
differentiate the contents and ensured that every HTTP request was
labeled, provided that the label cannot be disrupted by the client
browser. In addition to labeling the contents of a web page, an access
control mechanism was required to patrol the accesses of web services.

1. Trusted label had the freedom to access the contents with trusted
or untrusted label.

2. Untrusted label could only access the contents with untrusted
label.

Once the contents with trusted label were contaminated by
untrusted label, its label becomes untrusted.

Overview of CSRF Attacks
A Cross Site Request Forgery is a type of attack that compels an

end user to perform unauthorized actions on the web applications on
which they are currently authenticated logged in. Specifically, the CSRF
is only tangled with state changing requests but not in the theft of data.

Anatomy of cross site request forgery attack

A Cross Site Request Forgery is a type of attack that compels an
end user to perform unauthorized actions on the web applications
on which they are currently authenticated logged in. Specifically, the
CSRF is only tangled with state changing requests but not in the theft of
data. This attack typically requires attacker to have prior access to and
knowledge of the vulnerable application [13].

To show the Anatomy of Cross Site Request Forgery (CSRF),
there is taken an example of the Bank transaction (Figure 1). The User
Bob logs into the bank website called “fictitiousbank.com”. When the

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 4 of 8

Hybrid Approach which we named as CSRF Gateway. Below are the
key features of CSRF Gateway.

Here is the basic flow diagram of the proposed solution (Figure 2).

Server side protection

CSRF Gateway provides Server Side Protection from Cross Site
Request Forgery Attack.

This solution gets installed on the web application. Server side
protection is stronger protection approach for control and behavior
than client side protection strategies. When the HTTP Request by the
user then on the server side, web application creates the session and
embeds token to the Session using Custom Tag Library which provides

the more secured way to insert the token and in all the forms by newly
created Custom Tag <CSRFToken>.

Angular JS anonymity

CSRF Gateway also has Angular JS Anonymity, which sends the
CSRF Token anonymously using Angular JS and AJAX in the inner
HTML pages like “Add”, “Update”, “Delete” while Submitting the
HTTP Request to the server without refreshing and reloading the web
page with updates. This Anonymity creates the secure traversing of the
HTTP Request to the server. This makes even more difficult for the
attacker to speculate the flow of the request and the parameters. There
is no other way in which attacker can predict the supported elements
of the attack. Even if the attacker is able to predict the knowledge of

Figure 1: Diagram of Anatomy of Cross Site Request Forgery (CSRF) Attack.

Bob logs into his bank

fictitiousbank.com Victim www.somesite.com

Bob visit a site with a

malicious IMG tag

website

cookie is set

1

Bank’s web application

validates the session then

completes the transaction Bob submits request

to transfer money to
attacker’s account

2

3

4

5

<html>

</html>

<img src=ײhttp://fictitiousbank.com/transfer?

nt=1000ײ>
fromaccount=bob&toaccount=MrHacker&amou

.

.

.

.

.

.

Figure 2: Basic flow diagram of proposed solution.

Request

Token is Generated &

Application continue

If both tokens matches

Before submission it
check the validity and
value of both tokens

If tokens not match
Application detects the
CSRF attack has been
occurred. Application

sends user back to
Login Page.

to process the request.

Assigned to all HTMLs
and Session using

Hybrid Model

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 5 of 8

request then also request cannot be changed or modified maliciously.
In addition, Angular JS Anonymity enhances the Performance of the
web solution [1-3]. When the HTTP Requests are traversing so many
times to and fro then sometimes server gets overloaded by loading of
contents every time, in that case if the Request is very Light Weighted,
it gets go over the server very fast to enhance the performance.

Token generation

The key reason for the success of CSRF attack is that attackers can
obtain all the parameters of the important operations by analyzing
victim request and website and then forge a valid request passing
the server-side validation. Thereupon, by adding the hidden token
parameter in the operations, (the value which generate random
number) so that attackers cannot predict parameters value, and
therefore forgery requests cannot pass validation. Using tokens is by
far the most effective method to defend against CSRF attacks. CSRF
Gateway uses Secure, Random and Unique 32-bit Alphanumeric
Token, which makes the token value impossible to predict for forging
unauthorized request.

Token insertion

CSRF Gateway uses JSP Custom Tag Library to insert Token in
all the HTML pages. Custom Tag Library provides developers more
granular control over Token Insertion. This provides more secure way
to embed token. More over this strategy is more useful than normal
Java Script or any other Token Insertion method. CSRF Gateway has
2 layers of security in additional to traditional token insertion alone
(Figure 3).

1. First Token embeds with the each HTML page.

2. Second Token embeds with the Session. 	

Implementation
We have implemented a proof of concept of our proposed CSRF

attack protection approach as a Server Side installation. An application

administrator has to embed the solution to the application. We have
used Java for the development platform. Java Platform is dynamic,
security architecture, standards-based and interoperable. This provides
a safe and secure platform for developing and running applications.
It includes enforcing runtime constraints through the use of JAVA
VIRTUAL MACHINE, a security manager that sandbox untrusted
code from the rest of the operating system, and a suite of security APIs
that JAVA developers can utilize [7].

We have used Custom Tag Library to insert Random and Unique
token to all the HTML pages. Custom tag library is a User defined
JSP language element. When a JSP page containing a custom tag is
translated into a servlet, the tag is converted to operations on an object
called a tag handler. The web container then invokes those operations
when the JSP page’s servlet is executed. In this way, Custom Tag Library
provides the fine grain level of security. The advantage of the Custom
Tag over any Java Script is that functionality is never been shown to the
end user or attacker.

In the model, the Upper Layer embeds the first CSRF Token to the
Session which gets assigned per session. Whenever user requests server
for any page first time, session gets created. Server embeds token to the
session and sends the request back to the user. This token remains same
for the whole session. Then Middle Layer assigns second CSRF Token
to all the HTMLs which gets assigned per HTTP request.

In Figure 4, it is shown that how this CSRF Token get inserted into
the HTMLs. This CSRF token assigned to the hidden field, and the
value of this token gets set in the Custom Tag Handler. Figure 5 shows
how the CSRF token value gets displayed in the webpage.

Whenever the user tries to submit any HTTP request to the server
then before submitting the request, server verifies the token associated
with each request. If both the tokens matches then request get passed
to the server, otherwise it assumes that the CSRF Attack has been
occurred and then server Logout the user from the application. The
Lowest Layer where Angular JS Anonymity plays the most vital role
which hides the HTTP Request parameters to get exposed in the request

Figure 3: Diagram of representation of CSRF Token.

CSRFToken
txtFacultyDOB
txtFacultyName

txtFacultyPassword

Submit

c3ebd37340397b0ea72840d6b2308e81

09/09 /1980

a

a

Figure 4: Diagram of representation of CSRF Token insertion in HTML page.

1. <HTML>

2. <BODY>

3. <FORM action=”CRUDController” method=”POST”>

4. <INPUT type=”hidden” name=”CSRFToken” value=”<csrf: token-value>” >

5. <INPUT type=”text” name=”name” value=”” >

6. <INPUT type=”text” name=”email” value=”” >

7. </FORM>

8. </BODY>

9. </HTML>

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 6 of 8

while submitting an important operations to the server by making an
anonymous call.

Unfortunately, there is no publicly available test suite for Cross
Site Forgery Attack Protection evaluation. Thus, we developed the
benchmarked test suite called “Student Grading System” to test the
proposed solution. In this test suite, we first put the CSRF TOKEN in
the hidden field, so that it will not be visible to the victim or attacker.
Then we assign the other CSRF TOKEN to the session. Both the tokens
are 32-bit alphanumeric encrypted using SHA1 (32-bit) and MD5
Encryption Technique. This application performs “Insert Faculty”,
“Add”, “Update” and “Delete” student actions. We have put Interceptor
Class which intercept each and every request and response. Hence at all
the time it check for the tokens associated with session and request to
be matched.

We have used OWASP Zed Attack Proxy (ZAP) which is one of
the world’s most popular free security tools. It can help developers
automatically find security vulnerabilities in the web application while
developing and testing the application. In our work, we have used this
tool to Intercept the Request and test our Proof of Concept. ZAP Proxy
tool intercept each incoming and outgoing request. In Figure 6, it is
shown how any request can be forged while before submitting it on
the server.

Here request can be forged and send back to the server. Figure 7
shows the response of the forged request returned by the server using
CSRF Gateway (Figure 8).

Results and Conclusions
We have tested the applications with the proof of concept and we

got results over previous research works. We have done the comparison
with previous research work.

The new Hybrid technique is deployed for a test application to
provide a detailed proof of concept for CSRF Gateway. The results
obtained from the previous research works are compared with this
gateway technique that is summarized below.

Server side vs client side protection

CSRF Gateway (our research work) provides Server Side Protection
against CSRF against which is stronger and powerful than any Client
Side Defensive Solution.

Light weighted solution

This is Light Weighted Solution. CSRF Gateway is very easy to
install at Server Side. Server Side needs to embed the CSRF token to
their application.

Synchronizer token pattern vs other defensive technique

Synchronizer Token Pattern Defensive Technique is most
Compatible, Reliable and

Official Technique of Protection against Cross Site Request
Forgery. (Source OSWAP Site)

Figure 5: Diagram of representation of CSRF Token displayed in HTML page.

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

<ײ

<tr>
<td>

</td>

</tr>
<tr>

<td>

</td>

</td>
</tr>
<tr>

</tr>
<tr>

<td>

<input type = ײhiddenײ name = ײCSRFTokenײ value=2ײbb1d24972f13365291723834f744a81

Figure 6: Diagram of representation of Angular JS Anonymity.

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 7 of 8

Figure 7: Diagram of representation of HTTP Request on ZAP Proxy tool.

Figure 8: Diagram of representation of Response returned by Server for forged HTTP Request on ZAP Proxy.

is used to embed the Token into the HTML forms, which gives the
granular Control over Token Injection. It is more useful strategy over
normal Java Script or any other strategy used for Token Injection. AJAX
and Angular JS plays an important role to give the great performance

Encryption technique

MD5 combined Encryption Techniques used to generate Unique
and Random 32-bit Alphanumeric Token. JSP Custom Tag Library

Volume 6 • Issue 3 • 1000182J Inform Tech Softw Eng
ISSN: 2165-7866 JITSE, an open access journal

Citation: Gupta J, Gola S (2016) Server Side Protection against Cross Site Request Forgery using CSRF Gateway. J Inform Tech Softw Eng 6: 182.
doi:10.4173/2165-7866.1000182

Page 8 of 8

because it anonymously all the request parameters to the server. This is
very useful for new web services.

This project has implemented keeping an overall efficiency and
performance as key factors to cover hidden tags as more secure form
of post authorization in a CSRF attack scenario. CSRF Gateway has
been designed and implemented to provide robust protection solution
against Cross Site Request Forgery using the latest technology for web
development that can greatly change the way the traditional proxy based
CSRF Gateway was implemented that could itself be a performance
throttle for application itself. The solution will become more secure
with secure HTTPS transactions to avoid any eavesdropping to ensure
the passive data collection are also prevented for user profiling (Table
1).

Future Work
Cross Site Request Forgery (CSRF) attack is a website exploit type of

attack. Even though it is very less known to the web developers. As far,
we have seen that CSRF Gateway is able to protect against CSRF attack
only. In future, we will elaborate this solution to extend to defend the
web applications against other threats like Cross Site Scripting (XSS),
SQL Injection, and Session Hijacking, Broken Authentication or other
less known web attacks.

This Gateway Strategy can be extended to more features and
functions for specific web security against server side malicious code
detection and protection.

Acknowledgements

Presented thesis work was supported and guided by the faculty members of
College of Science & Engineering. We thank you the members of the Silicon valley
team in the Bay area who have conducted many security related discussions every
month and participating and discussing these methodologies with them gave a
new focus and understanding of this project implementation. Also I thank a lot to
my project guide and coordinator whose feedback and constant discussion have
helped me improve the presentation to provide more detailed feedback.

References

1. Jovanovic N, Kirda E, Kruegel C (2006) Preventing Cross Site Request Forgery
Attacks. Securecomm and Workshops 1-10.

2.	 Alexenko T, Jenne M, Roy SD, Zeng W (2010) Cross-Site Request Forgery:
Attack and Defense. Consumer Communications and Networking Conference
(CCNC), Las Vegas NV 1-2.

3.	 Shahriar H, Zulkernine M (2010) Client-Side Detection of Cross-Site Request
Forgery Attacks. IEEE 21st International Symposium, San Jose CA 358-367.

4.	 Open Source Vulnerability Database (OSVDB).

5.	 Zuchlinski G (2003) The Anatomy of Cross Site Scripting.

6.	 Siddiqui MS, Verma D (2011) Cross site request forgery: A common web
application weakness. IEEE 3rd International Conference 538-543.

7. Sung YC, Cho MCY, Wang CW, Hsu CW, Shieh SW (2013) Light-Weight
CSRF Protection by Labeling User-Created Contents. IEEE 7th International
Conference, Gaithersburg MD 60-69.

8. Cross-Site Request Forgery (CSRF).

9. http://www.acunetix.com/websitesecurity/csrf-attacks/

10.	http://www.veracode.com/security/csrf

11. Gallagher T. Finding and preventing cross-site request forgery. Black Hat
Briefings.

12.	http://www.toolswatch.org/2016/02/2015-top-security-tools-as-voted-by-
toolswatch-org-readers/

13.	OWASP Zed Attack Proxy Project.

14.	https:/angularjs.org/

15.	Defining the Custom Component Tag in a Tag Library Descriptor. 	The Java
EE 6 Tutorial.

16.	Boyan C, Pavol Z, Ron R, Dale L (2011) A Study of the Effectiveness of CSRF
Guard. IEEE 3rd International Conference, Boston MA 1269-1272.

Application
without

Protection

Application Protected
using CSRF Gateway

GET Request without Malicious Link Protected Protected
POST Request without Malicious Link Protected Protected

GET Request with Malicious Link Not Protected Protected
POST Request without Malicious Link Not Protected Protected

Response Content Check Not Protected Protected
Reflected CSRF Not Protected Protected

Stored CSRF Not Protected Protected

Table 1: Requests With & Without Protection in Applications.

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4198791&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4198791
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4198791&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4198791
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5635070&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5635070
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5635070&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5635070
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.180.6908&rep=rep1&type=pdf
https://www.researchgate.net/publication/261458829_Cross_site_request_forgery_A_common_web_application_weakness
https://www.researchgate.net/publication/261458829_Cross_site_request_forgery_A_common_web_application_weakness
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6571696&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6571696
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6571696&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6571696
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6571696&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6571696
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
http://www.acunetix.com/websitesecurity/csrf-attacks/
http://www.veracode.com/security/csrf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Gallagher.pdf
https://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Gallagher.pdf
http://www.toolswatch.org/2016/02/2015-top-security-tools-as-voted-by-toolswatch-org-readers/
http://www.toolswatch.org/2016/02/2015-top-security-tools-as-voted-by-toolswatch-org-readers/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://angularjs.org/
http://docs.oracle.com/javaee/6/tutorial/doc/bnawn.html
http://docs.oracle.com/javaee/6/tutorial/doc/bnawn.html
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6113294&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6113294
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=6113294&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D6113294

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Related Work
	Proxy based solution
	Referrer privacy guard and defense technique
	Attack detection using windows form
	CSRF guard
	Protection approach

	Overview of CSRF Attacks
	Anatomy of cross site request forgery attack

	Proposed Methodology
	Server side protection
	Angular JS anonymity
	Token generation
	Token insertion

	Implementation
	Results & Conclusions
	Server side vs client side protection
	Light weighted solution
	Synchronizer token pattern vs other defensive technique
	Encryption technique

	Future Work
	Acknowledgements
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Table 1
	References

