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Serotonin or 5-hydroxytryptamine (5-HT) is a monoamine 
neurotransmitter which has broad distribution in the brain. It was 
discovered by Erspamer and Asero in the 1950s [1]. 5-HT is synthesized 
in two steps, with Tryptophan Hydroxylase (TPH) as the rate-limiting 
enzyme [2]. First, tryptophan is converted to 5-hydroxytryptophan 
(5-HTP) by TPH. Second, the intermediate product, 5-HTP, is 
converted to 5-HT by aromatic acid decarboxylase (AADC). 5-HT is 
primarily degraded by the mitochondrial bound protein Monoamine 
Oxidase A (MAOA), leading to the generation of the metabolite, 
5-hydroxyindoleacetic acid (5-HIAA). Importantly, serotonin is also a 
substrate for melatonin synthesis [3]. 5-HT is released from the axonal 
terminals of serotoninergic neurons and acts on 14 distinct receptor 
subtypes that are classified into 7 different families: 5-HT1 (1A, 1B, 
1D, 1E, 1F), 5-HT2 (2A, 2B, and 2C), 5-HT3, 5-HT4, 5- HT5 (5A, 5B), 
5-HT6, and 5-HT7. Among all these receptors, only 5-HT3 receptor is 
a pentameric ligand-gated ion channel composed of several subunits 
of which 5 different types have been identified [4]. All other 5-HT 
receptors are G-protein coupled receptors which regulate the activity 
of the neurons expressing them [5,6]. Released serotonin is transported 
to the presynaptic neurons by serotonin transporter (SERT or 5-HTT), 
a type of monoamine transporter protein [7].

Serotonergic neurons are located in the raphe nuclei [8]. While the 
more caudal raphe nuclei project to the Peripheral Nervous System 
(PNS), the neurons in the dorsal and median raphe nuclei (DRN and 
MRN) primarily send their projections to forebrain regions [9,10]. 
5-HT is critically involved in the development of many cortices, such 
as somatosensory cortex and barrel cortex [11,12]. In adult brain, 5-HT 
neurons project to majority of cortical areas, including the entorhinal 
and cingulate cortices. However, of all cortical regions, the frontal 
lobe contains the highest density of serotonergic terminals and 5-HT 
receptors [13]. These studies indicate that 5-HT regulates cognitive and 
emotional functions that rely on frontal cortical activity.

Serotonin homeostasis in the frontal cortex is important for 
normal behavior. It has been shown that engaging in aggressive 
behavior triggers dynamic changes in frontal cortical serotonin [14]. 
Deviation of 5-HT homeostasis increases impulsivity [15-17]. Selective 
depletion of 5-HT in monkey frontal cortex impairs reversal leaning 
and increases perseveration (loss of cognitive flexibility) [18,19]. 5-HT 
in the frontal cortex also modulates attention in humans [20,21]. Given 
its involvement in cognition and impulsivity, 5-HT is central to our 
understanding of the psychopathology and treatment of psychiatric 
disorders such as depression, schizophrenia, Obsessive Compulsive 
Disorder (OCD), and autism. In all of these disorders, local 
abnormalities in frontal cortex structure [22], neurochemistry [23], or 
activation [24] have been characterized and drugs for these disorders, 
such as ecstasy [25] and amphetamine [26], have been shown to impair 
cortical 5-HT neurotransmission. Moreover, Clarke et al. [18] used a 
serial discrimination reversal paradigm to show that selective depletion 
of 5-HT in the marmoset frontal cortex produced perseverative 
responding to the stimulus previously paired with reward without 
any significant effects on either retention of a discrimination learned 

preoperatively or acquisition of a novel discrimination postoperatively. 
This result highlights the importance of prefrontal serotonin in 
behavioral flexibility which is highly relevant to obsessive-compulsive 
disorder, schizophrenia, and the cognitive sequelae of drug abuse in 
which perseveration is prominent. More interestingly, 5-HT is very 
likely to be the common neurochemical factor between depression and 
autism as comorbidity of these two disorders is common [27]. Indeed, 
selective serotonin reuptake inhibitors (SSRIs) are being increasingly 
used in autism, because of their role in the control of depression and 
aggression [27-29]. 

Furthermore, high-frequency electrical stimulation of the Ventral 
Medial Prefrontal Cortex (vmPFC) is capable of enhancing 5-HT 
release and restoring social approach behaviour in defeated mice 
[30]. Additionally, manipulating vmPFC synaptic inputs to the DRN 
has revealed bidirectional effects on socioaffective behaviours via 
direct monosynaptic excitation and indirect disynaptic inhibition of 
5-HT neurons [31]. Similarly, deep brain stimulation in the vmPFC 
improves negative bias and symptoms of mood dysregulation in Major 
Depressive Disorder (MDD) patients [32]. Strikingly, these results 
suggest that cross-species parallels exist in regards to the roles of the 
frontal cortex and serotonergic systems in socioaffective responses. It 
has been hypothesized that the plasticity of the frontal cortex-DRN 
circuit that links these two systems may constitute a conserved means 
of encoding or expressing social avoidance behaviour across species 
[31]. Thus, better understanding the interaction between frontal 
cortex and DRN and identifying key neuroplastic events that mediate 
normal and pathological regulation of socioaffective functions may 
uncover molecular targets amenable to therapeutic intervention in the 
treatment of affective disorders.
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