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Abstract
Protein trafficking or protein sorting is the mechanism by which a cell transports proteins to the appropriate position 

in the cell or outside of it. This targeting is based on the information contained in the protein. Many methods predict the 
subcellular location of proteins in eukaryotes from the sequence information. However, most of these methods use a 
flat structure to perform prediction. In this work, we introduce ensemble methods to predict locations in the eukaryotic 
protein-sorting non membrane pathway hierarchically. We used features that were extracted exclusively from full 
length protein sequences with feature subset selection for classification. Sequence driven features, sequence mapped 
features and sequence autocorrelation features were tested with ensemble learners and classifier performances were 
compared with and without feature subset selection technique. 

This study shows the new features extracted from full length eukaryotic protein sequences are effective at 
capturing biological features among compartments in eukaryotic non membrane pathways at two levels. Feature 
subset selection techniques helped to reduce the time taken for building the classification model.

Keywords: Sequence driven features; Sequence mapped features;
Autocorrelation; Ensemble classifier; Pathways; Protein sorting

Introduction
Eukaryotic cells are organized into several membrane bound 

compartments. In order to perform the function; newly formed 
proteins get sorted and are delivered to various compartments in 
the non-membrane and trans-membrane pathways [1]. This protein 
sorting process in the pathway is very complex and still not clearly 
understood. But the most important principle of protein trafficking is 
that each protein has the information on its final localization site as a 
part of its amino acid sequence [2]. In 1983, Nishikawa, Kubota and 
Ooi had conducted investigations into predicting subcellular locations 
based on amino acid compositions. They had reported that the amino 
acid compositions have the discriminating ability to classify subcellular 
locations. 

Prediction of protein localization sites in the pathways from the 
amino acid sequence has implications both for the function of the 
protein and its possibility of interacting with other proteins in the 
same compartment [3-5]. Protein sorting pathway in eukaryotes can 
be represented hierarchically like a tree structure [1,6,7]. Pathway at 
root level differentiates non membrane and trans-membrane proteins. 
Non membrane protein pathway can be further divided into secretory 
and non-secretory types. In a secretory pathway, proteins are delivered 
to the endoplasmic reticulum (ER), and then transported to other 
related locations.ER signal sequences, located in the N-terminal 
sequence, control this protein transport. In the non-secretory pathway, 
proteins with organelle-specific signal sequences are imported into 
the nucleus or mitochondria, according to their signal sequence type. 
The remaining proteins are located in the cytosol which lacks sorting 
signals [8,9] and some are localized by binding with another protein. 

A wide variety of methods have been tried throughout the years 
in order to predict the subcellular localisation of proteins from 
their amino acid sequences (Olof). These methods differ in terms of 
sequence features as input data, techniques employed, time and cost 
to make the prediction about location. The success of computational 
prediction relies on the extraction of relevant biological features 
from the sequence and the computational techniques used [10-14]. 

Studies by Nakashima and Nishikawa [15], have shown that secretory 
and intracellular proteins differ significantly in their amino acid 
compositions and in residue pair frequencies. Hence in our study, 
priority was given to the features that can be extracted from the full 
length protein sequence based on various coding schemes without 
referencing external databases or external server generated outputs. 

For computation, we used ensemble learning [16-20] hierarchically, 
(Figure 1) by mimicking the protein trafficking phenomenon; which 
is incorporated from the location descriptions provided by the Gene 
Ontology consortium (GO) [21] with the sequence features as input. 
First, this approach was used to classify the subcellular location of 
proteins. Second, this study was extended to determine whether the 
use of feature subset selection improves the prediction performance at 
various levels of hierarchy.

Materials and Methods
Data set 

We used the recently published eukaryotic data set of LocTree2 
[17] having 1682 proteins for testing and comparing. This is a manually 
curated database with experimental annotations for the subcellular
localizations of proteins. In this dataset sequence bias was reduced
through UniqueProt [22]. This bias reduction ascertained that no
pair of proteins in the set had BLAST2 [23] HSSP-value (HVAL)> 0
[24,25]. We formed our data set ASN_G_1677 from this by verifying
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with UniProt release 2013_05 [26] for the protein sequence and for 
the explicit annotation of subcellular localization. Annotations based 
on non-experimental findings (‘potential’, ’probable’, or by ‘similarity’) 
and with multiple localization were excluded. The final data set had 
1677 eukaryotic sequences with no over representation of a particular 
sub cellular protein. The list with pathway and subcellular location 
within the non-membrane pathway is mentioned in Table 1.

Sequence feature formation

The sequence feature extraction performed in this study can be 
classified into three groups. The first group is a method of converting 
the protein sequence into a numeric sequence by replacing each amino 
acid with its equivalent numeric values, counts etc. The second group is 
based on mapping amino acids into sub groups and the third group is 
based on features obtained from calculations based on autocorrelation.

1. Features directly from sequence. (Sequence driven feature)

2. Features by mapping the sequence. (Sequence mapped feature)

3. Features from sequence autocorrelation. (Sequence 
autocorrelation feature)

Sequence driven feature-amino acid dipeptide composition: 
(Dipeptide): A dipeptide is a molecule consisting of two amino acids 
joined by a single peptide bond and gives a feature vector with a 
dimension of 400 from the 20 amino acid combinations. The advantage 
of dipeptide sequence composition over amino acid composition is that 

it encapsulates global information about the fraction of amino acids as 
well as sequence order [27].

Consider a protein sequence AAAPYQAACAQ.

The dipeptide count with 0 skips, d0, is calculated by counting all 
pairs of amino acid conditions with no skips. In Figure 2, the count of 
d0AA is shown as 3, and one skip d1AA is counted as 2. The dipeptide 
count, ‘dNxx’, counts pairs with N skips between them. 

The feature vector using the occurrence frequency count of a 
dipeptide to represent a protein sequence is formulated as follows:- 

Given a protein sequence P with m amino acid residues, P= [R1 
R2 R3 R4 R5 R6 R7 ...... Rm], where R1, R2 ….. Rmis the residues, we can 
map the sequence to a fixed length feature vector for each skip as P={f1 
f2f3……..f400}, where f1, f2 are the 400 native dipeptide occurrences (AA, 
AC, AD…… CA, CC, CD …. YV, YW, YY) counts in P.

The feature vector of the sequence' AAAPYQAACAQ'for 
dipeptided0, d1, d2is as follows:-

Feature vector for occurrence frequency d0

 

Level 0

Level 1

Level 2

Level 3

Eukaryotic Protein

Non membrane Protein Trans-membrane Protein

Secretory pathway

ER Others Others

Extra-cellular Golgi Nucleus

Nucleus and Cytosol

Cytosol

Non secretory pathway

Figure 1: Hierarchical structures of compartments in protein trafficking based on cellular sorting used for this study. (Adopted from references [16-21]).

 

A    A    A  P   Y  Q   A   A   C    A   Q

A   A   A  P   Y  Q   A   A   C    A   Q

d0 AA with zero skip

d1 AA with one skip

d0 AA = 3

d1 AA = 2

Figure 2: Amino acid di-peptide count with skips.

Pathway and subcellular location No. of proteins
Trans-Membrane 245
Non-Membrane 1432
Chloroplast 133
Cytosol 212
Endoplasmic reticulum 10
Extra-cellular space 595
Golgi apparatus 2
Mitochondria 136
Nucleus 321
Peroxisome 6
Plastid 14
Vacuole 3
Total 1677

Table 1: Number of proteins in the data set ASN_G_1677.
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= [3 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 ……0]                (1) 

Feature vector for occurrence frequency d1

= [2 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 ……0]                (2) 

Feature vector for occurrence frequency d2

=[1 0 0 0 0 0 0 0 0 0 0 0 1 2 0 0 0 0 0 1 0 0 0 0 0 ……0]                  (3)

Each protein sequence is represented as three separate numeric 
counts of its dipeptide d0, d1 and d2, each having 400 components. The 
feature vector having 1200 attributes is obtained by concatenating the 
corresponding vectors of d0, d1 and d2. 

Sequence mapped feature (composition, transition, distribution 
(CTD)): The different properties of the amino acids result from the 
structural variations of the R groups. There are four different classes of 
amino acids determined by the side chains: (1) non-polar and neutral, 
(2) polar and neutral, (3) acidic and polar, (4) basic and polar. The 
twenty amino acids forming the protein sequence can also be divided 
into several groups based on their properties. Important properties 
are (5) charge, (6) hydrophilicity or hydrophobicity, (7) size, and (8) 
functional groups. 

Twenty amino acids can be mapped into 1–3 groups by replacing 
each amino acid code with its group code. From the mapped sequence, 
features called Composition, Transition and Distribution (CTD) can 
be calculated.

Composition is the number of amino acids of a particular property 
divided by the total number of amino acids. Transition characterizes the 
percentage frequency with which amino acids of a particular property 
are followed by amino acids of a different property. Distribution 
measures the chain length within which the first, 25%, 50%, 75% and 
100% of the amino acids of a particular property are located. 

Through this method, amino acids are grouped into three classes 
according to their property types, as shown in Table 2, and are encoded 
by the numeric indices 1, 2, 3. The attributes of charge, hydrophobicity, 
normalized van der Waals volume; polarity, Polaris ability, secondary 
structure and solvent accessibility are used as properties [28-33].

Consider a sample sequence ‘RKEDQNGASTPHYCLVIMFW’. 
According to hydrophobicity grouping, this sequence is encoded as 
“11111122222223333333”.

Composition is the global percentage for each encoded class in the 
sequence. In this example the total count of 1, 2, 3 is 6, 7, 7 and hence 

composition is calculated as 6/20, 7/20 and 7/20.

eNComposition
N

=                  (4)

where e=1, 2, 3.Ne is the number of e in the encoded sequence and N is 
the total length of the sequence.

The transition from class 1 to 2 is the percentage frequency with 
which 1 is followed by 2 or 2 is followed by 1 in the encoded sequence.

The transition descriptor is calculated as 

Nmn Nnm
1

Tmn
N
+

=
−

                  (5)

Where mn=“12”, “13”,”23” and Nnm, and Nnm are the numbers 
of dipeptide encoded as “mn” and “nm” respectively in the sequence.N 
is the length of the sequence. For the given sample sequence, 
Transition=2/19.

The distribution descriptor describes the distribution of each 
property in the sequence. There are five distribution descriptors for 
each property and they are the position percentages in the sequence for 
the first residue, 25% of the residues, 50% of the residues, 75% of the 
residues and 100% of the residues.

The CTD calculation is performed for 7 properties for each protein 
sequence after dividing each sequence into three equal segments. In 
total, 21 x 3 attributes for a sequence and 441 attributes for 7 properties 
comprise the final feature vector.

Sequence autocorrelation features (Autocorrelation Descriptors 
(ACD)): Sequence autocorrelation-based features are based on the 
Tobler’s First law of geography: “everything is related to everything else 
but nearby things are more related than distant things” [34] Sequence 
autocorrelation-based features also assume that “the disturbances in 
each area are systematically related to those in adjacent areas” [35]. 
Spatial autocorrelation is positive when nearby things are similar and 
negative when they are dissimilar. It measures the degree to which 
near and distant things are related. This concept helps to analyze the 
dependency among the features of sequences in each location. 

Autocorrelation features are calculated based on the distribution of 
amino acid properties along the sequence. Amino acid indices related 
to hydrophobicity are used for calculation after replacing each amino 
acid with its equivalent normalized index as Pi. Three autocorrelation 
descriptors are used as features. They are normalized Moreau-Broto 
autocorrelation descriptors [36,37] Moran auto-correlation descriptors 

Sl Property Group 1 Group 2 Group 3
1 Charge Neutral Negatively charged Positively charged
 Amino acids A,C,F,G,H,I,L,M,N,P,Q,S,T,V,W,Y D, E K, R
2 Hydrophobicity Hydrophobicity Neutral Polar
 Amino acids C,F,I,L,M,V,W A,G,H,P,S,T,Y D, E, K, N, Q, R
3 Normalised Vander Waals volume 0-2.78 2.95-4.0 4.03-8.08
 Amino acids A,C,D,G,P,S,T E, I, L, N, Q, V F,H,K,M,R,W,Y
4 Polarity 4.9-6.2 8.0-9.2 10.4-13.0
 Amino acids C,F,I,L,M,V,W,Y A, G, P, S, T D,E,H,K,N,Q,R
5 Polarisability 0 - .108 0.128-0.186 0.219-0.409
 Amino acids A, D, G, S, T C,E,I,L,N,P,Q,V F,H,K,M,R,W,Y
6 Secondary Structure Coil Helix Strand
 Amino acids D,G,N,P,S A, E, H, K, L, M, Q, R C,F,I,T,V,W,Y
7 Solvent Accessibility Buried Intermediate Exposed
 Amino acids A, C, F, G, I, L, V, W H,M,P,S,T,Y D, E, K, N, R, Q

Table 2: Amino acid attributes and division of the amino acids into groups.



Citation: Govindan G, Nair AS (2015) Sequence Features and Subset Selection Technique for the Prediction of Protein Trafficking Phenomenon in 
Eukaryotic Non Membrane Proteins. Biomedical Data Mining 3: 109. doi: 10.4172/2090-4924.1000109

Page 4 of 9

Volume 3 • Issue 2 • 1000109Biomedical Data Mining
ISSN: 2090-4924 JBDM, an open access journal

[38] and Geary autocorrelation descriptors [39].

The Moreau-Broto autocorrelation descriptor is defined as 

1
(d) N d

i
MB PiPi d−

=
= +∑ Where d =1, 2, 3 upto Max.lag                   (6)

d is the lag of the autocorrelation, N is the length of the sequence, 
and Pi and Pi+d are the amino acid index value of the selected property 
at position I and i+d, respectively. Max. Lag is the maximum value of 
the lag. The normalized Moreau-Broto autocorrelation descriptors are 
defined as 

( )MB d
Normalised Moreau Broto autocorrelation descriptor 

N d
− =

−
            (7)

The Moran autocorrelation descriptor is defined as 
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Where Pi, Pi+d  have the same meaning as above.

The Geary autocorrelation descriptor is defined as
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Where P ̅, Pi, Pi+d have the same meaning as above. 3510 features 
from 39 amino acid properties with 30 lag form the sequence feature 
vector for autocorrelation.

The combined feature vector from three groups had 5151 elements.

Feature subset selection 

Feature subset selection is used as a pre-processing step in machine 
learning methods. The performance of a classifier depends on the 
number of features, sample size and algorithm complexity. Feature 
selection is effective in removing irrelevant and redundant features, 
increasing efficiency in learning tasks, improving learning performance 
like predictive accuracy, and enhancing comprehensibility of learned 
results [40-42]. In this study, a fast filter method called FCBF (Fast 
Correlation Based Filter) which can identify relevant features as well 
as redundancy among relevant features without pairwise correlation 
analysis was adopted [43,44]. The FCBF filter algorithm is designed 
for high-dimensional data and has been shown effective in removing 
both irrelevant features and redundant features. This algorithm has two 
stages: the first stage is based on relevance analysis, aimed at ordering 
the input variables depending on a relevance score and the second stage 
is a redundancy analysis, aimed at selecting predominant features from 
the relevant set obtained in the first stage. With FCBF, we were able to 
reduce the numbers of features to the range of 100 from 5151. 

Computational techniques used (Ensemble Learning)

Ensemble learning is an effective method that has been adopted 
to combine multiple machine learning algorithms to improve overall 
prediction accuracy by aggregating the predictions of all algorithms [45]. 
Multiple learners (base learners) are trained to solve the same problem. 
It is a set of classifiers whose individual decisions are combined in 
some way (typically by weighted or unweighted voting) to classify new 

examples. This method averages over multiple classification models; 
and each model have different input feature vectors. Weak individual 
models are transformed into strong ensemble models.

The aim of using the ensemble method is to achieve more accurate 
classification (on training data) as well as better generalization (on 
unseen data). These ensemble techniques reduce the small sample 
size problem which is critical in biological applications and multiple 
prediction models can be tested with different feature sets. The two 
most popular classifiers based on the ensemble method, are Bagging 
[46] and Ada boostM1 [47]. In this study, these two methods were used 
to predict protein trafficking in the pathway. 

Bagging generates new training sets by sampling with the 
substitution of the training data while boosting adopts an adaptive 
sampling by using all instances of iteration. In both methods, multiple 
classifiers are combined using a simple voting system to create a Meta 
classifier. In Bagging, each classifier has the vote of the same strength, 
whereas boosting assigns different voting strengths to classifiers based 
on their accuracy. 

Performance evaluation

Basic ensemble based classifiers; Adaboost M1 and Bagging were 
trained to classify the location compartment of proteins in the pathway 
using WEKA [48]. Two tests were carried out with ASN_G_1677 
dataset for performance evaluation at all levels in the hierarchy as 
shown in Figure 1. 5 fold cross-validation test (randomly partitioning 
the dataset into equally sized training and test sets; training on 4 sets 
and testing with5thset and averaging the results) and (2) independent 
data test (training on one set and testing with another test set by 
dividing the dataset into two equal sized random groups). The classifier 
performance evaluation parameters Specificity, Sensitivity, Accuracy, 
Mathew correlation coefficient [49], Positive predictive value [50], 
Negative predictive value [50] and Receiver operating characteristic 
[51] were calculated at all levels as per the below equations.

Specificity (Sp) = TN
TN FP+

Sensitivity (Sn) =
TP

TP FN+

Mathew’s Correlation coefficient (Mcc) =

( ) ( ) ( )( )( )
. .

 . .   
TP TN FP FN

Sqrt TP FN TP FP TN FN TN FP
−

+ + + + 

Accuracy(Acc)=

 
( ) ( )

( ) ( ) ( ) ( )
  

     
True Positive TP True Negative TN

True Positive TP True Negative TN False Positive FP False Negative FN
+

+ + +

Positive predictive value (Ppv) =
( )

( ) ( )
  

     
   

True Positive TP
True Positive TP False Positive FP+

Negative predictive value (Npv) = ( )
( ) ( )

  
   

True Negative TN
True Negative TN False Negative FN+

 
 

Results and Discussion
Here the final 1677 protein sequences were represented in two 

groups; by combining the three different sequence features with 
and without feature subset selection. As is well known, 5 fold cross-
validation test and independent data test were performed on these two 
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feature groups to evaluate the quality of the classifier. Tables 3 and 4 
shows the performance evaluation parameter summary of classifiers 
against these two feature groups. Parameters Sp, Sn, Mcc, Ppv, Npv,Acc, 
ROC and time taken to build the model were obtained from the two 
tests at various levels of the pathway for the two feature groups using 
two classifiers. Mcc which is regarded as a balanced measure even 
for data groups of different sizes; reported 0.5 at level 0 (between 
non membrane and trans-membrane pathway) and level 1 (between 
secretory and non-secretory pathway) for both tests. Both tests with 
feature subset selection; enhanced the average value of Mcc to 0.6. 
In level 2, between the pathway ER, others and in level 3 between 
extracellular and Golgi; though the positive predictive value is higher, 
Mcc value is less than zero. Hence there is disagreement between 
prediction and observation due to small and unbalanced data size at 
these levels. 

ROC analysis provides a systematic tool for quantifying the impact 
of variability among individuals' decision thresholds. The term receiver 
operating characteristic (ROC) originates from the use of radar during 
World War II. Just as American soldiers deciphered a blip on the radar 
screen as a German bomber, a friendly plane, or just noise, radiologists 
face the task of identifying abnormal tissue against a complicated 
background. As radar technology advanced during the war, the need 
for a standard system to evaluate detection accuracy became apparent. 
ROC analysis was developed as a standard methodology to quantify a 
signal receiver's ability to correctly distinguish objects of interest from 
the background noise in the system.

Comparison 

In this study, a hierarchical system for the prediction of protein 
subcellular localization was tested. In order to roundly assess our 
method, we carried a comparison with the published report of LOCtree 
[16] and LocTree2 [17]. LOCtree used the amino acid composition, 
composition of the 50 N terminal residues, pseudo amino acid 
composition from three secondary structure states and Signal server 
[52] outputs as a feature vector on support vector machine. LocTree2 
used the profiles created by BLAST-ing [23].

Results reported by LocTree2 [17] is directly comparable to ours 
in terms of selection of a dataset with no feature subset selection. The 
overall accuracy mentioned in LocTree2 [17] is the positive predictive 
value (Ppv) based on the fivefoldcross-validation experiments and 
comparison with our Ppv values at all levels is shown in Table 5.

Tables 3 and 4 show that at level 0 between the non-membrane and 
trans-membrane pathway; 5 fold cross-validation and independent 
data test based on Adaboost M, Bagging reported accuracies above 89% 
with Mcc above 0.5, with and without feature subset selection. In 5 fold 
cross validation test; Bagging with feature subset selection reported 
accuracy similar to LocTree2 in level 1 between the secretory and non-
secretory path way and in level 2 between Nucleus, Cytosol – others 
pathway with Mcc value greater than 0.44. At Level 3 between nucleus 
and cytosol pathway; Bagging reported positive predictive value of 62% 
with Mcc of 0.34 while LocTree2 reported 67%. 

Conclusion
Protein transport to compartments is a topic which is now also 

poorly understood. Major protein localisation prediction methods 

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. 

– to build the 
model

Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 
build the model

Di-peptide+ CTD +ACD 50% 96% 0.521 92 67 89% 0.90 28.97 50% 99% 0.625 92 87 92% 0.93 65.98
Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(75 features)

59% 96% 0.601 93 72 91% 0.92 0.38 55% 99% 0.653 93 88 92% 0.93 0.84

Table 3: Performance evaluation summary of classifiers against features for the 5 fold cross-validation test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between non-membrane and trans membrane pathway at Level 0.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. 

– to build the 
model

Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 
build the model

Di-peptide+ CTD +ACD (5151 
features)

86% 69% 0.559 78 79 79% 0.85 26.11 87% 77% 0.645 81 84 83% 0.91 78.5

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(77 features)

86% 73% 0.591 79 81 80% 0.87 0.36 87% 73% 0.613 81 81 81% 0.88 1.23

Table 3a: Performance evaluation summary of classifiers against features for the 5 fold cross-validation test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between secretory and non-secretory pathway at Level 1.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. 

– to build the 
model

Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 
build the model

Di-peptide+ CTD +ACD (5151 
features)

0% 99% 0.01 98 0 98% 0.58 10.3 0% 100% <0 98 <0 98% 0.76 18.86

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(32 features)

10% 99% 0.15 99 25 98% 0.93 0.02 0% 100% <0 98 <0 98% 0.79 0.05

Table 3b:  Performance evaluation summary of classifiers against features for the 5 fold cross-validation test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between ER and others at Level 2.
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Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

82% 63% 0.454 66 80 75% 0.8 14.58 87% 56% 0.459 71 78 76% 0.82 40.34

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(33 features)

87% 57% 0.465 71 79 76% 0.81 0.08 89% 63% 0.539 75 81 80% 0.86 0.25

Table 3c:  Performance evaluation summary of classifiers against features for the 5 fold cross-validation test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between Nucleus, Cytosol and others at Level 2.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

0% 100% <0 100 0 99% 0.35 10.2 0% 100% <0 100 <0 100% 0.3 7.59

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(11 features)

50% 100% 0.498 100 50 100% 0.5 0.02 0% 100% <0 100 <0 100% 0.3 0.02

Table 3d:  Performance evaluation summary of classifiers against features for the 5 fold cross-validation test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between extra-cellular and golgi at Level 3.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

74% 47% 0.208 54 68 63% 0.68 8.72 77% 50% 0.279 59 70 66% 0.72 23.42

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(26 features)

77% 48% 0.264 58 69 66% 0.7 0.05 76% 59% 0.349 62 74 69% 0.75 0.34

(Sp– pecificity, Sn–Sensitivity, Acc–Accuracy, Mcc–Mathews correlation coefficient , Ppv–Positive predictive value, Npv–Negative predictive value, ROC–Receiver 
operating characteristic) 
Table 3e: Performance evaluation summary of classifiers against features for the 5 fold cross-validation test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between Nucleus and Cytosol at Level 3.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

52% 97% 0.583 93 76 91% 0.91 29.53 52% 99% 0.638 93 87 92% 0.94 65.28

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(75 features)

64% 93% 0.544 94 58 89% 0.9 0.36 56% 97% 0.587 93 72 91% 0.93 0.88

Table 4: Performance evaluation summary of classifiers against features for the independent test at all levels of hierarchy for dataset ASN_G_1677. Performance evaluation 
of classification of proteins between non membrane and trans membrane pathway at Level 0.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

82% 71% 0.528 74 79 77% 0.84 25.17 82% 74% 0.558 75 81 78% 0.87 78.3

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(77 features) 

80% 71% 0.514 72 79 76% 0.85 0.36 86% 73% 0.599 79 82 81% 0.87 1.22

Table 4a: Performance evaluation summary of classifiers against features for the independent test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between secretory and non-secretory pathway at Level 1.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

0% 100% <0 97 <0 97% 0.48 10.41 0% 100% <0 97 <0 97% 0.5 10.63

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(32 features)

13% 100% 0.241 98 50 97% 0.94 0.03 0% 100% <0 97 <0 97% 0.5 0.03

Table 4b: Performance evaluation summary of classifiers against features for the independent test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between ER and others at Level 2.
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Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

83% 48% 0.326 61 74 70% 0.77 13.78 85% 49% 0.369 65 75 72% 0.8 40.28

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(33 features)

91% 50% 0.457 76 76 76% 0.83 0.08 88% 53% 0.442 71 77 75% 0.83 0.25

Table 4c: Performance evaluation summary of classifiers against features for the independent test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between Nucleus, Cytosol and others at Level 2.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

0% 100% <0 99 <0 99% 0.5 9.89 0% 100% <0 99 <0 99% 0.5 7.22

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(11 features)

0% 100% <0 99 <0 99% 0.5 0.02 0% 100% <0 99 <0 99% 0.5 0

Table 4d: Performance evaluation summary of classifiers against features for the independent test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between extra-cellular and golgi at Level 3.

Classifier Adaboost Bagging
Feature Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Sp Sn Mcc Ppv Npv Acc ROC Time in Sec. – to 

build the model
Di-peptide+ CTD +ACD (5151 
features)

80% 38% 0.203 57 65 63% 0.67 8.7 82% 42% 0.255 61 67 65% 0.68 24.17

Di-peptide+ CTD +ACD with 
FCBF feature subset selection 
(26 features)

74% 44% 0.183 53 66 62% 0.68 0.06 75% 49% 0.245 57 68 64% 0.67 0.14

(Sp–Specificity, Sn–Sensitivity, Acc–Accuracy, Mcc–Mathews correlation coefficient , Ppv–Positive predictive value, Npv–Negative predictive value, ROC–Receiver 
operating characteristic) 
Table 4e: Performance evaluation summary of classifiers against features for the independent test at all levels of hierarchy for dataset ASN_G_1677. Performance 
evaluation of classification of proteins between Nucleus and Cytosol at Level 3.

LocTree2 5 fold cross validation with SVM Our method 5 fold cross validation 
Levels Ppv Sequence Feature Adaboost -Ppv Bagging-Ppv
Level 0 - Non membrane and Trans-membrane pathway 90% Di-peptide+ CTD +ACD (5151 features) 92% 92%

Di-peptide+ CTD +ACD with FCBF feature subset selection (75 features) 93% 93%
Level 1 - Secretory and Non secretory pathway 83% Di-peptide+ CTD +ACD (5151 features) 78% 81%

Di-peptide+ CTD +ACD with FCBF feature subset selection (77 features) 79% 81%
Level 2 - ER and Others 75% Di-peptide+ CTD +ACD (5151 features) 98% 98%

Di-peptide+ CTD +ACD with FCBF feature subset selection (32 features) 99% 98%
Level 2 - Nucleus, Cytosol and others 75% Di-peptide+ CTD +ACD (5151 features) 66% 71%

Di-peptide+ CTD +ACD with FCBF feature subset selection (33 features) 71% 75%
Level 3 - Extra-cellular and golgi 80% Di-peptide+ CTD +ACD (5151 features) 100% 100%

Di-peptide+ CTD +ACD with FCBF feature subset selection (11 features) 100% 100%
Level 3 - Nucleus and Cytosol 67% Di-peptide+ CTD +ACD (5151 features) 54% 59%

Di-peptide+ CTD +ACD with FCBF feature subset selection (26 features) 58% 62%

(SVM–Support Vector Machine, Ppv–Positive predictive value) 
Table 5: Comparison of the 5 fold cross-validation results with the published results of LocTree2.

have been implemented using standard machine learning algorithms 
with parallel architecture for classification [53-56]. Here a novel system 
of ensemble learners, using hierarchical architecture with features 
extracted directly from full length protein sequences, with and without 
feature subset selection was tested. Test results, at the non-membrane 
pathway of hierarchy show that the prediction accuracy can be 
significantly improved by using the classifier Bagging and FCBF feature 
subset selection with significant reduction in time for model building. 
Accuracy above 90% using bagging on independent data tests indicates 
that the native protein localization is imprinted onto the protein 

sequence for each compartment. Sequence features experimented share 
a common composition and explicitly utilizes intrinsic correlation 
between proteins that share these common features. Additionally, this 
hierarchical structure has provided insights into the sorting process, 
such as the accurate distinction between the intracellular and secretory 
pathway. Our study supports the hypothesis reported by Nakashima 
and Nishawa [15].

In the future, it should be possible to extend the classification 
to any level in the hierarchy using these sequence features and with 
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the location descriptions provided by the gene ontology consortium 
(GO) [21]. This method can predict the final location of the protein 
as well as the mechanism of localization. Our findings may contribute 
to the development of clinical strategies related to drug design. We 
observed that, as one descends the hierarchical path, the prediction 
accuracy progressively decreases as the classification task complexity 
increases. The best scoring decisions are at the top, and the worst are at 
the bottom. Major problem with this type of hierarchical model is its 
inability to correct a prediction mistake made at the top node.
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