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Abstract
To separate resveratrol and emodin, supercritical carbon dioxide with ethanol was employed as the desorbent 

for a three-section simulated moving bed with an open-loop design called SF-SMB. Experimental validation of the 
separation was accomplished in this work. Silica was used as the stationary phase, and a crude extract of Polygonum 
cuspidatum containing mainly the resveratrol and the emodin, was purchased from a bio-technology company and 
used as the feedstock for the SF-SMB. Using single column chromatography, the operating conditions for a series of 
experiments conducted with 18 wt% ethanol were examined. The results were then compared to those predicted by 
the Triangle theory to determine the separable operating conditions and the dead volume of the SF-SMB unit. The 
robust operation of the SF-SMB against the concentration fluctuation of ethanol was also examined by conducting 
experiments with varied ethanol concentrations in different sections. It was found that the system is able to retain 
robust operation with about a 1.0 wt% ethanol fluctuation. Lowering the ethanol concentration to 15 wt% for each 
section was expected to relocate the separable operating conditions. A series of experiments with 12 wt% ethanol 
showed no pure raffinate. This is explained by the fact that the high flow rate of desorbent in the first section needed 
to obtain pure extract and raffinate would result in a high pressure drop, and lower the efficiency of the SF-SMB. 
From this study, the SF-SMB is demonstrated as being a useful technology for the separation of natural products, 
while providing a potentially greener alternative in the development of botanical drugs.  

Keywords: Supercritical fluid-simulated moving bed
chromatography; Resveratrol; Emodin   

Introduction
Resveratrol is recognized as an active compound extracted 

mainly from Polygonum cuspidatum and responsible for antibacterial, 
antioxidantive, anti-virus, and antitumor activity [1-4]. The crude 
extract of resveratrol from Polygonum cuspidatum also contains 
large amount of emodin, another bioactive compound. Both have 
the potential to be developed as botanical drugs so separation and 
purification of resveratrol and emodin has become a research focus 
[5-9]. In this work, the separation of resveratrol and emodin was 
conducted using a novel technology known as supercritical fluid-
simulated moving bed (SF-SMB). 

A simulated moving bed refers to a continuous chromatography, 
originally developed and applied in the separation of petrochemicals 
and sugars [10-12]. Two decades ago, SMB technology was scaled down 
and applied successfully in the pharmaceutical industry. In Asia, several 
crude extracts from natural products have also been successfully 
concentrated or purified using SMB chromatography [8,9,13-15]. If 
compared with batch chromatography, SMB is normally recognized as a 
green process in the pharmaceutical industry because of its low solvent 
and, energy use and water consumption [16]. However, dilution of the 
feed stream by the desorbent is still inevitable when employing SMB 
separation. In order to further reduce solvent and energy consumption, 
the liquid desorbent can be replaced by supercritical carbon dioxide 
[17-24]. 

Clavier et al. first applied supercritical carbon dioxide as the 
desorbent to SMB for the separation of GAL (g-linolenic ethyl ester) 
and DHA (docosahexaenoic ethyl ester). Later, researchers from 
TUHH (Hamburg University of Technology, Germany) and ETH 
(Swiss Federal Institute of Technology, Zurich, Switzerland) applied SF-
SMB in separating steroisomers, enantiomers and fatty acid ethyl esters 
[19-24]. The advantages of using a supercritical fluid as the desorbent 

include: instant evaporation of carbon dioxide to obtain concentrated 
products, the adjustment of solvent power by pressure, and the gradient 
operation of SMB attained by setting different pressures in different 
sections of the SMB. However, pure carbon dioxide is seldom used on its 
own as the eluent because of the injection of the feedstocks by a HPLC 
pump and the requirement of cosolvents in creating higher solubility 
and selectivity for the SF-SMB [17,19-24]. Therefore, the elution power 
can also be changed by the concentration of the cosolvent. The gradient 
operation of the SMB is also feasible by creating a concentration 
gradient along the SMB. Normally, the concentration of cosolvents 
significantly affects the retention of solutes. For robust operation, it 
therefore becomes crucial in controlling the cosolvent concentration. 

In a four-section SMB, the fourth section is designed to regenerate 
the desorbent for recycling. Since carbon dioxide can be easily and 
instantly recycled by vaporization, the fourth section can be eliminated 
to enhance the efficiency of the SMB. Therefore, for this study a three-
section SMB was designed for the SF-SMB, as illustrated in Figure 1. To 
apply supercritical carbon dioxide as the desorbent, a more complicated 
piping design was required; the design and operation were published in 
prior work [17]. In this work, experimental validation of the separation 
of resveratrol and emodin from the natural extract was conducted 
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and the Triangle theory was applied to identify the separable range of 
the operation conditions. Since the solvent power of the supercritical 
fluid significantly changes with the concentration of ethanol, this study 
also investigated the effect of changing the concentration along the 
six-column to better understand its operation with varying ethanol 
concentrations. 

Materials and the HPLC Analysis
The crude extract purchased from Baoji Hongyuan Bio-technology 

Co., Ltd. was submitted to HPLC analysis, and the dissolution of the 
crude extract into ethanol was used as the feed for the SF-SMB. About 
10 g of the purchased extract was dissolved into 1.0 L of ethanol (95 
vol%). After filtration, the clear solution contained 10,135 mg/L of solid. 

A Syncronis C18 (Syncronis 97105-154360), 150×4.6 mm, and 
5 µm from Thermo were used and 1.0 mL/min of the mixture of 
80/20(V/V) of acetonitrile/water titrated by phosphoric acid to a pH 
ranging from 3.5~3.8, was used as the mobile phase. The injection 
volume is 20 µL. The isocratic elution was used for the analysis of all 
experimental results on the effluent of SF-SMB. A gradient elution 
set as Table 1 was also applied to identify major components and 
impurities in the crude extract. By the gradient elution, the spectrums 
at 280 nm for the feed and the effluent produced after the separation 
of SF-SMB were illustrated in Table 1 and Figure 2. The spectrum of 
the feed solution revealed that resveratrol and emodin were the major 
components of the crude extract and physcion was a trace impurity. By 
the calibration curves, the content of the resveratrol and emodin in the 
feedstock solution were found to be 8,524 and 996 mg/L, respectively. 

It was also found that the spectrums indicated at 280 nm had an area 
ratio of resveratrol to emodin near 8524/9966. Therefore the area of 
HPLC spectrums indicated at 280 nm was used as the concentration to 
calculate the purity and recovery of the effluent from the SF-SMB. The 
purity and recovery for the extract and raffinate of the SF-SMB were 
then calculated as:

res emo

res emo res emo

res emo

res res emo emo

;

;

E R

E RE E R R

E R

E R
E R R ER E

E R

A AP P
A A A A

A AR RF FA A A A
F F


= =

+ +


 = =
 + +

	               (1)

where P, R and F are the purity, the recovery, and the ethanol flow 
rates, and the subscripts of E and R represent the extract and raffinate, 
respectively. A denotes the area from the HPLC spectrums with 280 
nm of UV wavelength, and the subscripts of res and emo represent 
resveratrol and emodin, respectively.

Single column chromatography by SFC

To conduct separation by SF-SMB, a single column studied by 
SFC (supercritical fluid chromatography) was carried out. Merck 
silica gel 60, 40~63 µm, was packed into a 150×10 mm column using 
the dry method. It was found that ethanol as cosolvent can separate 
resveratrol and emodin, and the concentration of ethanol significantly 
affects retention. Figure 2 illustrates the spectrums eluted by 12 and 
18 wt% of ethanol and conducted at 40°C, 19.3 MPa, and 5.07 g-CO2/
min. The injection volume is also 20 µL. It is noted that the retention 
of resveratrol and emodin are reversed, as compared to the liquid 
HPLC shown in Figure 3. From the spectrum with 12 wt% of ethanol, 
resveratrol is recognized as the stronger retention component and 
emodin as the weaker retention component. The impurities are hardly 
recognized by the SFC with 280 nm of UV wavelength. By increasing 
the weight percent of ethanol from 12 to 18 wt%, the retention time of 
resveratrol and emodin is largely reduced from 16.6 to 5.6 min and 10.3 
to 3.5 min, respectively. Since the retention time for the non-retained 
solute was 1.0 min and the porosity of the packed column was 0.675, the 
Henry’s constants for the adsorption of resveratrol and emodin at 12 
wt% were 32.4 and 19.3 respectively, and those at 18 wt% were 9.6 and 
5.2. Although the Henry’s constant changed, the selectivity remained 
at roughly 1.7~1.8 without any change resulting from the ethanol 
concentration. 
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Figure 1: The Three-Section SMB.
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Figure 2: The HPLC spectrums for the feed, extract, and raffinate: peak 1: 
resveratrol; peak 2: emodin; peak 3: physcion.
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Figure 3: SFC spectrums of the feedstock with 12 and 18 wt% of ethanol.

Time (min) 0 15 25 30 50
Acetonitrile 15% 40% 50% 60% 100%
0.1%H3PO4 85% 60% 50% 40% 0

Table 1: Setting for the gradient elution.
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Operation of the SF-SMB

An additional six columns, 150×10 mm, were packed for the SF-
SMB and installed according to the column porosity in the order of 
0.653, 0.771, 0.748, 0.770, 0.763 and 0.765. In this study, the carbon 
dioxide flow rates for the feed, extract and raffinate were measured 
and controlled, and the flow rate of the desorbent was calculated by 
mass conservation. Ethanol was pumped into the SF-SMB from the 
desorbent and the feed streams by two independent HPLC pumps and 
discharged from the extract and raffinate along with the carbon dioxide. 
The weight fraction of ethanol for the extract and raffinate could then 
be evaluated by the mass conservation of the ethanol. As illustrated in 
Figure 1, the ethanol weight fraction of the extract, wEtOHE, should be 
equal to that of the desorbent, wEtOHD, and the mass conservation of 
the ethanol can then be used to evaluate the weight fraction of ethanol 
for the raffinate, wEtOHR. Because the content of solutes in the fluid 
phase is usually low, it can be neglected when calculating the mass flow 
rates of ethanol for the raffinate and the extract. 

The Triangle theory is the theory most commonly used in setting 
the operating conditions for SMB. From the mass conservation, the 
Triangle theory predicts the relative volumetric flow rate in each 
section, following the constraints:
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If the dead volume of the SMB unit is considered, the relative 
volumetric flow rate in each section can be calculated as [26]:
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where VD is the estimated dead volume of the SF-SMB; VC is the empty 

column volume, 7.845 mL; ε is the average porosity of the six columns, 
0.745; tsw is the switching time of the valve; and Qj is the volumetric flow 
rate of the supercritical fluid in section j. 

Results and Discussion
The separable operating conditions at 18 wt% ethanol

The separation of resveratrol and emodin by SF-SMB was 
conducted at 40°C and 19.3 MPa with ethanol controlled at 18 wt%. 
Typical spectrums at 280 nm for both extract and raffinate from the 

experiments are illustrated in Figure 4. In the experiment, the flow rates 
of the SF-SMB were fixed and the switching time of the valve varied, as 
listed in Table 2. The flow rate of carbon dioxide at desorbent and the 
flow rates of ethanol at extract and raffinate were evaluated by mass 
conservation. The recovery and purity were calculated by Equation (1), 
and the relative volumetric flow rates were derived using Equation (3). 

The experimental setting of the switching time was first estimated 
by the Triangle theory without considering the dead volume. After 
comparing the separable operating conditions from the experimental 
results with those of the Triangle theory, the dead volume of the SF-
SMB was estimated as 1.8 mL. The illustration of the Triangle theory 
on the (m2, m3) plane is shown in Figure 5. From Table 2, it is observed 
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Figure 5: Illustration of the Triangle theory for the SF-SMB.

tsw 
(min)

m1 m2 m3 Purity Recovery Remark
E R E R

5 15.42 3.70 5.05 0.997 0.347 0.821 0.971 Pure E
5.5 17.34 4.45 5.93 0.997 0.335 0.807 0.978 Pure E
6.0 19.56 5.20 6.82 0.998 0.737 0.970 0.977 Pure E & R
6.5 21.18 5.95 7.70 0.997 0.767 0.961 0.981 Pure E & R
7.5 25.02 7.45 9.47 0.997 0.770 0.969 0.969 Pure E & R

T=40°C; P=19.3 MPa; Density of SF=925 kg/m3

DCO2=5.705* g/min; DEtOH=1.255 g/min; FCO2=0.400 g/min; FEtOH=0.088 g/min;
ECO2=3.480 g/min; EEtOH=0.766* g/min; RCO2=2.630 g/min; REtOH=0.577* g/min 

Table 2: Operating conditions and experimental results for SF-SMB.
where Kres and Kemo are the Henry’s constant for resveratrol and emodin, 
and mj is the relative volumetric flow rate in section j. Accordingly, 
a right triangle on the (m2, m3) plane is usually drawn to define the 
SMB setting, and the coordinates of the plane represent the volumetric 
flow rate of the liquid desorbent relative to that of the solid phase in 
sections 2 and 3 of the SMB, respectively. Using the mass flow rate to 
replace volumetric flow rate when applying the Triangle theory to the 
SF-SMB has been proposed [22,24]. Although the expression by mass 
flow rate is much clearer and more easily understood, an estimate of 
the density of the supercritical fluid must still be calculated. In this 
study, relative volumetric flow rates were still used to determine the 
operating conditions and to explain the experimental results. In order 
to calculate the volumetric flow rate, the density of the supercritical 
fluid was calculated by the Peng-Robinson EOS (equation of state) 
without considering contributions from the solutes. The mixing rule 
and interaction parameters between carbon dioxide and ethanol have 
been cited directly from the literature [25].
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that the experimental results with switching time ranged from 6.0~7.5 
min could successfully separate the resveratrol and emodin, and the 
right triangle in Figure 5 could be used to define the boundary of the 
separable region, and the apex of the right triangle represents optimum 
for the SF-SMB at 19.3 MPa, 40°C, and 18 wt% of ethanol.  

Effects of ethanol concentration on separation

As shown in Figure 3, the elution of the resveratrol and emodin is 
significantly affected by the ethanol content. The fluctuation of ethanol 
concentration may seriously affect the separation and lead to a failure 
of the robust operation of the SF-SMB. An additional four experiments 
were conducted to investigate the robust operation of the SF-SMB in 
regard to the change of concentration. The switching time of the four 
experiments was fixed at 6.5 min with flow rates as listed in Table 3. The 
calculated relative volumetric flow rates and the purity and recovery 
for each test are listed in Table 4. In Table 4, the number in parenthesis 
represents the weight percent of ethanol in each section. From the test 
runs of 6 and 7, it is observed that the SF-SMB can effectively separate 
the resveratrol and emodin when a fluctuation in the concentration of 
ethanol is within about 1.0 wt%. In both tests, the operating gradients 
in ethanol concentration also had possible effects on the stability of the 
operation. 

When the ethanol concentration was decreased to about 15 wt% 
as indicated by test run 9, the separation failed. From the spectrums 
shown in Figure 3, it is expected that the separable operating conditions 
for 15 wt% of ethanol should be largely different from those of 18 wt%. 
This suggests that the right triangle defined in Figure 5 for 18 wt% of 
ethanol is no longer suitable for that for 15 wt%. The triangle needs to 
be relocated for the operation at 15 wt%. 

A series of experiments conducted at 12 wt% of ethanol in this 
study also failed to separate the resveratrol and emodin because the 
SF-SMB failed to increase the relative volumetric flow rate in the first 
section to above 32.4, which is the Henry’s constant of resveratrol at 12 
wt%. Although it is observed from Figure 3 that the resolution of the 
resveratrol and emodin at 12 wt% of ethanol is much higher than that 
at 18 wt%, the requirement of a large relative volumetric flow rate in 
the first section of SMB causes an increased drop in the pressure of the 
SF-SMB. It is concluded that the operation of the SMB is determined 
mainly by the selectivity rather by the resolution.

Conclusion
In this work, ethanol was used as a cosolvent for the supercritical 

carbon dioxide in order to elute the resveratrol and emodin from silica. 
A novel unit of supercritical fluid in a simulated moving bed was used 
to realize the continuous operation of the elution needed to separate 
the resveratrol and emodin. The separable operating conditions of the 
SF-SMB were identified by comparing the experimental results with 
the Triangle theory for 18 wt% of ethanol. Also the robust operation 
related to the ethanol concentration was experimentally evaluated as 
being about 1.0 wt%. It is also concluded that the SF-SMB system would 
become inefficient if operated at 12 wt% of ethanol. The SF-SMB is a 
useful technology for purifying natural products, and more advantages 
and applications of the SF-SMB still await discovery.
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