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Introduction
The collection of safety and tolerability data in clinical trials 

goes well beyond the data collected to address specific safety 
hypotheses, which may be developed from the chemical or 
biological properties of the product, or possibly from observations 
from early-phase non-clinical and clinical trials. Adding to the 
complexity, the set of possible adverse effects is very large and new 
unanticipated effects are always possible. Moreover, confirmatory 
clinical trials to test the efficacy hypotheses usually have large 
sample sizes, and this may result in many more adverse event types, 
some of which were not expected based on the pharmacological 
profile of the product, preclinical experiments in animals, or in 
vitro studies. Hence there is potential for drawing false positive 
conclusions and the need for understanding the multiplicity aspects 
in safety signal detection. Safety assessment continues into the 
post-marketing phase with clinical trials in which specific safety 
issues may be addressed, and with post-marketing surveillance and 
pharmacovigilance plans that are usually based on large databases 
of patient electronic medical records and spontaneous reports of 
adverse events. While the multiplicity considerations differ during 
different phases of drug development, they are always an important 
component in the analysis and interpretation of clinical safety data. 
In their discussion of safety analysis in the pre-licensure phases, 
Xia et al. [1] and Chuang-Stein and Xia [2] identify multiplicity as 
a key issue that needs to be included in the clinical development 
plan for a new medical product. Since almost all clinical trials 
are designed with the objective of evaluating a product’s efficacy 
for its regulatory approval, the study design, endpoint selection, 
and sample size determination are usually based on the efficacy 
hypothesis. For safety, there is often no specific hypothesis to 
test in the clinical trial design, but the study plan still collects and 
analyses adverse experiences reported by the study participants. 
Adverse event data should be carefully catalogued and summarized 
using standard coding dictionaries such as MedDRA (Medical 
Dictionary for Regulatory Activity). Crowe et al. [3] have pointed 
out the potential for too many false positive safety signals if the 
multiplicity problem is ignored. Kaplan et al. [4] give an example of 
how false positive signals can impact the interpretation of the safety 
profile of the drug or vaccine. This example is about a safety and 

immunogenicity trial to compare a combination vaccine, labelled 
A, to one of its individual component vaccines, labelled B, in an 
infant population. The analysis of the adverse event data identifies 
UHPC (Unusual High Pitched Crying) as the single event with an 
individual P-value<0.05; the incidence of UHPC for group A was 
6.7% compared to 2.3% for group B, yielding a two-sided P-value of 
0.016. However, UHPC was just one of 92 adverse experience types 
in the study, and there was no medical rationale for this finding, 
nor were there additional data suggesting such a relationship from 
the already approved and marketed components of the combination 
vaccine. To address the multiplicity issue, the study team undertook 
a confirmatory study requested by regulators. The large follow-up 
trial concluded that the original P-value, unadjusted for multiplicity, 
was a false positive signal. Hence a significant amount of time and 
money was expended on chasing down what could easily have been 
determined to be not statistically significant by using appropriate 
multiplicity adjustments in the original analysis.

There is an implicit trade-off between sensitivity and specificity 
in the evaluation of clinical safety data. The preceding paragraph 
and the references cited therein are related to specificity, which is 
the proportion of true negative effects correctly identified as such by 
the safety evaluation. Thus, 1-specificity is the aforementioned false 
positive rate, which corresponds to the type I error in hypothesis 
testing. Sensitivity is the proportion of true positive effects correctly 
identified as such by the safety evaluation and corresponds to “power”, 
or 1-type II error, in hypothesis testing. The issue here arises from a 
very large number of hypotheses, many of which may not be specified 
in advance. This commentary is on some approaches to the treatment 
of this issue and the extent to which they address the trade-off between 
sensitivity and specificity.
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Abstract
The evaluation of safety is an important part of clinical trials of pharmaceutical, biological, and vaccine products. 

In early phase trials, the evaluation is mostly exploratory with a focus primarily on serious adverse reactions to the 
candidate product. In later phases of clinical development programs the safety profile is characterized more fully using 
larger numbers of patients. Unlike the evaluation of drug efficacy, the outcome of which is based on a single or a 
collection of prespecific hypotheses, the hypotheses to test to conclude a drug has potential safety burden is generally 
not prespecified. The test and conclusion of potential safety issue of a drug are usually based on an arbitrary number 
of reports of adverse events that have not been identified at the outset, which amounts to using observed data to test 
hypotheses that are generated by the same data.
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MedDRA Categorization of Adverse Events and Data 
Tabulation

Mehrotra and Heyse [5] were the first to (a) draw attention to 
the multiplicity issue in safety evaluation of clinical trials data and 
(b) propose a method, called Double False Discovery Rate (DFDR) 
control, to address this issue. They consider the adverse event data 
from a safety and immunogenicity trial of a measles, mumps, rubella, 
varicella (MMRV) combination vaccine trial. The study population 
included healthy toddlers, 12-18 months of age. The comparison of 
interest was between Group 1: MMRV+PedvaxHIB on Day 0, and 
Group 2: MMR+PedvaxHIB on Day 0, followed by an optional varicella 
vaccination of Day 42. The safety follow-up included local and systemic 
reactions over Days 0-42 for N=148 in Group 1, and N=132 in Group 
2 over Days 42-84. The follow-up duration of 42 days is standard for 

live virus vaccines such as varicella. The question, which involves the 
varicella component of MMRV, is whether the safety profile differs 
between its administration in a combination and giving it 6 weeks 
later as a monovalent vaccine. The adverse events are coded using a 
standard dictionary (e.g., MedDRA) and classified into groupings by 
body systems. The MMRV dataset consists of 40 adverse event types 
which are categorized into 8 body systems, as shown in the first three 
columns of Table 1, in which b represents the body system index, and i 
the index of adverse event types within a certain body system.

We next give some background about these body system 
groupings in adverse event dictionaries such as MedDRA, which is 
a hierarchically structured vocabulary (http://www.meddra.org/). 
MedDRA’s five-level hierarchy of terminology consists of Low Level 
Terms (LLTs), Preferred Teams (PTs), High Level Terms (HLTs), 

b   i Type of AE Group 1 N1=148 Group 2 N2=132 Group Diff 2-sided P-value Posterior
θbi>0

Probability
θbi=0

1   1 Astenia/fatigue 57 40 8.40% 0.167 0.211 0.762
1   2 Fever 34 26 3.30% 0.561 0.122 0.827
1   3 Infection, fungal 2 0 1.40% 0.5 0.101 0.796
1   4 Infection, viral 3 1 1.20% 0.625 0.1 0.813
1   5 Malaise 27 20 3.00% 0.525 0.116 0.826
3   1 Anorexia 7 2 3.20% 0.179 0.117 0.821
3   2 Cendisiasis, oral 2 0 1.40% 0.5 0.083 0.835
3   3 Constipation 2 0 1.40% 0.5 0.101 0.812
3   4 Diarrhea 24 10 8.60% 0.029* 0.231 0.743
3   5 Gastroenteritis 3 1 1.20% 0.625 0.093 0.823
3   6 Nausea 2 7 -3.90% 0.089* 0.05 0.805
3   7 Vomiting 19 19 -1.60% 0.73 0.076 0.849
5   1 Lymphadenopathy 3 2 0.50% 1 0.136 0.717
6   1 Dehydration 0 2 -1.50% 0.221 0.087 0.666
8   1 Crying 2 0 1.40% 0.5 0.185 0.655
8   2 Insomnia 2 2 -0.10% 1 0.153 0.661
8   3 Irritability 75 43 18.10% 0.003* 0.78 0.214
9   1 Bronchitis 4 1 1.90% 0.375 0.059 0.9
9   2 Congestion, nasal 4 2 1.20% 0.375 0.058 0.901
9   3 Congestion, respiratory 1 2 -0.80% 0.603 0.04 0.896
9   4 Cough 13 8 2.70% 0.497 0.062 0.906
9   5 Infection, upper respiratory 28 20 3.70% 0.431 0.083 0.897
9   6 Laryngotracheobronchitis 2 1 0.60% 1 0.047 0.898
9   7 Pharyngitis 13 8 2.70% 0.497 0.061 0.906
9   8 Rhinorrhea 15 14 -0.50% 1 0.051 0.904
9   9 Sinusitis 3 1 1.20% 0.625 0.051 0.903
9  10 Tonsillitis 2 1 0.60% 1 0.042 0.905
9  11 Wheezing 3 1 1.20% 0.625 0.05 0.907
10  1 Bite/sting 4 0 2.70% 0.125 0.087 0.859
10  2 Eczenma 2 0 1.40% 0.5 0.07 0.86
10  3 Pruritis 2 1 0.50% 1 0.062 0.868
10  4 Rash 13 3 6.50% 0.021* 0.19 0.784
10  5 Rash, diaper 6 2 2.60% 0.288 0.099 0.852
10  6 Rash, measles/rubella-like 8 1 4.60% 0.039* 0.126 0.836
10  7 Rash, varicella-like 4 2 1.20% 0.687 0.076 0.862
10  8 Urticaria 0 2 -1.50% 0.221 0.048 0.852
10  9 Viral exanthema 1 2 -0.80% 0.603 0.055 0.855
11  1 Conjunctivitis 0 2 -1.50% 0.221 0.079 0.721
11  2 Otitis media 18 14 1.60% 0.711 0.102 0.757
11  3 Otorrhea 2 1 0.60% 1 0.121 0.749

Table 1: Fisher's 2-sided P-values (with asterisks if <0:1) and posterior probabilities under the Bayesian 3-level hierarchical mixture model.

http://www.meddra.org/
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high level group teams (HLGTs), and System Organ Classes (SOCs). 
The LLTs constitute the lowest level of terminology and each LLT is 
linked to one PT. In addition to facilitating data entry and promoting 
consistency by decreasing subjective choices, the LLTs can also be used 
for data retrieval without ambiguity because they are more specific 
than the PTs. A PT must have at least one LLT linked to it, must be 
linked to at least one SOC, and must have a primary SOC under which 
the PT appears in data outputs. It is a distinct descriptor for symptom, 
sign, disease, diagnosis, therapeutic indication, surgical or medical 
procedure, and medical, social or family history characteristic. As 
subordinates of HLTs, PTs are linked to HLTs by anatomy, pathology, 
physiology, etiology or function. Each HLT must be linked to at least 
one SOC through one of HLGTs, which group HLTs to aid data 
retrieval at a broader concept.

Gould [6] proposed a three-tier system to categorize adverse events 
in clinical safety data. Tier 1 is associated with specific hypotheses that 
are defined by the clinical development team as an adverse event of 
special interest. Tier 2 is the large set of adverse events encountered 
as part of the systematic collection and reporting of safety data. The 
MMRV data summarized above is an example of Tier 2 adverse events. 
Tier 3 includes the rare spontaneous reports of serious events that 
require further clinical and epidemiological evaluation. The 40 adverse 
events from the MMRV trial tabulated in Table 1 are all Tier 2 events. 
An adverse event can belong to both Tier 1 and Tier 3, and an example 
is intussusception, which is the telescoping or prolapse of one portion 
of the bowel into an immediately adjacent segment. Intussusception is 
an uncommon illness with a background incidence of 18 to 56 cases 
per 100,000 infant years during the first year of life in the US. In 1998, 
a tetravalent rhesus-human Reassortant Rotavirus Vaccine (RRV-
TV; RotaShield, Wyeth Laboratories) was licensed and recommended 
by the Advisory Committee for Immunization Practices (ACIP) for 
routine immunization of infants in the United States. A slight increase 
in intussusception was observed in the prelicensure studies but did not 
reach a level of concern. However, post-marketing surveillance studies 
Murphy et al., [7] showed a temporal association between RRV-TV 
and intestinal intussusception. As a result of this finding in post-
marketing surveillance studies, the RRV-TV vaccine was voluntarily 
withdrawn from the market in October, 1999 and two weeks later the 
ACIP rescinded its recommendation for universal vaccination. At the 
time the intussusception issues arose around the RRV-TV, clinical 
development of RotaTeq, a pentavalent human-bovine PRV developed 
by Merck was in Phase II trials. The PRV clinical development program 
was immediately expanded to include the Rotavirus Efficacy and Safety 
Trial (REST), which was undertaken to specifically address the safety 
question on the association between vaccination with the candidate 
PRV and intussusception. REST was a placebo-controlled study 
including approximately 70,000 subjects, making it one of the largest 
clinical trials ever conducted pre-licensure. The clinical importance of 
REST is discussed in a recent paper by Rosenblatt [8] that highlights the 
importance and complexity of safety evaluation in clinical development 
programs for novel drugs and vaccines. Intussusception was considered 
Tier 3 because it is serious but uncommon in its natural history. Too 
few cases of intussusception were observed in the original pre-licensure 
trials of the RRV-TV vaccine to reach a conclusion that could alter the 
benefit-risk trade-off of an important new vaccine. The association 
with rotavirus vaccines was established subsequently in post-marketing 
studies that led to the treatment of intussusception as a Tier 1 adverse 
event for the subsequent vaccine PRV, for which studies were designed 
specifically to address the issue prospectively in hypothesis-driven 
clinical trials. The focus of research on multiplicity issues in the analysis 

of clinical safety data is related to Tier 2 adverse events, for which the 
clinical trial data for these are typically summarized by using risk 
differences, risk ratios, or odds ratios. 

False discovery rate and DFDR control

Table 1 summarizes the adverse event data from the MMRV trial 
by tabulating counts of infants with the specific adverse event type (PT, 
labelled by i) for body system (SOC, labelled by b), and the between-
group risk difference (in %). It also gives a 2-sided P-value computed 
using Fisher’s exact test for each i within body system b. Fisher’s exact 
test is computed from the 2×2 contingency table consisting of the 
counts n1, n2 for the two groups in the first row of the table, and N1-
n1, N2-n2 in the second row of the table. Table 1 shows five (b, i) pairs 
with one-sided P-value<0.05 (equivalent to two-sided P-value<0.1). 
Since there are forty (b, i) pairs in Table 1, adjustments have to be 
made for testing multiple (rather than individual) hypotheses. The ICH 
E-9 guideline (International Conference on Harmonization or ICH) of 
technical requirements for regulations of pharmaceuticals for human 
use [9] discusses this issue and recommends descriptive statistical 
methods supplemented by individual confidence intervals. It points 
out that if hypothesis tests are used, statistical adjustments of the type I 
error for multiplicity may not be appropriate because the type II error 
is usually of greater concern, and individual P-values may be useful as a 
flagging device applied to a large number of safety variables to highlight 
differences worthy of further attention. Hence, the challenge lies in a 
proper balance between no adjustment and too much adjustment 
for multiplicity. This has led Mehrotra and Heyse [5] to control the 
False Discovery Rate (FDR) rather than the more stringent Family-
Wise Error Rate (FWER) and to develop a double FDR procedure 
that further trims down the number of null hypotheses using the body 
system context. Let {Hi, i=1, • • •, m} denote a family of null hypotheses. 

In the current setting of adverse event types in a clinical trial, true 
null hypotheses are those associated with adverse event types for which 
the incidence is the same between the treatment and control groups. The 
Family-Wise Error Rate (FWER) is defined as the probability that some 
true null hypothesis is rejected. Noting that FWER control may be too 
stringent for many applications, Benjamini and Hochberg [10] propose 
to control instead the false discovery rate E (V/R), which is the expected 
proportion of rejected hypotheses that are incorrectly (Table 1).

Table 1 Fisher’s 2-sided P-values (with asterisks if <0.1) and 
posterior probabilities under the Bayesian 3-level hierarchical mixture 
model. Rejected and in which R is the number of rejected null 
hypotheses and V is the number of incorrectly rejected Hi. When no 
hypotheses are rejected (i.e., R=0), the rate (abbreviated by FDR) is 
defined to be 0. Earlier Soric [11] called rejected hypotheses “statistical 
discoveries”. Since V is the number of false positives, FWER control 
provides assurance that P (V ≥ 1) does not exceed a prescribed rate 
α, whereas FDR controls the expected pro-portion of discoveries 
which are actually false. Note that FWER=P (V ≥ 1) ≤ E (V/R)=FDR. 
Associated with the m hypotheses in H1, H2, • • •, Hm are corresponding 
unadjusted P-values P1, P2, • • •, Pm. Let P(1) ≤ P(2) ≤ • • • ≤ P(m) be the 
ordered P-values, with H(i)corresponding to the hypothesis aligned with 
P(i). Benjamini and Hochberg have shown that FDR can be controlled 
at a prespecified rate α by rejecting H(1), H(2), • • •, H(J), where J=max{i : 
P(i) ≤ (i/m)α}, if the Pi are independent. When the above set is empty, no 
hypotheses are rejected; on the other hand, all hypotheses are rejected if 
J=m. In comparison with the step-down FWER control procedure that 
compares P(i) to α/(m+1−i), the FDR procedure compares P(i) to α(i/m). 
For i=1 and i=m, i/m is equal to 1/(m+1−i), but otherwise i/m is larger, 
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hence the FDR control procedure should have greater power than the 
FWER control procedure in detecting the true positives. Mehrotra and 
Heyse [5] propose to implement the Benjamini-Hochberg procedure 
by using the adjusted P-values.

 (m) (m) (j) (j+1) ( )P  = P , P  = min{P , ( ) }  1j
m p for j m
j

≤ −  

Rejecting H(j) if ~ P(j) < α. They also propose a two-stage 
procedure, called DFDR (double FDR) for aging Tier 2 adverse 
experiences that are grouped by body systems. The _first stage uses 

( )* ,1, .,  ,bp min Pb Pb mb= …  as the P-value of the bth body system, with 
mb adverse event types, for b=1; :::;B. These P-values are used to test 
the null hypothesis H(b) that treatment and control have no differences 
in the mb adverse event types. They are adjusted for multiplicity (for 1 
< b < B), leading to the adjusted P-values (8)

3 0 : 075p =  and the group-
level rejection criterion for rejecting H(b) if 2

*  bp α≤ . The second stage of 
DFDR applies the Benjamini-Hochberg procedure to the reduced set 
of null hypothesis{ }(b) (b) 

i bis rejected a mH nd1H i: ≤ ≤ , leading to adjusted 
P-value *

bp  and the final rejection criterion for rejecting (b)
iH ∈Η  

2
*  bp α≤ . Mehrotra and Heyse (2004) propose to choose α1 and α2 by 

bootstrap resampling so that EH0 (V/R) < α, where H0 denotes the 
intersection null hypothesis B (b)

b 1= H∩ . Instead of a two-dimensional 
search, they fix α1=α2 or α1=α2/2 and carry out a grid search over 2α α≤ .

To illustrate how this two-stage procedure works for the adverse event 
data in Table 1 from the MMRV combination vaccine safety trial, Table 2 
tabulates the unadjusted P-values *

bp  (2-sided, Fisher’s exact test) and the 
corresponding adjusted P-values *

bp . The body system 8 is the only one 
rejected by the first stage of the DFDR procedure * 0 :1bp <  for b=8). There 
are 3 adverse event types within b=8: Irritability ( (8)

3 0 : 075p = ) that is 

rejected, Crying ( (8)
2 1: 00p = ) and Insomnia ( (8)

2 1: 00p = ) that are not 
rejected by the final rejection criterion.

Bayesian approach via a three-level hierarchical mixture 
model

The last two columns of Table 1 give the results of the posterior 
probabilities that θbi>0 and θbi=0, respectively, under the Bayesian 
hierarchical mixture model proposed by Berry and Berry [12], where 
θbi is the logarithm of the odds ratio of the adverse event probability for 
treatment (Group 2) to that for control (Group 1):

bi
pbi,2 pbi,1è =log -log

(1-pbi,2) (1-pbi,1)
   
   
   

where pbi, 1 and pbi, 2 are the adverse event probabilities for Group 
1 and Group 2. Note that the column “Group Diff” in Table 1 is the 
sample estimate of pbi,2-pbi,1 (Table 2). 

The last two columns of Table 1 do not sum up to 1 because there 

is positive, albeit small, posterior probability that θbi<0 in the Bayesian 
model. The first level of the Bayesian hierarchical mixture model 
assumes that θbi is 0 with probability πb and is normally distributed 
with probability 1-πb. The second and third levels of the hierarchical 
specification gives the prior distributions of πb and of the mean and 
variance of the normally distributed component of the mixture model 
at the first level. Berry and Berry [12] point out that their Bayesian 
specification attempts to model “the existing structure and the available 
information” among types of Adverse Events (AEs) “explicitly 
depending on their body systems,” thus “borrowing information 
across types of AEs.” Hence, “this is different from conclusions of more 
traditional multiple comparison methods in which only the number of 
types of AEs under consideration matters,” as in the FDR and DFDR 
control methods. The Bayesian analysis shows that “the posterior 
probability that the event rate on treatment is greater than on control 
is small to moderate (less than 50%) for 39 of the 40 types of AEs,” and 
that there is only one type of AE (irritability in body system 8) with a 
high value (0.78) for the posterior probability of θbi>0. This AE type also 
has the smallest P-value (0.003) for Fisher’s exact tests in the individual 
comparisons shown in Table 1.

A Bayesian screening/classification method

Gould [13] says that “although rejecting a null hypothesis of 
no treatment effect with suitable adjustment for multiplicity on the 
basis of predefined measurement in a well-designed- and-executed 
trial justifies a conclusion that the treatment is effective,” this 
argument does not apply to safety, particularly with respect to Tier 2 
adverse events, because “testing hypotheses about treatment group 
differences in adverse event incidence when the adverse events have 
not been identified in the study protocol amounts to using observed 
data to test hypotheses that are generated by the same data.” He 
advocates a Bayesian screening approach that “provides a direct 
assessment of the likelihood of no material drug-event association 
and quantifies the strength of the observed association” for the Tier 
2 AEs of the control and treatment groups. The screening method 
proposed is basically a Bayesian classification rule of the form θbi 
≤ θ∗ for classifying the observed AE as safe, and flagging safety 
concerns if θbi>θ∗, where θ∗ is either “clinically meaningful” to the 
investigators and regulators or can be determined from the data to 
yield good diagnostic properties of the classifier. Gould uses another 
Bayesian mixture model for which posterior probabilities are much 
easier to compute than Berry and Berry’s three-level hierarchical 
model. Specifically, he assumes that pbi, 2 is equal to pbi, 1 with 
probability π and has a Beta distribution that is independent of the 
Beta distribution for pbi, 1 with probability 1-π, and that π also has 
a Beta distribution. The parameters of the Beta prior distributions 
are determined from the data so as to strike a good balance between 
sensitivity and specificity of the classifier.

Body
System

#
AEs

Representative
AE type

Group 1
N1=148

Group 2
N2=132

Unadjusted
P-value

Adjusted
P-value

1 5 Asthenia/fatigue 57 40 0.1673 0.6248
3 7 Diarrhea 24 10 0.0289 0.2026
5 1 Lymphadenopathy 3 2 1 1
6 1 Dehydration 0 2 0.2214 0.2214
8 3 Irritability 75 43 0.0025 0.0075*

9 11 Bronchitis 4 1 0.3746 0.9447
10 9 Rash 13 3 0.0209 0.1745
11 3 Conjunctivitis 0 2 0.2214 0.6641

Table 2: Smallest adjusted P-value from each of the 8 body systems.
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Discussion and Conclusion
The past fifteen years witnessed a greatly increased focus on the 

safety evaluation of medical products in the pharmaceutical and 
biotechnology industries. Safety data are routinely collected throughout 
preclinical in vitro and in vivo experiments (e.g., living cells and animal 
models), clinical development (e.g., randomized clinical trials) and 
post-approval studies and monitoring. Whereas most clinical trials 
are designed to investigate the hypothesized efficacy of a compound, 
safety outcomes, on the other hand, are often not defined a priori. This 
brings forth a number of challenges to statisticians and biomedical 
data scientists on how to best analyze the high-dimensional safety 
data, in order to detect safety signals promptly and also to reduce the 
rates of false signals and false non-signals. This commentary reviews 
some important developments to address these challenges for the 
analysis of adverse events data from pre-licensure clinical trials and 
post-marketing phase IV trials. The developments have their roots in 
contemporary advances in statistical methodology in the big data era, 
ranging from diverse areas such as FDR control in simultaneous testing 
of a large number of null hypotheses, Bayesian hierarchical and multi-
level models, screening and classification. An overarching approach 
that can potentially integrate these methods is suggested by the seminal 
works of Efron et al. [14]; Efron [15-17] on empirical Bayes/compound 
decision methods and local false discovery rates for the analysis of 
microarray gene expression data and large-scale simultaneous testing. 
We are working toward such an approach to clinical safety data 
evaluation which strikes an optimal balance between sensitivity and 
specificity.

Before marketing authorization, a medical product is typically 
investigated thoroughly for safety and efficacy through clinical trials 
with hundreds or thousands of somewhat homogeneous subjects 
(sampled from a population with pre-defined inclusion and exclusion 
criteria) for a relatively short period of time (e.g., 2 years) with clearly 
specified route of administration. The number of subjects encompassed 
in such a trial is commonly determined by demonstrating efficacy and 
rare adverse events may be unobservable. For instance, suppose that 
the occurrence of an adverse event follows a Poisson distribution. Then 
the minimum number of subjects (or observational time in person-
years) needed in order to observe at least 1 reported case of a target 
adverse event with an incidence rate at 0.1% with 95% confidence is 
approximately 2996; the number of subjects (or person-years) goes 
up to at least 4744 in order to observe at least two reported cases of 
the target adverse event with the same incidence rate. In addition to 
relatively smaller sample size, there are usually quite strict inclusion 
and exclusion criteria for subject enrollment in clinical trials; hence 
co-morbidity and/or drug-drug interactions may not be discovered 
during clinical trials [18]. Because of these limitations of clinical trials, 
safety evaluation of medical products is usually carried out after the 
pre-licensure and post-marketing clinical trials through the whole 
life of a product. When post-marketing safety data come from non-
experimental sources, as in spontaneous reports of adverse events 
rather than randomized trials, there may be confounding covariates 
that cause the adverse events and adjustments have to be made for 
causality analysis. This poses important methodological challenges 
that are beyond the scope of the present commentary on sensitivity 
versus specificity in testing multiple safety hypotheses, or in classifying 
(screening) the adverse events from the clinical trials data as safe or 
unsafe outcomes. Again contemporary developments in statistical 
methods and in pharmacoepidemiology provide many important 
techniques that can potentially be integrated to address the challenges 
of using these safety databases for pharmacovigilance and syndromic 

surveillance. Propensity scores, graphical models, instrumental 
variables, and inverse probability weighting are a partial list of the 
statistical methods. A corresponding list for pharmacoepidemiology 
includes assessment of medication adherence and medication errors 
(or of device misuse or malfunctioning leading to device- related 
adverse experiences for medical devices), reporting ratios and 
disproportionality analysis, case-control approach and self-controlled 
case series.
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