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Bacteria are associated with diseases; this has been particularly 
true recently with the discovery that changes in the gut bacteria 
(microbiome) are associated with energy harvesting and obesity. The 
increase in firmicutes and decrease in bacteriodetes have sparked 
massive interest in attempting to understand how diets high in fat cause 
this change and what implications this has for health [1-3]. For many 
years bacteria were thought to be autonomous organisms, until the 
idea of quorum sensing was proposed given rise to the idea that cells 
(including bacteria) can exchange information using small molecules 
that bind sensory proteins affecting, directly or indirectly, transcription 
and translation. This system illustrates that the environment in which 
the bacteria live will dictate gene expression which underlie various 
biological pathways. In essence, quorum sensing enables bacterial 
populations to collectively create an environment that enhances 
access to nutrients, promote defense mechanisms against invaders and 
facilitate survival. The research supporting changes in the microbiome 
in response to high fat feedings suggests that there may be changes 
in the nutrient gradient which are sensed by the quorum (bacteria) 
causing activation of pathways associated with obesity. Implications of 
this notion are unstudied and are of particular interest in our lab.

We are all acutely aware of the impacts of obesity, including 
increased adiposity and insulin resistance and diabetes. Some of the 
mechanisms associated with these problems are very well-defined while 
others are not. The exciting area of the gut microbiome has received a lot 
of attention and researchers are providing novel insights to implications 
as a result of these changes. There are however, several questions that 
still need to be answered. This editorial will briefly summarize what 
is known about changes in the gut and its microbiome and future 
directions in this area.

The gastrointestinal (GI) system represents a major route for 
systemic exposure to both healthy, e.g. carbohydrates, fats, protein, 
vitamins and minerals, and unhealthy molecules, e.g., toxins and pro-
inflammatory particles (lipopolysaccharide (LPS)). The integrity of 
the GI barrier is critical to restrict unwanted substances from entering 
systemic circulation. Conversely loss of intestinal barrier integrity leads 
to increased permeability and diffusion of restricted molecules from 
the intestinal lumen to the blood. Research has supported that obesity 
increases intestinal permeability of LPS [4]. LPS is an endotoxin known 
to activate many transcription factors implicated in enhancing the 
inflammatory responses. Moreover, it was recently demonstrated that 
LPS plasma concentrations increase in response to high fat diets, which 
is likely due to the changes in intestinal integrity [5,6]. Since LPS is 
fat-soluble it has been concluded that the LPS must come from the gut 
and is suspected to perpetuate the obesogenic environment within the 
body [5,7-9]. 

An area receiving a lot of attention is how LPS exerts its 
actions, as this may provide clues as to the pathophysiology of the 
inflammatory response. It has been suggested that toll-like receptor 
4 (TLR4) is a key modulator in the cross-talk between inflammatory 
and metabolic pathways. TLR4 is an essential receptor, along with its 
adaptor protein CD14, for the recognition of LPS [10]. The activation 

of pro-inflammatory response occurs when LPS binds to its receptor 
resulting in production of interlukin-6 (IL-6) and/or upregulation of 
downstream inflammatory pathways including IκB kinase (IKKβ)/
nuclear factor kappaB (NFκB) [11].  The upregulation of the IKKβ/
NFκB pathway causes additional release of tumor necrosis factor-
alpha (TNF-α) and IL-6 further promoting the inflammatory response. 
Interventions therefore aimed at reducing LPS in plasma will have a 
potent impact on the overall systemic inflammatory response. To date 
it is known that both acute, chronic and resistance exercise can reduce 
plasma LPS levels [10], reduce TLR4 and CD14 expression [12] as well 
as some downstream targets including IKKβ [10]. Further investigation 
is needed to examine how exercise may impact the bacterial quorum 
and if this plays a role in altering intestinal barrier integrity.

LPS in the systemic circulation not only triggers the inflammatory 
response, but can also cause significant changes to amino acid pools, 
including lysine, threonine, tryptophan, phenylalanine and valine, a 
branched chain amino acid (BCAA) (13). While there does seem to 
be a link between BCAA pools in vivo and increased incidence of 
obesity and diabetes [14] , complete understanding of the mechanisms 
associated with these changes and how they are precipitated needs to 
be examined. BCAAs are intimately involved with the intermediates 
within the Krebs cycle so that energy can be made, disruptions to this 
cycle may adversely influence energy metabolism, further disrupting an 
already malfunctioned system.

This editorial highlights the impacts high fat diets have on the 
intestinal integrity and the consequences which increased LPS 
permeability to the systemic circulation and subsequent activation of 
pro-inflammatory cascades. However, it is not known whether LPS 
production in the gut increases as a result of the gut bacteria being 
overexposed to high fat diets. Im et al. [15] showed that intentional 
exposure of the colon to LPS elicited inflammation of the small 
intestine remotely and this was associated with enhanced inflammatory 
cytokine production and epithelial damage. However, it is unknown if 
and how fat in the diet, leads to disruption of epithelial integrity and 
by which pathways this is occurring through. Using quorum sensing, 
we possess a tool by which bacterial communications can be analyzed 
and what changes in transcription and translation occur as a result of 
this communication. These changes can hopefully provide information 
about links to diet and gut bacteria that have yet to be explored.
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