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Introduction
Since cardiovascular diseases are one of the major causes of 

mortality in the world, research works on the nature of these pathologies 
and the techniques used for the treatment have become a priority to the 
entire scientific community. To treat these vascular diseases, such as 
atherosclerosis, aneurysms and stenoses, the endovascular technique 
is the more comfortable technique used. It consists of a prosthesis 
insertion into the diseased region, using a catheter [1].

But, the implantation of the prosthesis modifies the vascular wall, 
dragging a modification of the flow in the vessel. This modification of 
the flow can alter the wall, either at the interfaces or either on the stent 
itself. These, therefore, lead to the fractures of the stent, the ruptures 
of suture or holes in the stent coat [2]. It also appear complications 
as displacement of the prosthesis in relation to their initial position 
(migration) due to the widening of the collar of an aneurysm, or to a 
over sizing too important of the prosthesis [3,4]. Furthermore, some 
studies show that the rigidity of the prosthesis lead to its migration 
[5]. We can note between other of the undesirable phenomena, as the 
endofuites that are due to the persistence of the blood flux in outside of 
the prosthesis, and in the aneurysmal bac, for example [4].

Much of the works done on stents are through numerical 
investigations [6-9]. Tortoriello and Pedrizzetti [10] examined the 
effects of stent implantation using an axisymmetric 2-D numerical 
fluid-solid model. This analysis of pulsatile flow revealed that the 
compliance mismatch and overexpansion caused by the stent both 
enhanced the flow disruption in the stented region, thus reducing to 
a minimum, and causing rapid variations in flow near the stent ends. 
But, they disregard the effects of the nonlinearity on the wall.

In this study, we can extends the analysis of the Chakravarty and 
Mandal model [11], by introducing, and analyzing the effects of the 
spatial variation of the tube radius, and wall rigidity, as well as those 
of localized deformation, such as aneurysms, stenoses, atherosclerosis 
and prostheses. We focus on the deformation of the wall and the 
nonlinearity coefficient of elasticity.

The rest of the paper is therefore outlined as follows. In section 2, 
one can briefly present the physical and mathematical model. In section 
3, one makes a mathematical development. We can give a quantitative 
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discussion following the results obtained from numerical simulation in 
section 4, and the last section is devoted to some concluding remarks.

Physical and Mathematical Formulation
Parameters of modeling

The model in consideration here is a long narrow elastic tube filled 
with an incompressible, viscous New- tonian fluid. Therefore, for the 
modeling of this flow, one can introduce the equation presenting the 
mass conservation of the fluid accompanied with the Naviers-Stokes 
set of equations, taking into consideration the nonlinear coefficient of 
elasticity of the wall, and the inertial effect as

Mass conservation

0U U W
r r z

∂ ∂
+ + =

∂ ∂
(1)

Linear momentum conservation
2 2

2 2
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( 3 )

where W and U are, respectively, the axial and radial fluid velocity, P 
is the pressure in the vessel, ρf is the fluid density and µ is the dynamic 
viscosity of the fluid.

For the wall dynamics, using the second law of Newton on a 
portion of the vessel wall, one can obtain the relation, which can be 
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presented as [12].

 2

2p t
R hh P P

t R
ρ σ ⋅

∂
= − −

∂
                                                 (4)

The first term in left of equality of Equation 4 is the inertia term, 
which is proportional to the acceleration of the vessel-wall. In the right 
hand side, we have the pressure in the vessel, the pressure outside the 
vessel, the nonlinear elastic-response of vessel, respectively. ρp is the 
wall density and h, the thickness of the wall assumed small compared to 
the radius R(z,t) of the vessel. σt is the approximation of the exponential 
function for the stress-strain relationship given by the authors [13,14]. 
This final relation used already by many authors [12,15-17] is

1 ,t
R R R RE a

R R
σ

 − −
= +  

 
                                              (5)

  

Where, R(z)=R is the stationary radius of the vessel, E(z)=E is the 
young modulus, and a is the coefficient representing the nonlinear 
coefficient of elasticity. The geometry of the vessel is described as

1( , ) ( ) ( ),R z t R z g t=                                                            (6) 

And the time dependent function g1 (t) can be approximated by    [11]

 
( )1( ) 1 cos 1

4
tg t wt
T

= + −                                                               (7)
w is the frequency of heart pulsation, that is, w=2πf, f being the pulse 
frequency and T designates a time parameter.

As vessels segments are tapered elastic tubes with increasing rigidity 
away from the heart, they represent general cases of thin walled elastic 
tubes with variable Young modulus. Many authors [18-20] showed that 
the stationary radius and the Young Modulus can obey of the similar 
relation.

0 0( ) (1 ( )), ( ) (1 ( )),R z R f z E z E g z= + = +                                   (8)

With 0 0( ) ( ), ( ) ( ).f z m z z g z n z z= − − = −   
f (z) denotes the decrease of the tube radius and g(z), the increase 

of the tube wall rigidity along the tube originating from the heart. R0 
is the radius at the entrance of the tube, E0 is the Young modulus in 
the undisturbed vessel and z0 the abscissa at the entrance of the vessel 
segment. The positive coefficients m and n characterize the rate of 
decrease and increase of the radius, and wall rigidity, respectively.

4.4 Modelling of arterial diseases

Here, we consider diseases as localized perturbations. These 
diseases are generally of three types, namely aneurysms, stenoses and 
atherosclerosis. At the aneurysm site, the wall is stiffer than in the 
normal vessel. It dilates gradually [21], tending to a more spherical 
shape. This implies that the mathematical model used for an aneurysm 
will take into consideration the gradual variation in shape and stiffness. 
Noubissie and Woafo [15,16] proposed a model presenting both the 
shape and rigidity perturbation, based on the formulae

1 2 00( ) sec ( ( )),l z a h a z z= −                                                (9) 

a1, and a2 are respectively the height and the gradient scale of the 
deformation, and z00 is the location of the center of the deformation 
(Figure 1). a1 is also considered as the severity of the deformation. In 
this study, we can use this relation, where a1>0 stands for aneurysm and 
a1<0 stands for stenoses. So, the geometry of the radius R (z,t) of the 
diseased vessel is now expressed as

1( , ) ( ( ) ( )) ( ),R z t R z l z g t= +                                             (10) 

Where, t is the time, z the coordinate along the vessel axis. This 
model is well to study the diseases of vessels when the complicated 
aspects of bow and tortuous aneurysms are not envisaged.

Boundary and initial conditions

As the blood particles adhere to the inner surface of the arterial 
segment, the velocity of the flowing blood particles on the arterial wall 
surface may be taken to be equal to the velocity of the wall. This can be 
given mathematically as

( , , ) 0,W r z t =  And    ( , , ) RU r z t at r R
t

∂
= =
∂ (11)

Due to the axial symmetry of the tube and the consideration of the 
no-slip condition, we know that the axial velocity should be maximal 
on the axis function of r, and the radial velocity should be zero. These 
conditions also used in some works [11,22], are written as

 0,W
r

∂
=

∂  
And U(r,z,t)=0 at r=0.                                                     (12)

In our study associated with the femoral artery, the initial condition 
takes the general form [12]

2 2

1

12 1( , ,0) sec ( )( 1), 1.8( 8.99 )
1

N
k

rg rg
k

kW x z h A x and A z t
a Nk
η

=

+
= − = −

+ ∑  (13)

The condition for the conservation of mass of the wall, is Rh=R0 h0, 
where R0 and h0 are the stationary values of R and h, respectively.

Mathematical Development
Method of solution

For the reasons of simplification of the equations governing the 
blood flow, we can now introduce the dimensionless radial coordinate 
transformation, given by

, [0,1]
( , )
rx and x

R z t
= ∈                                          (14)

 

Therefore, the equations 1-3 governing the blood flow together 
with conditions Equations 11-13 take the form
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Where the radial Navier-stokes equation (Equation 3) is simply 
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reduced to P
x

∂
∂

  = 0 [22].

 Multiplying the continuity (Equation 16) by xR, and integrating 
with respect to the radial coordinate between zero and x, the radial 
velocity becomes

  
0 0

2( , , ) ( , , )
x xR R R WU x z t xW yW x z t dy y dy

z x z x z
∂ ∂ ∂

= − −
∂ ∂ ∂∫ ∫      (20)

This equation can be rearranged as

  2

0
1 xR R WxW U y dy

z xR z
∂ ∂

− =
∂ ∂∫                                                 (21)

Using the boundary conditions Equation 18 in Equation 21, one 
obtains the following relation

  21

0
1R R Wy dy

t R z
∂ ∂

= −
∂ ∂∫                                                             (22)

By inserting (Equations 21, 22), and Equation 4 in Equation 15, the 
blood motion equation appears as
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(23)

To solve Equation 23, we consider that the solution W (x, z, t) is 
approximated by a linear combination of a set of N functions satisfying 
the boundary conditions [11,22].

( )( )2

1
( , , ) , 1

N
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k
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= −∑
                                           

(24)

The insertion of the series (Equation 24) into the axial component 
of the Navier equation (Equation 23) leads to the following form

( )

2 22 2 2
2

21 1
1

2

1 22 2
1 1

2

1 4

1

4 1 0

kN N k k kN k kk
k

k k
k

pN N
k k

j
tk k

A B CE t R RD x x
R k

z
T

hRt fz R h
z Rt

α νν

α

ρ
α ανν α

σρ

+

= =
+

= =

∂ − + − −   ∂− +   
   + 

∂ 
 ∂∂ ∂  + − − + + =  ∂ ∂  ∂∂ +     ∂  ∂  

∑ ∑

∑ ∑

(25)

  To solve Equation 25 numerically, we determine the coefficient αk 
[11], such as Equation 25 becomes (appendix).
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Where the expression of the radial velocity is
2
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Wall shear stress (WSS) is the force exerted by flowing blood 
within the vessel, and is important factor in the study of blood flow. 
Accurate predictions of the distribution of the wall shear stress are 
particularly useful for the understanding of the effect of blood flow on 
endothelial cells. In this paper, numerical studies have been carried out 
on pulsating flow through various types of pathologies, and tapered 
vessels with the main assumptions above. The expression for the WSS 
can be obtained from

 ( )
2

1

1 2 ,
N

rz k
k

U W R k z t
z R x z t R

τ µ µ α
=

 ∂ ∂ ∂ = + = +  ∂ ∂ ∂ ∂    
∑                   (29)

However, to determine the impediment to blood flow, another 
parameter called (Peripheral Resistence) is used. To quantify this effect, 
we compute the resistance of the flow in the vessel, posed as

  
2

2
1t

p
hRL h

z z R Qt
σλ ρ

  ∂ ∂ ∂   = +     ∂ ∂  ∂                              
(30)

Finally, we can solve Equations (26)-(27), with Equations (17)-(19) 
numerically.

Results of the Numerical Simulation and Interpretation
Numerical consideration

The problem of solving, Equations (1)-(3) with respect to r, z, and 
t was reduced to the solutions of Equations (26)-(27), with respect to z, 
and t only. The z-axis is discretized by uniformly spaced mesh points, 
and the partial derivatives with respect to z were approximated by a 
finite difference centered scheme. The Runge-Kutta algorithm is used 
to solve the nonlinear ordinary differential equations, the time and 
space steps are taken to 0.001 s and 0.2 mm, respectively. During the 
computational procedure, we can used the characteristic parameters 
for the femoral artery of a dog [12,17]: R0=1.5 mm, ρf=1050 kg/m3, 
ρp=1060 kg/m3, E=14.1×105 Pa, µ=0.0035 N m−2 s, z0=0, N=5, 
η=0.0014, f=1.2 Hz, T=1 s and L=40 mm.

Flow dynamics in the presence of aneurysms

By using the models as mentioned above, numerical results were 

Figure 1: Localization of deformation: (a) Stenosis and (b) aneurysm 
diseases.
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searched in order to estimate the con- tributions of the different 
physical parameters to the present phenomenon. Figure 2 presents 
the variation of pressure when the severity varies, but the width of 
the diseased region of the vessel is unchanged (a2=0.1756 mm-1), for 
z=15 mm, and t=0.5 s. The pressure variation presents a bell shape its 
peak increases as the severity increases. In the same conditions, the 
axial velocity presents a parabolic profile, decreases when aneurysmal 
severity increases, and is therefore, comparable to the results so far 
obtained [11,17].

Various studies take into account hypotheses of the linear elastic 
behavior of the vessel wall [10,23]. As mentioned above, we consider 
in this work the quadratic nonlinear elastic aspect of the vessel wall, 
and we, therefore, evaluate the effect of the nonlinear elastic coefficient 
on the flow parameters, particularly in the aneurysm site. The increase 
of parameter a decreases the axial velocity profile in the aneurysm site 
(Figure 3), but these variations are less visible for the radial velocity. 
Moreover, the pressure increases with this coefficient. In the case 
of a healthy vessel (a1=0), we observe a constant profile of the WSS 
(τrz0 = 0.024 N m−2). In the presence of aneurysm but far from the 
disease region, the WSS maintains a constant value τrz0. At the entry 
of the aneurysm site, the WSS increases and attains a maximum, 
but decreases before the peak of the aneurysm. However, after this 
peak, the WSS presents symmetry over the constant value. In Figure 
4, one considers aneurysms of same severity (a1=0.3), but different 
widths. For aneurysms of small width large values of a2, one observes 
important value of the WSS extrema. However, these extrema diminish 
as aneurysm enlarges.

Flow dynamics in the presence of stenoses

The results presented in Figure 5 illustrate the radial velocity 
profiles when the severity varies in stenosis, but the width of the disease 
region of the vessel is unchanged (a2=0.1756 mm−1), at t=0.5 s for z=15 
mm. The radial velocity field retains a parabolic profile [11,24], and 
increases when the severity of stenosis increases, due to the obstruction 
of the artery lumen by the presence of the plaques of atherome. The 
increase of the nonlinearity parameter a, decreases the axial velocity 
profile in the stenotic region. The curves representing the axial flow 
velocity retains a parabolic shape, and are, therefore, comparable of the 
results obtained by Chakravarty and Mandal [11]. These effects of the 
nonlinear elastic coefficient (a) on the radial velocity are also negligible 
as in the case of aneurysm. In Figure 6, one considers stenosis of same 
severity (a1=−0.5), but different widths (a2) at t=0.5 s. In the case 
of a healthy vessel (a1=0), we observe a constant profile of the WSS 
(τrz0=0.024 N m−2). In the presence of stenosis but far from the disease 
region, the WSS maintains a constant value τrz0. Before the stenosis 
region, the WSS presents a value larger than (τrz0), attains a minimum, 
but increases in the throat of the stenosis [24]. However, after this peak, 
the WSS presents symmetry over the constant value. For stenosis of 
small width large values of a2, one observes important value of the WSS 
extrema. However, these extrema diminish as stenosis enlarges more 
and more.

It is known that the high wall shear stress may damage the vessel 
wall, and cause intimal thickening, which leads to platelets aggregation, 
and finally results in the formation of thrombus in the vessel [24-26]. 
Pathologies (aneurysms, stenoses) of small width occasions high wall 
shear stress; these, therefore implies that, aneurysms and stenoses of 
small width are more susceptible to the formation of thrombus.

Flow dynamics in presence of prostheses

Figure 2:  Pressure profile in a nonlinear case (a =1.95), for constant 
gradient scale and variable severity at z=15 mm for t=0.5 s, m=0.0009, 
n=0.001and a2=0.1756 in aneurysm site.
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Figure 3: Effects of nonlinear elastic coeffcient on axial velocity in aaneu-
rysmatz=15 mm for t=0.5 s, m=0.0009, n=0.001, a2=0.1756, and a1=0.2.
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The endovascular techniques permit to treat the pathologies, 
such as aneurysms or stenoses, while using the implantation of the 
prostheses in the aneurysmal bag or in the stenosis. These prostheses 
have for goal to warn the collapse of a stenosis or the rupture of an 
aneurysm. For the numerical simulation, we consider that the insertion 
of prosthesis is modeled by a possible small increase of the reference 
vessel radius, followed by the increase of stiffness. Furthermore, this 
modification affects the tube geometry in the same manner as the wall 
stiffness, and are specified by arbitrary, rapidly changing function.

 ( ) 0 R 2 2 ,zR z R exp
L

δ   = + ∆ − −                                                 

(31)

 ( ) 0 2 2 .zEh z Eh Ehexp
L

δ   = + ∆ − −                                 
(32)

In the above equations, R(z), and Eh(z) are respectively the new 

expression of reference vessel geometry, and elasticity along the wall, 
taking into account the insertion of the prosthesis. L is the length of the 
inserted stent, δ gives the steepness of the transition between the normal 

Figure 5:  Radial velocity profile with constant gradient scale and vari-
able severity of stenosis at z=15 mm for t=0.5 s, m=0.0009, n=0.001and 
a2=0.1756, in the linear case(a=0).
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Figure 9:  Distribution along the vessel of the wall shear stress in a   non-
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and the stented regions (here δ=8 as in reference [10]). ∆R and ∆Eh are 
the deformation of the vessel after the implantation of the prosthesis, 
and the maximum specific variation of elasticity, respectively.

In this case, the geometry of the stented vessel is now expressed as 

( )1( , ) ( ) .R z t R z g t=                                                       (33) 

Several complications can occur after the setting up of vascular 
endoprostheses. In this part, we can analyze some factors capable to 
influence the apparition of these complications. We can present here 
the velocity profile, the resistive impedance and the distribution of the 
wall shear stress, according to the parameters as the nonlinearity, the 
stiffness and the transverse distortion of the wall owing to the pose of 
the prosthesis. In Figure 7, we can evaluate the effect of the nonlinear 
elastic coefficient on the flow parameters (here the axial velocity), at 
t=0.5 s through the prosthesis. The axial velocity profile is parabolic 
[14], and decreases for the positive values of a, but is insignificant for the 
radial velocity. We show that the changes induced by the consideration 
of a is observable in the velocity shape at the edges of the stent. Figure 
8 illustrates the results for the variation of the resistive impedance on 
the parameter of rigidity ∆Eh at t=0.3 s. The local increase in rigidity 
forms the instability characterized by lifting, and subsidence to the 
concave zones of the prosthesis. The fluctuations of the impedance at 
the site of the transition zones between the normal and stented regions 
could be at the origin of the secondary affection. For small values of 
∆Eh<17 and large values of ∆Eh>17, the impedance becomes large, 
occasioning difficulties for the blood flow. This can be at the origin of 
the thrombus. The high impedance to the level of the zones of sutures 
can lead to the fractures of the stent, the ruptures of sutures or holes in 
the stent coating [2,5]. Considering these results, ∆Eh=17 appears as an 
appropriate value for a good prosthesis, as the profile of impedance is 
soft to the level of the swelling zone.

The wall shear stress distribution is an important diagnostic factor 
to examine the flow characteristics of blood through the prosthesis. 
In the case of a healthy vessel (∆R=0, ∆Eh=0), we observe a constant 
profile of the WSS (τrz0=0.00075 N m−2). In the presence of the prosthesis 
and for its different configuration, the WSS maintains a constant value 
(τrz0=0.00075 N m−2) to the entrance of the prosthesis and present large 
zones of instabilities characterized by the lifting, and subsidence in the 
bell shape profile to the level of the swelling zones. However, in the 
regions between the swelling zones, we have a quasi-uniform behavior 
of wall shear stress at t=0.7 s (Figure 9). From Figure 9, we have 
observed that for small distortions of the vessel in the presence of the 
prosthesis, one observes important value of the WSS extremums. These 
large instabilities in the suture zones influence the local hemodynamic, 
affect the life span of the prosthesis and indicate a more thrombogenic 
risk into the upstream edge [27,28].

Conclusion
A two dimensional model of the flow is considered in this work, with 

focus on effects of the nonlinearity coefficient of elasticity, variation of 
the radius and that of the Young modulus. These are characteristics of 
blood vessels in presence of aneurysms, stenoses and prostheses. Two 
problems are thus considered in the paper. First of all, we have studied 
the different behaviors of a blood flow in presence of aneurysm and 
stenosis. By varying the vessel parameters related to the diseases, and the 
coefficient of nonlinearity of the wall, we have analyzed their influences 
on the dynamics of the blood flow. The second problem analyzed is that 
of the effects of prosthesis. We have study here the modifications that 
occur at the time of the use of invasive technical treatment of vessel 

pathologies via endoprostheses. The numerical results presented here 
allowed us to interpret some ominous phenomena observed at the time 
of the poses of the endoprostheses. However, the high impedance to 
the level of suture zones can lead to ruptures of sutures, fracture to the 
stent or holes in the stent coating.

Appendix
The insertion of the series Equation 24 into the axial Navier 

equation 23, leads to the following form
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