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Introduction
Malignant Lymphomas (ML) comprising Hodgkin’s Lymphoma 

(HL) and Non-Hodgkin’s Lymphoma (NHL) are characterized by 
malignant transformation of lymphoid cells where a monoclonal 
expansion of the tumor cell emerge from a mutation in a lymphoid 
progenitor cell at the lymphoid differential pathway [1,2]. About 40 
different ML diagnoses are defined, each with specific histological, 
immunophenotypic and clinical features [3]. In principle, the etiology 
of ML consists of both a genetic inborn susceptibility and a possible 
environmental influence, e.g. from antigenic drive of the tumor growth 
from lymphotropic microorganisms, and from a possible mutagenic 
effect of pesticides, solvents and dyes [4-6].

The genetic etiology is supposed to be related to congenic risk 
alleles [7,8], so far mainly investigated in chronic lymphocytic leukemia 
(CLL) [9-16]. Presumably, each diagnosis within the entity malignant
lymphoproliferative disorders (LPD) has its own risk alleles linked to
each other, which eventually explains the observed association between 
LPD diagnoses with familial, pleiotropic clustering [12,13]. Such
congenic risk alleles, also denoted susceptibility loci, or genetic inborn
susceptibility for the specific mutation which causes the monoclone
of the diagnosis, have been demonstrated by means of genome-wide
association studies. In CLL, for example, up to ten or perhaps a few
more susceptibility loci have been demonstrated during the last years
at many different positions in the genome, and with a range of putative 
associations to CLL [15,16]. The same pattern is seen in HL where four 
or perhaps five susceptibility loci known so far are scattered throughout
the genome with a range of putative associations [17,18].

The familial clustering of ML and other types of LPD has been 
proved in recent computerized estimations of large-scaled data from 
cancer registries while only few genealogical investigations based on 
the study of pedigrees from affected families have been published [19-
21]. The computerized estimations of data from cancer registries show 
remarkable inconstancy in frequencies and incidences of clustered 
LPD diagnoses versus solitary disease, and marked differences in 
demographic data of the patients [22-25]. Genetic anticipation, which 
is increased severity in the form of lower age at onset of disease and 
more and more high-malignant cases down through the generations, 
and birth order effect with rank order by age of the affected sib in the 
sib ship, are also reported with marked differences [26-29]. The mode 
of segregation is so far largely unknown. 

The purpose of the present paper is to compare these findings from 
mainly large-scaled computerized data with data from genealogical 
assessments of pedigrees from familial ML.
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Abstract
Familial malignant lymphoma, viz. more than two cases of malignant hematological disease in a family of which 

one diagnosis is malignant lymphoma, was seen in 43 (37 per cent) of the families in our database of familial 
malignant hematological disease. Genealogical examination of the 43 pedigrees after multiple ascertainment showed 
an equal amount of vertical transmissions (affected parent-offspring and grandparent-parent-offspring combinations) 
and non-vertical transmissions (affected uncle, aunt-nephew, niece, cousin combinations) without evident Mendelian 
pattern and no significant difference between observed and expected patrilineal and matrilineal lines in spite of a 
marked predominance of males. A marked pleiotropic diversity of involved diagnoses comprised 57 (93 per cent) 
lymphoproliferative- and 4 (7%) myeloproliferative diseases. Both Hodgkin’s lymphoma, non-Hodgkin’s lymphoma 
apart from the diffuse large B-cell lymphoma and chronic lymphocytic leukemia had a strong mutual association, 
and a weaker yet significant association to multiple myeloma and to diffuse large B-cell lymphoma. Compared with 
the number of patients in the population extracted from the crude age-adjusted incidences, the observed number of 
patients in familial disease was significantly higher interpreted as a stronger expression of congenic susceptibility 
among family members with reservations related to different environmental factors. Signs of anticipation in all 
combinations but no birth order effect were observed. It is discussed that an epigenetic parental genomic imprinting 
as a modifier for the segregation of linked susceptibility loci theoretically would bring about a similar pattern with male 
predominance and pleiotrophic diversity of diagnoses away from any Mendelian expectation.
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Material and Methods
Families

Our database on familial malignant hematological disease, viz. 
families with a least two affected family members (116 families), has 
43 families in which ML is one of the diagnoses. The database has been 
collected systematically over the past decade in our clinical work with 
all types of hematological malignancies in Oslo and Copenhagen. Parts 
of this material has previously been published [20,21], but never as a 
comprehensive description of familial ML and never in the form like 
that presented here.  

Inclusion

Each patient underwent a face-to-face interview about other family 
members with malignant blood disease and the pedigree was drawn 
up. To ensure maximal ascertainment, the interview was individually 
adjusted and modulated to include also old terminology if necessary. 
HL for example was earlier lympho granulomatosis, and CLL was 
sometimes “old man’s disease”. Each patient was also asked about 
the number and position of healthy family members in the family 
tree, stillborn and extramarital persons. The patients were allowed 
time for discussion at home and with relatives. All information was 
crosschecked with the Cancer Registry in Norway and Denmark. Old 
hospital records with histopathological and laboratory reports were 
included in the crosscheck if necessary. Each family was included with 
signed consent of the proband and after information about the purpose 

of the study, that data are confidential and unrecognizable outside 
the study and that the study was approved by the Scientific-Ethical 
Committees and the Data Protection Agency in Norway and Denmark. 

The affiliation of each ML proband in all 43 pedigrees was grouped 
into the following categories: (A) parent-offspring pairs and (B) 
grandparent-parent-offspring combinations (A and B represent vertical 
inheritance), (C) uncle, aunt-nephew, niece cousin combination 
and (D) sib concordance which denote two or more affected siblings 
without affected relatives in other generations (C and D represent 
non-vertical inheritance). The number of patrilineal and matrilineal 
transmissions was recorded in (A) and (B), in (C) it is mixed and in 
(D) unknown.

The mean number of healthy family members crosschecked per 
family was about 50 persons. The Civil Person Registry was used for 
crosscheck in some few cases with uncertainty about the number 
or position of healthy relatives in the family tree. About 30 % of the 
healthy family members were still alive at the end of study. About 150 
generations were evaluated and crosschecked, 86 generations (Table 1) 
with one or more cases of malignant hematological disease.

Diagnoses

All diagnoses were based on standard criteria according to WHO 
classification and ICD-10 nomenclature [3]. In case the crosscheck of 
older family members came up with diagnoses according to former 
classification systems, mainly Lukes & Collins, Kiel, and Working 

DIAGNOSIS FAMILIAL RELATIONSHIP Number (males, females) FAMILIES vs. NORMAL
Table 2 Table 3 Total Rate of ML (%) Ratio males, females

families normal families normal
HL 6 (5,1) 5 (3,2) 11 (8,3) 21 10 2.7 1.5
FL 3 (3,0) 6 (3,3) 9 (6,3) 17 20-25 2.0 1.1

DLBCL 8 (5,3) 4 (2,2) 12 (7,5) 23 30-35 1.4 1.2
LPL 3 (2,1) 3 (1,2) 6 (3,3)
BL 2 (0,2) 2 (2,0) 4 (2,2)
T 1 (1,0) 1 (1,0) 2 (2,0)

MCL 1 (1,0) 1 (1,0)
MZL 1 (1,0) 2 (2,0) 3 (3,0)
NOS 2 (0,2) 2 (2,0) 4 (2,2)
NHL 20 (12,8) 21 (14,7) 41 (26,15) 38 35 1.7 1.3

HL & NHL 26 (17,9) 26 (17,9) 52 (34,18) 100 100 1.9 1.2
CLL 22 (14,8) 15 (10,5) 37 (24,13) 1.9 1.9

LGTCL 2 (1,1) 2 (1,1)
T PLL 1 (0,1) 1 (0,1)
MM 3 (3,0) 2 (1,1) 5 (4,1) 4.0 1.4
AML 1 (0,1) 1 (0,1)
CML 1 (0,1) 1 (0,1)
MF 1 (0,1) 1 (0,1)
ET 1 (1,0) 1 (1,0)

Patients 51 (34,17) 50 (30,20) 101 (64,37)

Families 22 21 43
Generations 45 41 86
Patrilineal 13 3 16
Matrilineal 7 9 16

Patri- and matrilineal 2 2

Abbreviations: HL Hodgkin’s lymphoma; FL follicular lymphoma grade I-III; DLBCL diffuse large B-cell lymphoma; LPL lymphoplasmocytic lymphoma; BL Burkitt’s 
lymphoma; T Precursor T-lymphoblastic lymphoma; MCL mantle cell lymphoma; MZL marginal zone B-cell lymphoma; NOS not otherwise specified; NHL non-Hodgkin’s 
lymphoma, CLL chronic lymphocytic leukemia; LGTCL large granular T-cell leukemia; T PLL T-cell prolymphocytic leukemia; MM multiple myeloma; AML acute myeloblastic 
leukemia; CML chronic myeloid leukemia, MF myelofibrosis;  ET essential thrombocytopenia

Table 1: Malignant hematological disorders in 43 families with malignant lymphoma.
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formulation, the diagnosis was converted to the WHO system and 
ICD-10 nomenclature to make the material homogenous and feasible 
for comparison (Table 1). This conversion was generally easy with some 
few exceptions denoted NOS (not otherwise specified) in the tables.

Statistics

The diagnoses in familial ML were compared with the occurrence 
in the population by means of simple regression of the scores observed 
(Tables 1-3) and crude age-adjusted incidences, viz. number of patients 
per 100.000 persons in the population with the age of the diagnosis 
in question. The incidences used are an estimated mean for Norway 
and Denmark from the observation period 1950-2010, based on official 
Cancer Registry reports [30-32]. An estimated mean has been used 
to adjust for an increasing incidence of ML in general and a specific 
rise in DLBCL during the past decades [30-32]. Age at onset of disease 
in parent-offspring pairs, and male-female ratios were estimated by 
means of Wilcoxon test, pair difference. Two-sided P-value < 0.05 was 
considered significant. Haldane Smith test was used for estimation of 
birth order effect [33]. In this test the sum (6A) of the birth orders, viz. 
the rank in the sib ship by age of affected sibs, is compared with the 
theoretical value, expressed as the 95 % confidence interval (CI 95%) 
[33].

Segregation analysis
X2- test statistics with one degree of freedom was used to test 

for difference between observed and expected number of patri- and 
matrilineal transmissions in vertical inheritance (category A and B). 
The expected numbers were calculated on the assumption that the 
material is random distributed with frequencies for patrilineal (father-
son: np2; father-daughter: npq) and matrilineal transmission (mother-
son: nqp; mother daughter: nq2) where p and q denote the proportions 
of males and females, respectively, and n the total number of families 
included [34].

Pattern recognition 
Trends towards a likely Mendelian pattern in the distribution 

of affected family members in the families was done from a visual 
inspection of each pedigree compared with the standard pattern 
in autosomal dominant-, autosomal recessive- and Y and X-linked 
hybridization [35].

Results
Diagnoses

ML was found in 43 (37 per cent) of 116 families with two or more 

ONE AFFECTED OFFSPRING
Diagnosis and age at onset of disease (years) Birth order

Rank of affected sib/ total number of sibsFamily 
number Father Son Daughter

74 HL 63 CLL 60 1/1
86 HL 49 CLL 58 2/3
30 FL 55 CLL 43 2/3
25 DLBCL 67 HL 36 2/3
11 DLBCL 74 CLL 46 2/3
46 DLBCL 54 CLL 43 3/3
68 LPL 65 MM 42 2/4

5-29 MZL 66 CLL 42 2/2
6 CLL 66 DLBCL 64 3/3

Age at onset, father-offspring: P= 0.02 (Wilcoxon test, pair difference, two- sided) Birth order effect 6A (95%CI): 114 (74-130) ,P > 
0.05 (Haldane Smith test)

Mother Son Daughter
69 DLBCL 70 DLBCL 49 1/1
27 BL 68 CLL 47 1/3
67 LPL 75 HL 26 2/2
75 NOS 70 CLL 61 1/2
107 CLL 82 FL 46 2/2
16 CLL 78 LPL 76 2/3

Age at onset, mother-offspring P = 0.032 54 (40-74) P>0.05
TWO AFFECTED OFFSPRING

Father Son Daughter
114 HL 55 CLL ,CLL 60,60 1/2, 2/2
38 FL 75 CLL, MM 61,60 2/3, 3/3
1 CLL 75 T, CLL 57, 70 2/5, 4/5

80 MM 91 DLBCL,CLL 35, 52 1/2, 2/2 
Mother

97 NOS 88 CLL, CLL 69, 67 3/4, 4/4
Age at onset, parent-offspring P = 0.014 144 (99-153) P> 0.05
BOTH PARENT’S LINES AFFECTED

82 Father DLBCL 80 yr - Daughter CLL 61 yr Mother’s sister HL
115 Mother BL 76 yr – Son CLL 63 yr Father’s father CLL

Abbreviations: 6A of the Haldane Smith test for birth order effect is the sum of birth orders from affected persons, compared with the theoretical value, expressed as the 
95 per cent confidence interval. Other abbreviations, see footnote to Table 1.

Table 2: Familial malignant lymphoma. Parent-offspring combinations.
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cases of malignant hematological disease. The diversity of malignant 
hematological disorder associated with familial ML includes 17 
different diagnoses, 13 Lympho proliferative Disorders (LPD), and 4 
Myelo proliferative Disorders (MPD) in 101 patients, 97 (96 per cent) 
with LPD and 4 (4 per cent) with MPD. Per family, we found 2.3 cases 
(mean) of LPD, 0.1 cases (mean) of MPD and 1.2 cases (mean) of ML 
(Table 1).

The number of affected family members was significantly higher 
than expected (P < 0.001) estimated from the crude, age-adjusted 
Scandinavian incidences, viz. the number of patients per 100.000 
persons in the population. About 2.000 persons were screened within 
the 43 families, 50 persons as a mean per family, giving: HL incidence 
2.5/100.000, expected per 2.000 persons 0.05, observed 11; NHL 
incidence 8.0/100.000, expected 0.16, observed 41; CLL incidence 

5.5/100.000, expected 0.1, observed 37; multiple myeloma (MM) 
incidence 5.0/100.1000, expected 0.1, observed 5 (Table 1). Based on 
these figures, the 43 ML probands are associated especially with CLL 
(37 patients), and ML (52-43 = 9 patients). In spite of nearly the same 
incidences of CLL and MM in the Scandinavian population (5.5 versus 
5.0/100.000), only 5 cases of MM were seen in the families compared 
with 37 CLL patients (Table 1). No cases of ALL were noted (Table 1). 

The rate of lymphoma subtypes in the population compared with 
that of the 43 families shows predominance of HL in familial ML 
(expected 10%, observed 21%, P< 0.05) , and a significant reduction 
of DLBCL in familial ML (expected 30-35%, observed 23 %, P<0.01) 
(Table 1).

A total of four cases of MPD in 43 families with about 2.000 persons 

GRAND PARENT – PARENT – OFFSPRING
Family number Combination Diagnosis and age at onset (years) Birth order
10 Grand father-father-son CLL 72 – CLL 58 – HL 32 4/7, 2/3, 2/2
10 Father’s sister CLL 61 3/3
35 Grand mother – mother - son CLL 71 – FL 61 – HL 36 US, 1/1, 1/2
95 Grand mother – mother - son CLL 86 – normal – BL 21 US,  2/4, 1/4
96 Grand mother – mother - son T PLL 42 – normal – NOS 36 1/6, 1/4, 2/2
37 Grand mother – mother - daughter MM 79 – LPL 56 – FL 42 US, 1/3, 1/2

Age at onset, grandparent – parent and parent - offspring P = 0.004 Birth order effect 6A (95%CI): 114 (100-176) ,P > 0.05 
(Haldane Smith test)

UNCLE, AUNT – NEPHEW, NIECE, COUSIN

Family number Combination Diagnosis and sex
(m male, f female) Evaluable sibships (n) and Birth order

77 Proband – brother’s daughter DLBCLm – CLLf (2) 3/3, 3/3
89 Proband – brother’s son HLm – CLLm (2) 2/3, 2/4
89 Proband’s  brother MMm 3/3
76 Proband – mothers’s sister’s son FLf – CLLm (2) 1/1, 1/3
78H Proband – son DLBCLf – CLLm (2) 1/2, 1/2 
78H Proband’s sister AMLf 2/2
102 Proband –mother’s sister’s son DLBCLf – CLLm (2) 1/2, 5/7 
102 Proband’s brother FLm 2/2
104 Proband – mother’s sister MCLm – CMLf  (1)  2/2, US
104 Proband’s brother CLLm 1/2
108 Proband –mother’s brother’s son Tm – CLLm (2) 4/5, 3/4 

222 (158-244) P> 0.05

SIB CONCORDANCE
Combination and birth order
Family 
number Brother – Brother Family 

number Sister – Brother

78B LPL – LGTCL  1/4 ,  4/4 79B LGTCL – FL 2/3, 3/3

85 BL – CLL 1/3, 2/3

82B MZL  – FL 2/3, 3/3 Sister – Sister
81B ET – DLBCL 1/2 ,  2/2 61 HL - HL 1/3, 3/3

Brother – Sister 
83 B MZL  –MF 1/3, 2/3
58 NOS – CLL 1/2 , 2/2
79A CLL – LPL  1/4, 4/4

Abbreviations: US uncertain. Other abbreviation, see footnote to Table 1 and 2.

Table 3: Familial malignant lymphoma. Other combinations.
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screened is significantly more than expected (P<0.01) and indicate an 
association between LPD and MPD. 

The male/female ratio was generally higher in familial ML (expected 
1.3, observed 1.7, P < 0.005) and highest in HL (expected 1.5, observed 
2.7), sample size 8 males and 3 females (Table 1), counts too small for 
convincing statistical description. 

Segregation

Vertical transmission was seen in 22 families (Tables 1 and 2), non-
vertical transmission in 21 families (Tables 1, 3). Ten LPD diagnoses 
were seen in the vertical transmission while 13 LPD diagnoses were 
seen in non-vertical transmissions (Tables 1-3). All 4 cases of malignant 
myeloproliferative disorders were found in non-vertical transmissions 
(Tables 1 and 3). Taken together, the distribution of affected family 
members in all 43 pedigrees do not fit into one, common Mendelian 
modality of segregation. Neither was such pattern recognition 
successful with the diagnoses ML, NHL, HL and CLL separately.

A birth order effect was not observed in familial ML (Tables 1-3). 
Neither did we see a birth order effect from an estimation of patrilineal 
(6A 282, 95% CI: 211 – 299, n = 16, P>0.05) vs. matrilineal (6A 162, 
95% CI: 158 – 238, n =16, P>0.05) transmissions.

The age at onset of disease was significantly higher (P<0.01) in 
parents than in offspring apart from two families with parental HL 
(nos. 86 and 114, Table 2).

The number of patrilineal and matrilineal transmissions was the 
same when all types of transmissions were evaluated (Table 1).

Patrilineal transmission was predominant in the direct vertical 
transmissions, 13 transmissions from father’s side and 7 from mother’s 
side (Table 1) due to surplus of affected males in this material. 
The observed vs. expected numbers of patrilineal and matrilineal 
transmissions were not different (X2-test with one degree of freedom), 
and no mode of transmission such as father-son (F-S), father-daughter 
(F-D), mother-son (M-S) or mother-daughter (M-D) was superior 
after correlation for the gender of the included patients in the asserted 
vertical transmission (Tables 1 and 2):

ML correlated. n 22, p 0.65, q 0.35, F-S expected np2 = 9, observed 
10. F-D expected npq = 5, observed 5. M-S expected nqp = 5, observed 
5. M-D expected nq2 = 3, observed 1 (P ranging between 0.5 and 0.25).

LPD correlated. n 22, p 0.67, q 0.33. F-S expected 10, observed 10, 
F-D expected 5, observed 5, M-S expected 5, observed 6, M-D expected 
2, observed 1 (P ranging between 0.5 and 0.25). 

CLL correlated. n 18, p 0.64, q 0.36. F-S expected 7, observed 9. F-D 
expected 4, observed 4. M-S expected 4, observed 5, M-D expected 2, 
observed 0 (P ranging between 0.25 and 0.1).

Combined patrilineal- and matrilineal transmission, viz. affected 
family members in both father’s and mother’s lines, was seen in only 2 
families, both with affected parent-offspring (Tables 1 and 2).   

Sex concordance in sibling pairs (male-male np2), (female-female 
nq2) compared with sex discordance (male-female and female-male 
2npq) showed no significant findings: Male-male plus female-female 
expected 9, observed 13. Male-female, female-male expected 8, 
observed 5 when n 18, p 0.64, q 0.36 (P ranging between 0.25 and 0.1).

Discussion
Bias in our material is related to the low-grade disorders which 

sometimes are overlooked due to no or only minor symptoms. 

Typical examples are MGUS (Monoclonal Gammopathy of Uncertain 
Significance), stage A CLL and polycythemia vera. The impact of this 
systematic bias is presumably equal in the multiple familial cases, in 
solitary disease, and in the incidences used for a comparison between 
occurrence of disease in families and in the population. One main 
problem with the underestimated low-grade cases is their absence in 
the family trees when to estimate the number and position of healthy 
persons vs. patients. We do not have a systematic screening of all family 
members in affected families for a precise estimation of this bias. Such 
a screening will imply the recruitment of healthy, uninformed people 
without formal social contact with the proband, e.g. family members 
at a distance from the proband in the pedigree and therefore, it will 
not be approved by our national ethical committees. Furthermore, 
the unknown number of early abortions, experienced as a late, strong 
menstruation, which should rightly be included in the family size when 
to estimate parity, invalidate our data while legal- and late abortions 
and still born persons are already included. About 30 per cent of the 
healthy family members are alive at the time of investigation and still at 
risk for later malignant hematological disease which could change the 
findings. We saw a significant higher age at onset of disease in parents 
than in offspring (Tables 1-3), interpreted as a sign of anticipation 
with the reservation that the age of the mother at the time of delivery 
has a trend towards a higher age during the course of the observation 
period, and that age at onset as a parameter in anticipation theoretically 
should be related to the mean age of onset of the disease in question. In 
CLL for example, we found the highest age at onset in the parents [20] 
with some few exceptions related to e.g. parental HL with a generally 
lower age at onset than in CLL (cf. family nos. 86 and 114 Table 2). 
Finally, environmental factor such as infections with antigenic drive 
and toxic reagents with mutagenic effect, which evidently can affect the 
expression of ML [6] may have changed in the observation period.    

With these reservations, 13 LPD diagnoses and four MPD 
diagnoses were found within the pleiotropic diversity to familial ML 
(Tables 1-3). A strong linking between NHL and HL and between ML 
and CLL was seen in contrast to a weaker association between ML 
and MM. The higher rate of affected males in familial than in solitary 
cases (Tables 1-3) may well be explained by a stronger expression of 
genetic LPD-susceptibility and hence a higher rate of affected males in 
families with multiple cases than in families with solitary cases. These 
genealogical data convey a description of the so-called first generation 
familial disorders known from large-scale estimations of malignant 
hematological disease [22-25] and prove that no simple Mendelian 
segregation is on question.

The predominance of HL and the reduction in DLBCL in familial ML 
(Tables 1-3) can be interpreted as an unequal affinity in the pleiotropic 
clustering (“HL goes together with HL, but DLBCL has its own ways”). 
Such positive and negative linking between LPD-diagnoses would be 
the expected outcome of segregation of mosaics of susceptibility alleles 
with unequal putative associations. In some segregation, one would 
predict an additive enhancement of the susceptibility alleles in the 
mosaic; in other segregations no such synergism would be expected. 
Finally, an antagonistic, suppressive effect between the susceptibility 
alleles in the mosaic is a theoretical outcome which could explain the 
occurrence of single cases (without signs of familial aggregation) of 
disease in the population. 

In such a genetic system with linked susceptibility, male 
predominance, and segregation away from any Mendelian expectation, 
the presence of a modifier of segregation should be considered [36]. 
In principle, such a modifier causing transgenerational segregation 
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distortions is a genetic mechanism which violate Mendel’s first law 
about equal representation of the two alleles at a heterozygous locus 
in the functional products of meiosis (egg or sperm) [36]. Models with 
modifiers linked and unlinked to the primary heterozygote locus have 
been described for instance in parental genomic imprinting [37-43], 
all with different segregation in males and females explained by a an 
unequal effect of the modifier in spermiogenesis and oogenesis [36,44].

It is intriguing that the malignant hematological disorders fulfill 
a number of criteria for the presence of a modifier, among other 
things the lack of a clear Mendelian pattern in the segregation down 
through the generations of affected families in combination with male 
predominance, seen in large subsets of disease, for example in ML 
and CLL. Genomic  imprinting with maternal down regulation, viz. 
“imprinting of paternal susceptibility” has previously been attributed 
to CLL-susceptibility as a possible mechanism in the transmission of 
CLL via feto-maternal microchimerism [20], but very few genealogical 
publications on the segregation of malignant hematological disease 
are available for comparison  [for review see 19-21]. Sex-concordance, 
viz. surplus of male-male and female-female pairs vs. male-female 
pairs in siblings with CLL [45], and the lack of “any genetic effect” in 
lymphoreticular malignancies associated familial, endemic HL [19] 
may be interpreted as signs of distortion. 

We found an equal number of expected versus observed patrilineal- 
and matrilineal vertical transmissions to sons and daughters when 
data has been X2-adjusted for the male predominance. In this way 
the predominance of father-son transmissions is explained as a 
consequence of the surplus of males in the material among an expected 
proportion of father-daughter and mother-son, mother-daughter 
transmissions. In other words, the father-son predominance is a 
distortion away from a Mendelian expectation which is not caused 
by impaired transmissions to daughters. However, a qualitative 
difference between matrilineal and patrilineal transmission has been 
reported in CLL, where a birth order effect to affected offspring could 
be seen only in patrilineal lines [20]. No such birth order effect was 
seen in the present material on ML (Tables 2-3). A number of parental 
transgenerational distortions in epigenetic genomic imprinting are 
based on reciprocal heterozygotes, viz. persons with the same genotype 
but with parental origin of their two alleles reversed [36]. In such 
heterozygotes, pre-conceptual parental environment experiences can 
sometimes be incorporated into the germ line through changes in the 
male gametes due to nearly life-long production in the spermiogenesis 
with a standing capacity to catch up phenotypic, epigenetic impulses, 
in contrast to the oocytogenesis with its limited pool of cells at birth 
and no further production [44,46,47]. Since no relationship between 
susceptibility to malignant hematological disease and the Y or X 
chromosome has been described, for all we know, the effect of such 
heterozygotes in parental genomic imprinting may perhaps represent a 
plausible, alternative explanation.

Recommendation: There can be no doubt about an inherited 
genetic component in the etiology of LPD and most likely, the 
susceptibility alleles represent the genotype of this genetic component. 
Further analyze of susceptibility loci to each LPD diagnosis is therefore 
crucial when to explore the pattern of segregation. Together with 
genealogical data from pedigrees from affected families, we know today 
that the segregation is non-Mendelian and, most likely, influences by 
parental genomic imprinting, genetic anticipation, birth order effect 
and a modifier effect directed towards the susceptibility alleles. We are 
only at the beginning and we need more family studies to complete 
the picture. Besides the theoretical understanding of a genetic entity, 

knowledge on the segregation of LPD will undoubtedly provide a 
splendid practical tool for the diagnostic and the prognostic estimation 
of each patient, and when to look for family donors and disregard those 
who have a load of susceptibility without manifest disease.
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