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Abstract

Objective: To determine the limits of the optic nerve head (ONH) in color fundus images using Depp learning
(DL) for the estimation of its hemoglobin topographic distribution. Also, to evaluate the usefulness of that distribution
in glaucoma diagnosis singly or in association with perimetry.

Methods: A DL method was trained using 40000 fundus images and applied to 89 normal eyes and 77 confirmed
or suspect glaucomas. DL and manual segmentation were compared. The eyes were also examined once with TOP
perimetry (Octopus 300) and Spectralis-OCT and twice with Cirrus-OCT and Laguna ONhE, a program which
estimates hemoglobin from color photographs, using improved criteria from previous studies.

Results: The Sorensen-Dice similarity index between manual and automatic segmentations was 0.993. Intra-
class correlation coefficients were similar when comparing the results of the Laguna ONhE indices using the manual
and automatic segmentations (confidence intervals: 0.933-0.978). For specificity close to 95%, the GDF index, a
factor that measures the distribution of hemoglobin at the nerve, obtained sensitivities between 70.1 and 74.0%
(manual vs. automatic segmentations). The retinal nerve fiber layer thickness (RNFLT) of both OCTs provided
sensitivities between 67.1 and 68.8% and the BMO-RMW of Spectralis-OCT 69.7%. Associating several normalized
indices, e.g. a new visual field harmony index (Threshold Coefficient of Variation, TCV) and GDF, provided 85.7%
sensitivity for 97.8% specificity. GDF correlation with Spectralis-OCT BMO-RMW index was similar to that obtained
between this index and the RNFLT of the same instrument. For 95% specificity, the diagnostic concordance (kappa
value) between both Spectralis-OCT indices was 0.694 and between its BMO-RMW and Laguna ONhE GDF
0.804-0.828.

Conclusion: A fully automatic delimitation of the optic nerve head allows the correct, reproducible and efficient
use of the Laguna ONhE method, and its effectiveness is greatly increased if associated with a perimetric harmony
index.

Keywords: Glaucoma; Hemoglobin; Perimetry; Visual field; Optic
nerve head; Perfusion; Morphology

Introduction
A serious difficulty in assessing conventional color images of normal

and glaucomatous optic nerve heads is to establish their anatomical
limits in a reproducible manner. Each user will use her/his own
criteria, so no uniformity of results can be expected.

Numerous procedures have been designed to automate this task
[1-4], but they usually require some form of user support. Instruments
such as the Heidelberg retina tomograph (HRT, Heidelberg Inst.,
Germany) were commonly used leaving the delimitation of nerve
boundaries to the user's discretion, because some attempts at
automatic definition did not produce results as consistent as expected
[5].

There are several problems in achieving the goal of total
automatism. One of them is the great variability in the size and shape
of the optic nerve head. Another is the frequent presence of areas of
atrophy and/or pigmentation at the edges. Finally, it is known that the
real dimension of the internal canal of the nerve is less than its
apparent magnitude [6].

For this work we have applied deep learning (DL) techniques to
achieve the automatic identification of the position and shape of the
optic nerve head (ONH) in fundus color images, and the fully
automatic segmentation of its edges. The final objective was to
optimize the reproducibility of the Laguna ONhE method described
above [7-9], for the estimation of the distribution of hemoglobin in
normal and glaucomatous optic nerves, avoiding the user’s subjective
criteria.

Our first paper on this subject [7] described a glaucoma
discriminant function (GDF), which combines the slope of the Hb
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amount between the center and periphery of the nerve, and that of the
sectors that tend to be most frequently affected in this disease. This
index has been enriched as information has accumulated, including
the relationships between hemoglobin at the rim sectors most
frequently affected (upper and lower) and those least affected (nasal
and temporal), and associating the result of the evaluation of
hemoglobin distribution in optic nerves using machine learning. These
networks identify the likelihood that the hemoglobin distribution at
the ONH shows the usual characteristics of normal subjects or the
peculiar ones in glaucoma. The results of this new formulation of the
GDF index, which we could call “globin distribution factor”, in terms of
sensitivity, specificity and reproducibility, delimiting the ONH
manually and automatically, is the ultimate objective of this work.

Methods
The study protocol adhered to the tenets of the Declaration of

Helsinki and was approved by the Research Ethics Committee of the
University Hospital of the Canary Islands. The participants were
informed about the study objectives and signed informed consent was
obtained from all of them.

A total of 40000 images including those we have made publicly
available, known as RIM- ONE [10] were used to train DL networks in
the identification of the position of the ONH and its edges. DL
semantic segmentation was chosen in order to obtain pixel level
information of the location and context of the ONH in the image.
Specifically, a U-Net architecture has been used for this semantic
segmentation. This architecture has had not only great results with
biomedical image segmentation, as it was originally proposed by
Ronneberger et al. [11], in whose paper it can be consulted in detail,
but also on many other segmentation projects.

Synthetically, U-Net is encoder-decoder architecture. The encoder
part (Max- pooling) gradually reduces the spatial dimension using
grouping layers to detect the details to be identified, and the decoder
(Up-convolution) gradually recovers the object details and spatial
dimension. There are shortcut connections from encoder to decoder to
help the decoder recover the object details better. For the purpose of
this project, a customized version was used with contracting path filter
sizes of 16, 32, 64, 128, 256 and 512 pixels towards a center filter of
1024 pixels with batch normalization [12] at each convolution block
and ReLU activation.

The neural network was carried out with Python programming
language (Python Software Foundation, https://www.python.org/) and
libraries: Keras with Tensorflow background for the implementation of
the U-Net architecture, OpenCV for image pre- processing and post-
processing, Numpy for calculations, Pandas for data manipulation and
Scikit-learn for splitting the training set between training and
validation sets.

Before the images entered the network for training, several pre-
processes were carried out. Initially, all images and masks were re-sized
to 512 × 512 pixels to fit the neural network's architecture. Also, data
augmentation was carried out at random by changing saturation,
shifting, scaling and rotating images and flipping them horizontally.
The monitor value for the training of the network was Sorensen-Dice
loss.

To do this, a single expert (Gonzalez de la Rosa) manually defined
the limits of 2000 optic nerve heads, trying to adjust to the inner edge
of the Elschnig scleral ring (Figure 1). Two thirds of the sample was

used for training and one third for the evaluation of segmentations.
Applying the results to a new series of 2000 cases, automatic
segmentations that were considered erroneous were manually
delimited and reentered into the system to re-train the net. The sample
was then progressively expanded in successive iterations to complete
the 40000 cases.

Figure 1: Elschnig scleral ring (arrows), segmentation by automatic
procedure and hemoglobin distribution map.

From then on, a sample of 89 healthy eyes and 77 glaucomatous
eyes were consecutively and prospectively selected to compare the
manual with the automatic segmentations, as well as the results when
applying the Laguna ONhE method. Normal eyes were recruited from
patients referred for refraction who underwent routine examination
without abnormal ocular findings, hospital staff, and relatives of
patients in our hospital.

Eligible subjects had to have a best-corrected visual acuity of 20/40
or better, refractive error within ± 5.00 diopters equivalent sphere, and
± 2 diopters astigmatism, and an open anterior chamber angle. The
presence of cataract was not considered a criterion for exclusion a
priori. Age and previous cataract and glaucoma surgery were not
criteria for exclusion. We excluded patients with any other associated
eye disease that could interfere with the interpretation of the results.

Study protocol
Participants underwent a full ophthalmologic examination,

including: clinical history, visual acuity, slit-lamp bio-microscopy,
intraocular pressure (IOP) measurement, and ophthalmoscopy of the
posterior pole.

All control and glaucoma patients had perimetric assessment,
having undergone at least two previous examinations. White-on-white
TOP-32 strategy was used in an Octopus 300 perimeter (Hagg-Streit
AG, Bern, Switzerland). An abnormal perimetry was defined as
reproducible glaucomatous visual field loss in the absence of any other
abnormalities to explain the defect.

Two photographs of each eye fundus were obtained using a Horus
Scope DEC-200 handheld camera (MiiS, Taiwan). Disk boundaries
were defined manually and automatically as explained above.

Two examinations of each case with the Cirrus spectral-domain
Optical Coherence Tomograph (Cube 200 × 200 acquisition protocol,
software version 5.2, Cirrus-OCT; Carl Zeiss Meditec) and one
examination with the Glaucoma Module Premium Edition (GMPE) of
the Spectralis-OCT (Heidelberg Eng., Germany) were also performed.

All the ophthalmic examinations, perimetry tests, and morphologic
evaluations were performed within 1 month from the subject’s date of
enrolment in the study.

Citation: Gonzalez-Hernandez D, Diaz-Aleman T, Perez-Barbudo D, Mendez-Hernandez C,de la Rosa MG, et al. (2018) Segmentation of the
Optic Nerve Head Based on Deep Learning to Determine its Hemoglobin Content in Normal and Glaucomatous Subjects. J Clin Exp
Opthamol 9: 760. doi:10.4172/2155-9570.1000760

Page 2 of 8

J Clin Exp Opthamol, an open access journal
ISSN:2155-9570

Volume 9 • Issue 5 • 1000760



The Laguna ONhE program has been previously described in detail
[13]. It used mathematical algorithms for automatic component
segmentation to identify the central retinal vessels. Thus, two areas of
the ONH were defined: the central retinal vessels and the ONH tissue
itself. The program analysed three components of ONH photographs:
blue (B), green (G), and red (R) and applied the formula (R-G)/R to
the pixels of vessels and tissue. The result obtained for the vessels was
used as the reference value for calculating the Hb content in the tissue.
The (R-G)/R value was calculated for any area of the tissue, then
divided by the (R-G)/R value for the vessels and the result was
multiplied by 100. Thus a relative measure (percentage) of the amount
of hemoglobin in the tissue was obtained.

The distribution of hemoglobin in some sectors was used to
estimate the vertical cup/disc ratio. Similarly, the position of the cup
and rim, and hemoglobin present the rim sectors was estimated.

After a first multicenter study demonstrating the usefulness of the
procedure, we analysed its reproducibility [14], and it was then applied
to ocular hypertensives [15]. New studies have allowed separating rim
from cup information, analyzing images obtained with a stereoscopic
camera [16], and also associating two-dimensional photographic
images with optical disk and cup delimitations provided by OCT [17].
Finally, their results have been analysed with the 360 degrees of the of
the retinal nerve fiber thickness in a recent paper [18].

Classification into groups
Healthy eyes had an IOP of less than 21 mmHg, no history of

increased IOP, normal optic disc morphology, and normal visual field
results. Patients in the “glaucoma” group had characteristic optic nerve
defects or suspected disease data, such as intraocular pressure (IOP)
greater than 21 mmHg, associated with a family history of glaucoma, a
suggestive aspect of the ONH, or a borderline condition in the visual
field, for example, a mean defect greater than 2 dB or depressed points
in the defect curve. Subjects with IOP greater than 25 mmHg or
pressures between 21 and 25 mmHg associated with a corneal
thickness (ECC) less than 500 μm were also included, regardless of
other types of signs or symptoms, even if the diagnosis of glaucoma
had not been fully confirmed.

Statistical analysis
For the development of the Laguna ONhE program, the blue, green,

and red components of the images were evaluated using the Matlab
image analysis program (The MathWorks Inc., Natick, MA) and its
toolbox for image processing.

The coincidence between the areas of optic nerve delimited by the
expert and those established by the neural network was evaluated
using the Sorensen-Dice index, which consists of dividing twice the
area of coincidence of both delimitations by the sum of the two areas.
The Jaccard index was also calculated by dividing the area of
coincidence by the sum of the two areas minus the area of coincidence.

The remaining statistical analyses were performed using the Excel
2016 program (Microsoft Corp., Redmond, Wash., USA) and MedCalc
(version 18.9-64-bit; MedCalc software bvba, Mariakerke, Belgium).
The areas under the receiver operating characteristic curves (AUCs)
were calculated and sensitivities at a fixed specificity close to 95%, and
98% (5%-2% false positive rate) for some principal parameters of each
procedure.

After checking for a normal distribution of the variables, Pearson
correlations were also calculated between some structural and Laguna
ONhE parameters. Reproducibility was assessed by obtaining the
intra-class correlation coefficient for simple measures and the inter-
rate agreement in the diagnostic classification using the kappa index.

A new index was calculated to value the harmony of the visual field,
using the subject himself as a pattern [19]. This index, called
threshold’s coefficient of variation (TCV) is calculated as the Pearson
coefficient of variation of the thresholds in symmetrical positions of
the visual field.

For data normalization, the function available in Excel was used,
which transforms the original values into data of a comparable range,
taking into account the average and standard deviation observed in the
reference cases.

Results
Demographic and clinical characteristics of the two groups studied

are summarized in Table 1.

Figure 1 shows, in an example, the position of Elschnig’s scleral ring
and the segmentation performed by the automatic procedure, which
obtained a Sorensen-Dice index of 0.995 (Jaccard 0.990) with the
manual delimitation.

The Sorensen-Dice index of coincidence between the disc areas
delimited by the expert and the automatic procedure was 0.990
(s.d.=0.008) in the set of previous images and 0.993 (s.d.=0.003) in the
series obtained with the fundus camera DEC-200 (respective Jaccard
index 0.980 and 0.986).

No significant age-related changes were observed in the reference
population for the GDF index value, or for the vertical cup/disc ratio
estimated by hemoglobin values or the TCV perimetric index (p>0.05).

Table 2 shows the result of the ROC analysis of the analysed
variables. In all cases, the difference observed between the two groups
was statistically significant (Student t-test p<0.0001). The standard
error allows estimating the confidence intervals of the areas shown.

Table 3 shows the reproducibility results of the indices obtained in
two examinations of the same eye, estimated by calculating the intra-
class correlation coefficient.

Table 4 shows the diagnostic coincidences of the indices obtained,
when the cut-off point between normality and pathology was set at the
cut-off value specified in Table 2 for specificity close to 95%.

Figure 2 compares the GDF index values obtained by automatic
ONH delimitation in the second of the examinations with the
Spectralis-OCT BMO-MRW index. Figure 3 compares this last index
with the BMO-RNFLT of the same instrument. It should be noted that,
in the latter case, two values were observed that could be considered
outliers and that are distinguished, isolated, in the right part of the
graph. If both data were deleted, the value of R2 would be 0.757
(p<0.0001).

Table 5 shows the ROC analysis of the result of adding some
combinations of morphological, functional and perfusion indices, after
normalization of their original value. Figure 4 shows some examples of
ROC curves obtained by summing several of these normalized indices.
In the case of GDF, automatic nerve delimitation was used.
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Figure 2: Relationship between the Laguna ONhE GDF index and
the Spectralis-OCT BMO-MRW.

Figure 3: Relationship between the Spectralis-OCT BMO-RNFLT
and BMO-MRW indices.

Figure 4: ROC curves obtained by adding functional, morphological
and perfusion normalized information.

Discussion
Some authors believe that the segmentation carried out by various

experts should be used as a reference [20,21]. Our opinion, on the
contrary, is that in order for a result to be reproducible, no variability
should be introduced in training the networks, because this variability
would be transferred to the result.

Al-Bander et al. [22] have published an extensive review of
coincidence indices obtained by various authors when segmenting the
ONH. The maximum Jaccard index obtained in the reviewed literature
was 0.9398, a much lower figure than ours (0.990). Even lower is the
Jaccard index of 0.8289 obtained by these authors in our RIM-ONE
series. Sevastopolsky [23] has also used the RIM-ONE database
obtaining a Sorensen-Dice index of 0.95, and also with the same series
Cerentini et al. [24] reported an accuracy of 87.6%. Other papers using
Structured Learning have obtained a similar Dice index of 0.9181 [25].

Our better results seem to depend not only on the use of a much
larger sample, but also on the training strategy of the network,
incorporating sequentially the manual segmentations of those images
that the automatic method segmented in an erroneous way.

 Reference group (Average ± SD) Glaucoma group (Average ± SD) P

Number 89 77  

Gender (Male/female) 30/59 44/33 >0.1*
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Age (y) 44.46 ± 12.37 63.04 ± 10.13 >0.001**

BMO-MRW (S-OCT, µm) 329.88 ± 48.62 190.919 ± 74.79 >0.001**

BMO-RNFLT (S-OCT 3.5 mm circle, µm) 102.27 ± 11.04 70.61 ± 21.60 >0.001**

RNFLT (C-OCT, µm) 90.81 ± 9.73 66.46 ± 14.93 >0.001**

Vertical C/D ratio (C-OCT) 0.50 ± 0.14 0.74 ± 0.13 >0.001**

Average mean defect (dB) 0.16 ± 1.64 7.98 ± 7.58 >0.001**

Average sLV (dB) 1.76 ± 0.62 4.54 ± 2.55 >0.001**

Differences with a p value<0.05 were considered statistically significant (in bold).

Table 1: Demographic and clinical characteristics of the two groups.

ROC area St error Cut off-sens Spec. Sens. Cut-off Spec.

Octopus MD 0.873 0.029 3.3 95.5 66.2 4.11 97.8 59.7

Octopus TCV 0.922 0.023 1.96 95.5 74 2.26 97.8 74

Laguna ONhE GDF manual 1 0.905 0.025 -0.83 95.5 74 -23.8 97.8 54.5

Laguna ONhE GDF manual 2 0.902 0.025 -4.74 95.5 70.1 -17.34 97.8 62.3

Laguna ONhE GDF automatic 1 0.911 0.024 -0.66 95.5 71.4 -24.48 97.8 51.9

Laguna ONhE GDF automatic 2 0.91 0.024 1.38 95.5 74 -19.89 97.8 55.8

Laguna ONhE V C/D manual 1 0.879 0.028 0.6 95.5 61 0.62 98.9 55.8

Laguna ONhE V C/D manual 2 0.884 0.027 0.61 95.5 61 0.62 97.8 54.5

Laguna ONhE V C/D automatic 1 0.879 0.028 0.6 95.5 61 0.62 98.9 55.8

Laguna ONhE V C/D automatic 2 0.884 0.027 0.61 95.5 61 0.62 97.8 54.5

Cirrus-OCT V C/D 1 0.901 0.025 0.7 95.5 67.5 0.73 97.8 62.3

Cirrus-OCT V C/D 2 0.895 0.026 0.71 95.5 63.6 0.76 97.8 53.2

Cirrus-OCT RNFLT 1 0.907 0.025 73.98 96.6 68.4 73 98.9 65.8

Cirrus-OCT RNFLT 2 0.903 0.025 74.97 95.5 67.1 72.98 97.8 65.8

Spectralis-OCT BMO-MRW 0.932 0.021 232.91 95.5 69.7 225.79 97.8 67.1

Spectralis-OCT BMO-RNFLT 0.908 0.024 84.94 95.5 68.8 78.99 97.8 59.7

SPEC: Specificity; SENS: Sensitivity; MD: Mean Defect; TCV: Threshold's Coefficient of Variation; GDF: Globin Distribution Factor; V C/D: Vertical Cup/Disc ratio;
RNFLT: Retinal Nerve Fiber Layer Thickness; BMO: Bruch's Membrane Opening; RMW: Minimum Rim Width.

Table 2: Results of ROC analysis: sensitivity has been calculated for specificity near to 95 and 98%.

 Intra-class correlation 95% confidence
interval

Laguna ONhE GDF manual 0.9455 to 0.9701

Laguna ONhE GDF automatic 0.9596 to 0.9779

Laguna ONhE V C/D manual 0.9332 to 0.9633

Laguna ONhE V C/D automatic 0.9538 to 0.9747

Cirrus-OCT RNFLT 0.9509 to 0.9730

Cirrus-OCT V C/D 0.6081 to 0.7666

GDF: Globin Distribution Factor; V C/D: Vertical Cup/Disc Ratio; OCT: Optical
Coherence Tomograph; RNFLT: Retinal Nerve Fiber Layer Thickness.

Table 3: Intra-class correlation coefficient observed by comparing the
two examinations performed on the same eye with the same
procedure.
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 Octopu
s

Octopu
s

Laguna
ONhE

Laguna
ONhE

Laguna
ONhE

Laguna
ONhE

Cirrus-OCT Cirrus-
OCT

Spectralis-
OCT

Spectralis-
OCT

MD TCV GDF
manual 1

GDF
automatic 1

V C/D
manual 1

V C/D
automatic
1

V C/D 1 RNFLT 1 BMO-RNFLT BMO-MRW

Octopus TCV 0.788 0.663 0.635 0.571 0.577 0.644 0.697    

Laguna
ONhE

GDF manual
2

0.557 0.646 0.961 0.934 0.781 0.858 0.679 0.599 0.667 0.788

Laguna
ONhE

GDF
automatic 2

0.603 0.689 0.948 0.961 0.812 0.858 0.697 0.664 0.658 0.777

Laguna
ONhE

V C/D
manual 2

0.501 0.544 0.812 0.81 0.858 0.858 0.656 0.573 0.616 0.741

Laguna
ONhE

 0.501 0.544 0.812 0.81 0.858 0.858 0.656 0.573 0.616 0.741

Cirrus-OCT V C/D 2 0.616 0.707 0.734 0.731 0.664 0.664 0.85 0.741 0.62 0.716

Cirrus-OCT RNFLT 2 0.716 0.67 0.67 0.641 0.601 0.601 0.784 0.892 0.799 0.706

Spectralis-
OCT

BMO-MRW 0.638 0.62 0.804 0.828 0.714 0.714 0.76 0.653 0.694  

Spectralis-
OCT

BMO-RNFLT 0.65 0.681 0.658 0.656 0.616 0.616 0.638 0.799   

MD: Mean Defect; TCV: Threshold's Coefficient of Variation; GDF: Globin Distribution Factor V; C/D: Vertical Cup/Disc ratio; RNFLT: Retinal Nerve Fiber Layer
Thickness; BMO: Bruch's Membrane Opening; RMW: Minimum Rim Width.

Table 4: Kappa indices obtained by observing the classification of the eyes with respect to the cut off value estimated for specificity close to 95%.

Sum of normalized
indices

ROC
area

ST
error

Cut
off

Specifici
ty

Sensitivit
y

GDF 2+TCV 0.957 0.017 2.7 97.8 85.7

GDF 2+MD 0.935 0.021 3 97.8 76.3

BMO-MRW Spectralis OCT
+TCV

0.956 0.017 3.5 97.8 79.2

BMO-MRW Spectralis OCT
+MD

0.939 0.02 2.9 97.8 75.3

RNFLT 2 Cirrus OCT+TCV 0.949 0.018 3.3 97.8 79.2

RNFLT 1 Cirrus OCT+MD 0.925 0.022 2.6 97.8 72.7

BMO-MRW Spectralis OCT
+GDF 2

0.935 0.021 -3.5 97.8 75

RNFLT 2 Cirrus OCT+GDF
2

0.941 0.02 -3 97.8 72.7

GDF: Globin Distribution Factor; TCV: Threshold's Coefficient of Variation; MD:
Mean Defect; BMO: Bruch's Membrane Opening; RMW: Minimum Rim Width;
RNFLT: Retinal Nerve Fiber Layer Thickness.

Table 5: ROC analysis of the sum of some normalized indices
demanding a high specificity.

Unlike the recent study by Sidong et al. [26] our DL method is used
exclusively for the delimitation of the ONH, while diagnosis variables
are obtained by calculations made from the RGB values of the image,
adding a value of probability obtained through conventional machine

learning. On the other hand, Sidong's work confronts normal subjects
with confirmed glaucoma, at least in the selection of cases from our
RIM-ONE base, which they also use. In our work we have also
included cases at risk, but without clear confirmation of glaucoma,
trying to simulate a more realistic clinical situation. These differences
very likely influence the absolute data of sensitivity and specificity
observed.

Zhixi et al. [27] have also applied DL to the diagnosis of glaucoma.
In this case, the sample has multiple origins and, as in the previous
publication, there is no uniform diagnostic classification. On the other
hand, the high sensitivity and specificity obtained contrast with the low
index of diagnostic concordance among the experts used as a standard
(kappa=0.75). In neither of these two studies is there any clear
evidence of the morphological or functional parameters of the cases
studied, the comparison of which results could have been more
clarifying of their respective advantages. It should be noted that in Li's
work, confirmed glaucoma are those with a vertical cup/disc ratio
equal to or greater than 0.9.

The ROC analysis of our cases shows the consistency of the
sensitivity results of the Laguna ONhE indices when applying the
automatic delimitation, with respect to the manual delimitation, which
is congruent with the concordance between both segmentations. There
are also no significant differences between the results of the GDF index
and the morphological indices obtained with both OCTs. Only in the
case of the Spectralis BMO-MRW was there a slightly higher ROC area
and a slightly higher sensitivity observed for a specificity of 98%, but
not for 95%.
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There are also no essential differences between the reproducibility of
the Laguna ONhE indices and those of the fiber layer thickness
measured by Cirrus-OCT. However, the reproducibility of the vertical
cup/disc ratio of Cirrus-OCT was significantly lower.

The vertical cup/disc ratio has also been calculated using multi-label
deep network [28]. The ROC areas obtained (0.814-0.822) were lower
than ours.

The concordance kappa values obtained also guide us on the
reproducibility and diagnostic capacity of the indices. Only results
higher than 0.9 are observed between the different GDF values,
although the one obtained between the two RNFLT exams with the
Cirrus-OCT is not very different. Values close to 0.8 are observed both
between the RNFLT measurements of both OCTs and when
comparing the Spectralis OCT BMO-MRW with the Laguna ONhE
indices. The comparison of the BMO-MRW of the Spectralis OCT with
the Laguna ONhE indices shows values close to 0.8 in Laguna ONhE
and Cirrus-OCT, while the two Spectralis-OCT indices only reach
0.694.

It should also be remarked that the correlation between the two
Spectralis-OCT indices is similar to the one presented by its BMO-
MRW with the Laguna ONhE GDF, as can be seen in Figures 2 and 3.

The association between different indices seems to indicate that
adding functional information with morphological or perfusion
information, after normalization of their values, is a simple strategy
that allows to gain in diagnostic ability. Bearing in mind that some of
the cases analysed were not confirmed glaucoma, it is worth
highlighting the sensitivity achieved for very high specificities, which
are especially desirable for pathology screening tasks. The proposed
method seems simpler than other attempts to combine morphology
and function [29] including an event-based score that we have recently
proposed [19].

Consequently, from the data obtained it appears that it is possible to
automatically identify the position of the ONH, with enough
reproducibility and agreement with the criterion of an expert. This
delimitation facilitates the application of the Laguna ONhE method,
contributing with the improvement of its indices to define a useful tool
as an isolated procedure, which effectiveness can be enhanced when
associated with other morphological and functional methods of
examination.

It would be desirable to compare our method in the future with
other methods of ocular perfusion measurement, such as laser speckle
flowgraphy, to which machine- learning classification [30] methods are
also being applied.
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