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ABSTRACT
Background: Schizophrenia is a chronic mental illness in which a person’s perception of reality is distorted. Early

diagnosis can help to manage symptoms and increase long-term treatment. The Electroencephalogram (EEG) is now

used to diagnose specific mental disorders.

Methods: In this paper, we developed an artificial intelligence methodology built on deep convolutional neural

networks and transformer layers to detect schizophrenia from EEG signals directly, recordings include 14 paranoid

schizophrenia patients (7 females) with ages ranging from 27 to 32 and 14 normal subjects (7 females) with ages

ranging from 26 to 32. In the first phase, we used the Gramian Angular Field (GAF), including two methods: The

Gramian Angular Summation Field (GASF) and the Gramian Angular Difference Field (GADF) to represent the

EEG signals as various types of images. Then, well-known architectures, namely transformer and CNN-LSTM, are

applied in addition to two new custom architectures. These models utilize two-dimensional Fast Fourier Transform

layers (CNN-FFT) and wavelet layers (CNN-Wavelet) to extract useful information from the data. These layers allow

automated feature extraction from EEG representation in the time and frequency domains. Ultimately these models

were evaluated using common metrics such as accuracy, sensitivity, specificity and f1-score.

Results: Transformer and CNN-LSTM models derive the most effective features from signals based on the findings.

Transformer obtained the highest accuracy of 98.5 percent. The CNN-LSTM, which has a 95.7 percent accuracy rate,

also performs admirably.

Conclusion: This experiment outperformed other previous studies. Consequently, the strategy can aid medical

practitioners in the automated detection and early treatment of schizophrenia.

Keywords: Schizophrenia; Electroencephalography; Deep learning; Fast Fourier transformer; Gramian angular field;

Wavelets; Transformers; Recurrent neural networks

INTRODUCTION
Schizophrenia is a severe mental disorder in which a person
instinctively uses an unusual interpretation of reality.
Schizophrenia can be accompanied by hallucinations and mental
and behavioral disorders that disrupt the day-to-day and thus
disable the patient. It is also a brain disorder affecting a person’s
thinking, feeling and perception. The main symptoms of
schizophrenia are signs of insanity, such as auditory

hallucinations and delusions. The exact cause of schizophrenia is
unknown, but researchers believe that a combination of genetic
factors, chemicals in the brain and environmental factors may
play a role. For instance, evidence suggests that certain
environmental factors, such as viral infections, exposure to
certain toxins and highly stressful conditions, may cause
schizophrenia in people genetically predisposed to the disease.
Schizophrenia is a long-term disease that has no cure but can be
controlled. Therefore, people with schizophrenia need lifelong
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Lih Oh, et al. [11] studied 14 participants in each group
(schizophrenia and healthy controls). They developed an eleven-
layer convolutional neural network which was evaluated with 14-
fold cross-validation. Shalbaf et al. [12] analyzed 28 individuals
introducing a methodology based on transfer learning with deep
Convolutional Neural Networks (CNNs), which uses an
eighteen-layered Residual Network (Res-Net18) to achieve a
higher performance rate. All raw signals were turned into images
by performing Continuous Wavelet Transformation (CWT).
Shu Lih et al. [13] studied 28 subjects, 14 in each group, using
an eleven-layered Convolutional Neural Network (CNN) model
to classify and extract features for signals. Shoeibi et al. [14]
investigated 14 subjects for each of the schizophrenia and
control groups. They applied different conventional machine
learning methods and deep learning architectures and which
CNN-LSTM combination achieved the most promising result.
Finally, Siuly et al. [15] assessed 81 subjects, which included 49
schizophrenia patients and 32 healthy controls. This research
proposes a particular technique incorporating the Empirical
Mode Decomposition (EMD) approach, in which each EEG
signal is decomposed into Intrinsic Mode Functions (IMFs) by
the EMD algorithm. The ensemble bagged tree outperformed
the others among the classifiers that the authors considered.

The current study aims to determine EEG indices as a predictor
for patients diagnosed with schizophrenia. Several models will
be compared for an automated diagnosis approach based on
deep convolutional neural networks with custom layers and
transformers. First, Gramian Angular Field (GAF) encodes the
EEG signals as different types of images. Then two-dimensional
fast Fourier transform layers and wavelet transform layers are
used in different CNN architectures. These layers allow
automatic feature extraction from EEG signals in the time,
frequency and time-frequency domain, which increases the
feasibility and applicability of the method in reality. Trasnformer
also applied in order to compare the predictive ability of both
powerful deep learning models. Transformer self-attention
mechanism allows them to focus selectively on the most
important parts of the input signal. This is particularly useful in
EEG signal analysis as different parts of the signal may contain
varying amounts of relevant information and the self-attention
mechanism can learn to weight the importance of different
segments dynamically.

MATERIALS AND METHODS
First, in subsection 2.1, the dataset and its features are
explained. Then, concepts of Gramian angular field, wavelet
transform and Fourier transform, which are all non-deep
learning-based materials of this study, are described in
subsections 2.2, 2.3 and 2.4, respectively. Likewise, in
subsections 2.5 and 2.6, convolutional neural networks and long
short-term memory, which are deep-learning-based, are
presented. Furthermore, in subsections 2.7, 2.8, 2.9 and 2.10,
FFT-CNN2D, Wavelet-CNN2D, CNN-LSTM and transformer
models are the main models of this study and are explained in
depth, respectively. Finally, in subsection 2.10, the evaluation
metrics and methods used in this study are described (Figure 1).
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treatment. Additionally, early treatment may control symptoms 
before the onset of severe complications and may help improve 
the long-term prognosis. Today, EEG is used as a diagnostic tool 
for some psychiatric diseases.

Dvey-Aharon et al. [1] introduced a method called “TFFO” 
(Time-Frequency transformation followed by Feature-
Optimization) for schizophrenia detection operating on 75 
subjects. The technique was utilized for single electrode 
recordings to make the procedure more practical. Akar et al. [2] 
used non-linear approaches, including Approximate Entropy 
(ApEn), Shannon Entropy (ShEn), Kolmogorov Complexity 
(KC) and Lempel-Ziv Complexity (LZC) in their study. They 
investigated the EEG signal complexity of 22 individuals. In 
schizophrenia patients, lower complexity values were reported 
mainly in the frontal and parietal regions. Dvey-Aharon et al. [3] 
introduced a new connectivity analysis method named 
‘Connectivity maps’. The authors identified unique 
characteristics using these maps. Signals were obtained from 3-5 
electrodes with a relatively short recording period. The 
experiment took place on 50 participants, consisting of 
schizophrenic and normal subjects, with the former being 
treated with anti-schizophrenia medications. Jahmunah et al. [4] 
studied 14 participants extracting 157 non-linear features with 
methods consisting of activity entropy (ae), largest Lyapunov 
exponent (lx), Kolmogorov-Sinai (k-s) entropy, Hjorth 
complexity (hc) and mobility (hm), Renyi (re), ShEn, Tsallis (ts), 
KC, bispectrum (bs), cumulant(c) and permutation entropy (pe). 
Significant features were selected and recognized in the t-test 
algorithm in work mentioned. Zhang et al. [5] analyzed 81 
subjects, including 32 controls and 49 patients. The features 
were extracted based on Event-Related Potentials (ERP) and 
were categorized using a random forest classifier.

Buettner et al. [6] also built a random forest classifier based on 
the spectral analysis applied to 28 subjects (14 individuals in 
each group). Krishnan et al. [7] decomposed the EEG signals 
into Intrinsic Mode Functions (IMF) signals, performing 
Multivariate Empirical Mode Decomposition (MEMD). Then 
the IMF signal’s complexity was determined by approximate, 
sample, permutation, spectral and singular value decomposition 
entropies. Support Vector Machine with Radial Basis Function 
kernel (SVM-RBF) demonstrated the best results. Aslan et al. [8] 
transformed raw EEG signals of two separate datasets with a 
short-time Fourier transform of images. Visual Geometry Group 
architecture with 16 layers (VGG16) was applied to classify two-
dimensional time-frequency features among schizophrenia 
patients and healthy controls. Chandran et al. [9] assessed EEG 
recordings from 14 schizophrenia patients and 14 healthy 
controls and determined non-linear properties such as Katz 
Fractal Dimension (KFD) and Approximate Entropy (ApEn). 
For diagnosis, they applied an LSTM architecture with four 
hidden LSTM layers, each with 32 neurons. Devia et al. [10] 
used a visual task procedure and features related to evoked 
potentials in order to identify patients with schizophrenia. The 
authors indicate that in the control group, photos with natural 
content cause later behavior and these differences are to be 
found in the occipital region.
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Figure 1: Block diagram of the proposed method.

Dataset

The dataset used in this work was provided by Olejarckyz et al. in 
2017 [16], which is publicly available. Recordings include 14 
paranoid schizophrenia patients (7 females) with ages ranging 
from 27 to 32 and 14 normal subjects (7 females) with ages 
ranging from 26 to 32. EEG data was recorded with eyes closed 
for fifteen minutes. Recordings were obtained from 19 electrodes 
placed on the scalp according to the 10-20 international standard 
electrode position classification system. The sampling frequency 
was 250 Hz (Figure 2).

Figure 2: Examples of normal and schizophrenia EEG signals.

Gramian Angular Field (GAF)

Gambian Angular Field (GAF) is a time-series encoding method
first introduced by Wang et al. [17-19] for classifying EEG signals
using deep convolutional neural networks. In this approach,
initially, signals are normalized into the [0, 1] interval using the
following formula:

Further, they are transformed into the polar coordinate system
using the following equation:

Figure 3: Comparison of normal and schizophrenia Gramian
angular fields.

Wavelet transform

The wavelet transform represents an input signal in multiple
resolutions using bandpass filters. In a Discrete Wavelet
Transform (DWT), signals are categorized into high and low-
frequency components known as detail and approximation
coefficients. Then the approximation coefficients are split into
next-level approximate and detailed coefficients and the process
continues to depend on the depth of the wavelet tree.

Fourier transform

This transformation decomposes the signal into a series of sine-
based functions; the absolute values of the Fourier transform
represent the signals’ frequency behavior. In this work, Fourier
layers were introduced as a starting point for the convolutional
neural networks to extract the features from a different
representation of the data, which might be more beneficial than
the time domain features.

Convolutional Neural Networks (CNN)

CNN is a particular form of neural network commonly used in
signal and image processing. CNN utilizes local information by
using filters, so-called kernels, which are far more efficient in the
number of parameters concerning Multi-Layer Perceptron
(MLP). It is the state-of-the-art technique of deep learning to
analyze two-dimensional data. A typical set consists of
convolutional layers for extracting features, pooling layers to
reduce the input dimension and dense layers to map the features
into a more distinct space for classification.
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Lastly, the GAF Matrix (G) is obtained from rescaled time series 
resulting in images fed to the convolutional neural network. 
Two techniques implemented in this study were Gramian 
Angular Summation Field (GASF) and Gramian Angular 
Difference Field (GADF) (Figure 3).
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Convolutional layers: Convolutional layers apply a linear
transformation using a specific kernel. Filters are a way of
extracting features from input patterns. The procedure may be
described as follows:

The kernel has a size of K × K, in the case of a symmetrical
trainable kernel and the weights are denoted as wab. xl

ij
represents an output from the current convolution layer l and
yl-1 shows the last layer’s output, the input to the next layer.
Finally, the output yl

ij is calculated after applying a non-linearity
through an activation function chosen as Rectified Linear Unit
(ReLU). ReLU is superior to Sigmoid and Tanh due to faster
calculation time and better backpropagation in extreme values.

Pooling layers: Pooling layers are a technique to reduce the
input size while extracting features with convolutional layers; the
most frequent form is called Max Pooling. Where the pixel with
the maximum intensity is chosen over each window, reducing
the image size to N/K × N/K with a pooling kernel size of K ×
K. Pooling layers improve the computations in neural networks
and provide a method to deal with over fitting by constraining
the feature space.

Fully-connected layers: Fully-connected layers also called dense
layers, use linear regression-like transformations to give more
importance to features that can improve the decision boundary.
For example, the procedure is shown below:

primary components for transmitting information through
LSTM cells. This operation can be calculated as equation (8):

Similar to the input gate formula, xt as input data and ht-1 as the 
previous layer’s hidden state is concatenated and fed to a linear 
transition with wf and bf as weights and biases, respectively, 
eventually, the result is activated using a sigmoid function. The 
output closer to zero means to forget and one means to retain.

Input gate: The input gate controls whether the cell state is 
updated by calculating the importance of the current input data 
to the network. This procedure can be calculated as equation 
(9):

where xt is the current input data, and ht-1 is the previous layer’s 
hidden state which both are concatenated and passed through a 
linear transformation with wi as weights and bi as biases, finally, 
a sigmoid function is applied to the previous step, bounding the 
output between 0 and 1 where the output closer to zero means 
no update and closer to one means to update.

Candidate gate: Like the input gate, the candidate gate is also 
responsible for updating the cell state. However, unlike the 
input gate, this gate performs the Tanh activation function over 
the linear transformation. Therefore, the expression is simplified 
into equation (10):

Like the other gates, this gate also feeds concatenated xt and ht-1 to 
a linear transformation with wc and bc presenting unique weights 
and biases. Finally, the cell state is calculated as in equation (11):

Output gate: This gate controls what percentage of the current
cell state’s information should be considered as the final output
and transferred as the hidden state to the next cell. This gate can
be expressed as equation (12):

Similar to other gates, this gate also conveys concatenated input 
xt and ht-1 and feeds them through a linear transformation and 
subsequently to a sigmoid activation function while wo and bo 
featuring unique weights and biases of the linear layer. It is 
worth mentioning that the current cell state’s information is 
passed through the tanh activation function before multiplying 
to the output gate. Thus, the current hidden state and the 
current cell’s final output are calculated as in equation (13):

Saeedi M, et al

Where yi is the output of the layer i, computed by multiplying 
previous layers’ weights wji and output yj, to get vj(n), then vj(n) 
is activated (φj), resulting in yi(n).

Long Short-Term Memory (LSTM)

LSTM, a variant of RNN, preserves the long-term memory of 
what has been gone through its network. These networks have 
been introduced to mitigate vanishing gradients from which 
vanilla RNNs have always suffered. The issue is that the network 
gradient becomes close to or almost equal to zero before 
reaching the first layers; therefore, backpropagation becomes less 
effective. Each LSTM has a cell state vector apart from a hidden 
state vector to overcome this issue. At each time step, the next 
LSTM cell can choose to read from its previous cell state, write 
to it or modify it using four same-shape gates that allow easy 
information transition and gradient flow through long 
sequences. These gates are explained in the following sections.

Forget gate: This gate decides whether to preserve information 
from the previous cell state or forget it. Cell states are the
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FFT-CNN2D

A 19-layer 2D-FFT-CNN model was used in this analysis, as
shown in Figure 4, with several parameters in each layer. First, a
two-dimensional FFT operation is implemented in the input
layer. Then, two convolution operations were conducted in the
successive layers, followed by a max-pooling process to extract
features from images and reduce their size. A dropout layer also
was applied after the mentioned procedures to reduce
overfitting possibilities. Following that, for the next round also,
two subsequent convolutions were used to construct the
following layers (layers 6-7). After the convolutions, the max-
pooling operation is applied once more to obtain layer 8. Then,
to generate layers (9-15), three more convolution and dropout
operations were performed alternately. As the next step, the
input goes through a flatten layer which converts the vector to a
one dimensional format, followed by a dropout layer to reduce
over fitting and a dense layer with relu activation to introduce
non-linearity. The final layer of the neural network is a dense
classification layer with a single output neuron that represents
the probability of a given input belonging to either the normal
or schizophrenia category.

Wavelet-CNN2D

A 2D-wavelet-CNN model was presented in this study, the 
model architecture is demonstrated in Figure 5, the parameters 
are also shown in Table 1. First, a two-dimensional Gabor 
wavelet transform operation was implemented to achieve the 
first layer’s output. The rest of the structure is identical to the 
2D-FFT-CNN. A Gabor filter, introduced by Dennis Gabor, is a 
linear texture analysis filter in image processing. It examines 
whether the image contains any specific frequency content in 
specific directions in a localized region around the point or 
region of the assessment. A two-dimensional Gabor filter is a 
Gaussian kernel function induced by a sinusoidal plane wave in 
the spatial domain.

Figure 5: Wavelet-CNN2D architecture.

Parameters Value

Batch size 4

Loss function Crossentropy

Optimizer Adam

Learning rate 0.001

Reduce lr 50

Epochs 200

input data. Then feeds these features to LSTM layers responsible
for extracting temporal information. Finally, the classification is
done by applying fully-connected layers to the temporal
information obtained by LSTM layers. The CNN-LSTM used in
this study consisted of three one-dimensional convolutional
layers with a kernel size of 5 and filter sizes of 8, 4 and 2,
respectively. Then a dropout layer with a 50% chance of
dropping input neurons is applied to avoid over fitting.
Following that, a one-dimensional max-pooling layer with a pool

Saeedi M, et al

Convolutional Neural Network-Long Short-Term
Memory (CNN-LSTM)

CNN-LSTM has been gaining much attention in the past few 
years. It is used on variant tasks like finding spatiotemporal 
relations in input text for text classification or depressive 
disorder diagnosis on EEG signals CNN-LSTM results from a 
series of convolutional layers followed by some LSTM layers. 
First, it extracts rich features using convolutional layers from
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Figure 4: FFT-CNN2D architecture.

Table 1: Models tuning hyper-parameters (identical parameters utilized for all architectures).



size of 2 is applied to reduce the size of the features and
consequently, the required computation power. After that, an
LSTM layer with a filter size of 512, followed by the second
dropout layer with a 25% drop chance, was used. Next, a fully
connected layer with 128 units pursued by the third dropout
layer with a 25% drop chance was used. Eventually, a fully
connected layer with one neuron unit is used to perform
classification. All activation functions were ReLU, except for the
sigmoid function’s classification layer (Figure 6).

Figure 6: CNN-LSTM architecture.

Transformer

Machine translation was the first application of transformers. In 
contrast to text data, the signal in the time series is separated 
into n identical fragments, which is comparable to the 
embedding procedure on text characteristics. The input data is 
specified theoretically as follows:

Positional Embeddings have been used in transformers to
maintain the order of the series after separation. This layer
creates an embedding depending on the maximum length of the
segment and the total number of segments. Keys, values and
queries are other crucial components of the transformer that aid
in the calculation of attention weights; the formula is as follows:

The scaling factor is known as the parameter dk. The multi-head 
component of the transformer also refers to the fact that the 
attention’s result is made up of several attention weights, also 
known as heads, that are merged to learn many input 
representations in the end. It is also worth noting that for a 
classification problem only the encoder portion of a transformer 
is required, with the decoder section being omitted entirely 
(Figure 7).

Figure 7: Transformer architecture.

Training

First, each signal is converted into an image using GASF and
GADF methods for four proposed models. Since there are two
measures (GASF and GADF) and 19 different channels, 38
images are obtained for each signal. Figure 2 shows a sample
image for healthy subjects and schizophrenia patients. Next, the
images are used as inputs of introduced convolutional neural
networks. The aforementioned data preparation is the same for
transformer-based and CNN-LSTM models, except that the
signals are not converted to two-dimensional images and are fed
directly to these two models. Finally, f the model training
section, a batch size of 4 was selected and each network was
trained for two hundred epochs.

Evaluation

Independently, all four proposed models were trained on 80%
of the data and then evaluated on the remaining 20%. This
procedure was repeated ten times, each time with a distinct
initialization setup that was assured with different random
seeds. Then the resulting metrics were averaged to derive each
model’s mean and standard deviation. The aforementioned
metrics were accuracy, sensitivity, specificity and f1-score, which
are computed as follows:

Where TP or true positive represents positive samples that are
correctly predicted positive, TN or true negative represents
negative samples that are correctly predicted negative, FP or false
positive represents negative samples that are falsely predicted
positive and FN or false negative represents positive samples that
falsely predicted negative. Additionally, the initial learning rate
was set to 0.0; if there were no improvements after 50 epochs,
the learning rate decreased by 0.1. Binary Cross Entropy was
chosen as the loss function and in the optimization phase, the
ADAM algorithm was chosen due to its superior results and
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primary factor that may make them more effective than CNNs 
for some EEG signal classification tasks. Transformers are 
intended to encode and process sequences of inputs, particularly 
those with complex temporal structures, in contrast to CNNs, 
which are primarily made to extract local features from spatially 
related inputs. To elaborate more on the results, the best 
confusion matrixes of the models over the evaluation dataset are 
provided in Figure 5. Accordingly, the transformer model could 
predict the entire negative and positive samples correctly, 
resulting in zero FN and zero FP. Likewise, this figure 
demonstrates the superiority of CNN-LSTM over other models.

Model-metrics Loss Accuracy Sensitivity Specificity F1 Score

CNN-FFT 0.448 ± 0.0939 0.7860 ± 0.1008 0.8095 ± 0.1168 0.7279 ± 0.2502 0.7970 ± 0.0639

CNN-wavelet 0.0819 ± 0.4769 0.7729 ± 0.0616 0.7853 ± 0.0589 0.7662 ± 0.0737 0.7689 ± 0.0668

CNN-LSTM 0.1449 ± 0.1098 0.9570 ± 0.0308 0.9467 ± 0.0377 0.9695 ± 0.0316 0.9580 ± 0.0300

Transformer 0.0889 ± 0.0544 0.9850 ± 0.023 0.9792 ± 0.0350 0.9922 ± 0.0126 0.9856 ± 0.0217

In addition to the transformer model, the CNN-LSTM model
has shown a remarkable average accuracy of 95.70 with a
standard deviation of 0.0308, the second-best accuracy of the
four evaluated models. Moreover, as the corresponding
confusion matrix to this model shown in Figure 8 presents, it
has two FP and two FN, which is again the second-best
confusion matrix compared to the other four models. The other
two models, CNN-FTT and CNN-Wavelet, obtain the third and
fourth best accuracy of 78.60 and 77.29, respectively. The same
results are indicated in Figure 8 for these two models.

DISCUSSION
In this experiment, we employed custom deep learning and 
Gramian Angular Field (GAF) approaches to automate the 
identification of schizophrenia patients and healthy controls. 
Our methodology enables automatic feature extraction from 
time- and frequency-domain EEG information. One of the 
work’s key innovations is the use of GADF and GASF 
approaches to transform a 1-D EEG signal into a 2-D 
representation that can be directly fed to CNN architecture. 
There are various methods for converting a 1-D signal to a 2-D 
image, including traditional methods based on time-frequency 
distribution (STFT, wavelets and so on). Another innovation of 
the research is using FFT linear and non-linear attributes, 
demonstrating the superiority of the proposed approach. 
Additionally, this study has the benefit of comparing various 
deep-learning models. Ultimately, this research performed better 
in automatic schizophrenia detection in depressive patients and 
healthy controls, as seen in Table 3.

Authors Methods Samples Classification methods Accuracy
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shorter run time. The train-test-split function from the Scikit-
learn library was used for evaluation.

RESULTS
Table 2 shows the best-obtained metrics over different evaluated 
deep neural network architectures. Based on this table, the best 
result is reached by transformer model, which gains the highest 
average accuracy of 98.50 and a standard deviation of 0.023. 
The standard deviation value indicates that the model is highly 
independent of the random seeds used to split the dataset in 
each run. Transformers' capacity to accurately model the 
temporal dependencies between input data sequences is the

Table 2: Models evaluation metrics.

Figure 8: Confusion matrix of proposed models.

Table 3: A summary of previous studies on automated EEG-based schizophrenia detection.

Dvey-Aharon TFFO 25 normal KNN 88.70%



25 patients

Devia ERP feature extraction 11 normal LDA 71%

9 patients

Phang, et al. Connectivity 39 normal CNN 93.06%

45 patients

Shu Lih Oh, et al. - 14 normal CNN 98.07%

14 patients

Aslan, et al. Short-Time Fourier 
Transform (STFT)

39 normal VGG-16 95.00%

45 patients

14 normal  97.00%

14 patients

Chandran, et al. Katz Fractal Dimension 
(KFD) and Approximate 
Entropy (ApEn)

14 normal LSTM 99.0%

14 patients

Shu Lih, et al. - 14 normal 11-layered deep 
CNN model

Non-subject-based testing: 
Acc: 98.07% Sen: 97.32%
Spe: 98.17% Ppv: 98.45%

Subject-based testing using 
14-fold

14 patients Non-subject base testing 
using 10-fold

Subject-based testing: 
Acc: 81.26% Sen: 75.42% 
Spe: 87.59% Ppv: 87.59%

Shoeibi, et al. - 14 normal 1D CNN-LSTM 99.25%

14 patients

Siuly, et al. Approximate entropies 
Empirical Mode 
Decomposition (EMD) 
based characteristics

49 patients with 
schizophrenia and 32 
healthy control subject

EBT (Ensemble Bagged 
Trees)

89.59%

Current study - 14 normal CNN-FFT CNN-Wavelet 
CNN-LSTM Transformer

98.5%

14 patients

accuracy. The findings of this analysis are associated with the
new best similar research that used EEG signals from the same
database and a separate database and as can be seen, the
accuracy obtained in this experiment is higher than that
reported in the previous studies using conventional machine
learning methods for extracting the networks. The research’s
most significant limitation is the scale of the dataset used to
train and wavelet layers in the deep model, which processes the
input images of the network and creates a time and frequency
representation of the EEG signals. We solved this problem by

Saeedi M, et al

The accuracy of the transformer architecture in images of GADF 
and GASF methods on 19 channels of EEG signals is 98.5 
percent. Furthermore, compared to other deep learning 
approaches on time-series data of EEG signals, our results with 
trasnformer and images built with Gramian angular field have 
higher accuracy compared to other research of this kind. When 
modeling complex and long-term temporal dynamics for some 
EEG signal classification tasks, transformer models can yield 
more reliable and accurate results. According to Table 3, the 
transformer model outperformed other approaches in terms of
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using regularization terms and modifying deep models. Our 
long-term goal is to extend the experimental area by gathering 
more data.

CONCLUSION
A thorough assessment was done in this article using Gramian 
Angular Field (GADF, GASF) and a variety of well-known deep 
learning algorithms. The best model is transformer which has 
the highest accuracy of 98.5% in classifying schizophrenia 
patients and healthy controls. Traditional convolutional neural 
networks, which are best for extracting local features and each 
have a fixed size receptive field, do not adequately model long-
term dependencies between subsequent input data points. In 
contrast, the transformer's self-attention mechanism offers a 
flexible way to choose which parts of the input sequence to 
emphasize or downplay, enabling it to concentrate on important 
features across various data scales. Compared to all recent 
research, this study yielded the best performance. As a result, the 
new approach will assist healthcare professionals in identifying 
schizophrenia patients for early detection and treatment.
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