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ABSTRACT 
An accurate determination of porosity and water saturation is vital for evaluating an oil reserve and proposing a 

development plan for developed sandstone reservoir. The objective of this study is to provide an improved intelligent 

approach the use of functional networks to estimate porosity and water saturation from well log using real field data 

in sandstone reservoir where it becomes difficult to acquire reliable well logging data. The proposed methodology 

makes use of appropriate well logs and core measurements. A portion of the data available was retained for 

verification of the prediction of water saturation and porosity. This paper presents a novel method for estimating 

these two important parameters directly from conventional well measurements. The recently proposed Functional 

Networks technique is applied for rapid and accurate prediction of these parameters, using six and five basic well log 

measurements as data for estimating porosity and water saturation respectively. Functional network is a generalization 

of the conventional Feed Forward Neural Networks, which overcome many of the drawbacks of the conventional 

neural network techniques. The proposed functional network was trained using data gathered from two wells in the 

Middle East region. Results obtained from this case study of sandstone reservoir using the proposed intelligent 

technique have shown to be fast and accurate referring to core samples porosity and water saturation values. 
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INTRODUCTION 

The major objective of the petroleum industry is to obtain an 
accurate estimate of the hydrocarbon in place; this is required 
either at early stage of the well for exploitation or for developed 
reservoir management. An accurate determination of porosity 
and water saturation parameters is a must for evaluating any 
reservoir and drafting any development plan for developed 
reservoir. Porosity is described as the ratio of the aggregate 
volume of interstices in a rock to its total volume whereas water 
saturation is defined as the fraction of pore volume of formation 
rock which is filled with water only. The rest of the pore space is 
assumed to be filled with either oil or gas. Therefore, inaccurate 
determination of water saturation leads to either 
underestimation or overestimation of reserves. 

The most accurate method for determination of these important 
properties is mostly done by core analysis at expensive laboratory 
tests. However, the core data are not always available for most 

wells in a given field or at every depth levels either due to the 
borehole condition or the high cost of obtaining cores [1]. 
Hence, log measurements, which are usually available, are 
utilized by correlating well logs with core data of the cored wells 
and subsequently using the correlation model to predict these 
properties at the uncared intervals and wells. Well logs approach 
can provide a continuous record over the entire well, and it is 
economical and quick to obtain. 

Many empirical equations are available to transform well log data 
to porosity and water saturation. For example, porosity has been 
related to sonic transit time and density logs. On the other 
hand, water saturation can also be determined from empirical 
formulas using resistivity, gamma ray logs and porosity estimates. 
Besides the fact that these empirical models are not sufficiently 
accurate, they are not universally applicable as they should be 
tuned to the area of work which requires the estimation of 
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parameters in the laboratory, and some of these model 
parameters are not easily obtainable (Helle et al. [2] and Yan [3]. 

Parametric methods like statistical regression is another versatile 
approach used in estimation of these properties, where a 
functional relationship is developed between the core data and 
well log data [3]. This however requires the assumption and 
satisfaction of multi-normal behaviors and linearity [4]. 
Therefore, neural networks, or more specifically, multilayer 
perceptrons (MLP), have been increasingly applied to predict 
reservoir properties using well log data [4-6]. 

Neural networks are characterized as computational models with 
abilities to adapt, learn, generalize, recognize, and organize data. 
The advantages of neural networks include its high 
computational efficiency, adaptability, non-linear characteristics, 
generation properties, fault tolerance, freedom from a priori 
selection of mathematical models, and ease of working with 
high-dimensional data [7]. Neural networks have been 
demonstrated in several practical applications for estimation of 
porosity and water saturation from well logs for example, see [8-
14]. Despite its wide applications, the MLP has some draw- back 
including; slow convergence on learning; complexity of design 
space; random initialization of weight and local minimal 
problem. Therefore, MLP are useful when the network 
architecture and parameters, which are often done by trial and 
error approach are chosen correctly. A common approach is to 
train as many networks as possible and select the one that yields 
the best generalization performance. Hence the solution may 
not be a unique solution. 

Recently, Castillo et al. [15-18], introduced functional network 
as a powerful extension and network- based alternative to the 
neural networks paradigm. In functional networks, neural 
functions are to be learned instead of weights. In addition, 
outputs coming from different neurons can be connected, that 
is, forced to output the same values. The topology and neuron 
functions of functional networks can be selected based on data, 
domain knowledge, or a combination of the two. This kind of 
networks exhibits more versatility than neural networks so they 
can be successfully applied to several problems. 

The objective of this study is to provide an improved intelligent 
approach via the use of functional networks to estimate porosity 
and water saturation from well log using real field data. The 
proposed methodology makes use of appropriate well logs and 
core measurements. A portion of the data available was retained 
for verification of the prediction results. 

 
FUNCTIONAL NETWORKS 

 
Functional networks (FN) consist of the following 
elements: 
• A layer of nodes for receiving the input data (xi; i=1, 2, 3, 4), 

another layer for the output data (x7) and none, one or more 
layers for intermediate information (x5 and x6); 

• Processing units, (fi) that evaluate a set of input values and 
delivers a set of output values, 

• A set of directed links. 

Functional networks extend the standard neural networks by 
allowing neuron functions fi to be not only true multi-argument 
and multivariate functions, but to be different and learnable, 
instead of fixed functions. In addition, the neuron functions in 
functional networks are unknown functions from a given family, 
such as, polynomial, exponential, Fourier, wavelet ...etc., to be 
estimated during the learning process. 

 
Functional networks model 

The first step in functional networks is the specification of the 
initial topology which is problem driven. However, if there is no 
idea of the problem domain (like in our case), a generalized. 

 
Simplification of the model 

For the problem concerned in this study, the model represented 
by (3) was simplified further to reduce complexity of terms to be 
estimated by assuming that all the coefficients of the cross 
multiplication terms between functions of different variables is 
zero. 

 
Data acquisition and processing 

In this study, we used data set from the Middle Eastern region 
containing well logs, core porosity and water saturation from 
two wells labeled, A and B of 206 and 211 observations 
respectively. The two wells were combined together and divided 
randomly into two sets, training and testing sets of 70% and 
30% of data respectively. In order to make sure the predictors 
variables are independent from measurement units (since they 
are of different units), the predictor variables (inputs) were 
normalize between 0 and 1. The training set is then used to 
learn the coefficients in (11) for estimation of porosity and water 
saturation. Several basis functions basis such as polynomial, 
Fourier, exponential, and logarithms were tried in order to select 
the one that will give best approximation for each function 
( h1(x1), h2(x2),…). The coefficients of the network is optimized 
by backward-forward search method using Minimum description 
length (MDL) criteria to determine the best contributing 
coefficients to the network as well as best functional basis to use 
by choosing the one with lowest value of MDL as used in 
[18,19]. All experiments were performance on a fedora 9 Linux 
machine. 

 
Estimation of porosity with FN 

This section discusses estimation of formation porosity with 
functional networks using the model (6) discussed above. Six 
well log measurements namely; Sonic log (DT), Neutron log 
(NPHI), Density log (RHOB), Gamma Ray (GR), Laterlog (Rt), 
and Photoelectric Factor log (PEF) were used as inputs to the 
networks. The functional network model is able to predict 
formation porosity with Fourier basis function as the best basis, 
achieving a root mean square error (RMSE) of 0.0293 and 
correlation coefficient (CC) of 0.9158 for the training set, 
RMSE of 0.0245 and CC of 0.9343 for the testing set. The 
result for the estimation the scatter plot for the best selected 
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model from the basisfunctions. The plot shows that there is a 
good matching between the core porosity and estimated 
porosity. Equation (12) shows the relationship between the 
predictor variable and the core porosity for the best model. 

 
Estimation of water saturation with FN 

Similarly, water saturation was determined with the same model 
and procedure above using five well log measurements inputs; 
NPHI, RHOB, GR, Rt, and PEF. The functional networks is 
able predict water saturation with logarithm as the best selected 
basis function, achieving a root mean square error (RMSE) of 
0.1143 and correlation coefficient (CC) of 0.9491 for the 
training set, RMSE of 0.0805 and CC of 0.9743 for the testing 
set. The result for the estimation is shown in the scatter plot for 
the best selected model from the basis functions. The plot also 
shows that there is a good matching between the core and 
estimated water saturation. Equation (13) shows the relationship 
between the predictor variable and the water saturation for the 
best selected model. 

 
Comparison to artificial neural networks models 

Artificial neural networks models were also developed in order 
to compare with functional networks. A feedforward multilayer 
perceptron neural network (FFNN) model trained with 
Levenberg Marquardt learning algorithm was used. A final 
model of 1 hidden layer of 5 neurons with tan-sigmoid and log- 
sigmoid at the output layer was realized in the estimation of 
porosity while 1 hidden layer of 10 neurons with tan-sigmoid 
and log-sigmoid at the output layer is realized in the estimation 
of water saturation. These networks are realized after a series of 
trial and error approach in selecting the number of hidden layer 
and number of nodes. The networks were trained for 500 
epochs. The scatter plot of estimation of porosity and water 
saturation respectively. 

The FFNN model predicted porosity with RMSE of 0.0245 and 
correlation coefficient of 0.93563 during training and RMSE of 
0.0264 with correlation coefficient of 0.92594 during testing. 
FFNN model prediction for water saturation gives RMSE of 
0.0436 with correlation coefficient of 0.9916 during training 
and RMSE of 0.0556 with correlation coefficient of 0.9884 
during testing. 

In comparison, functional network model performance is 
slightly better in the estimation of porosity, while neural 
network show slightly better performance to functional network 
in the prediction of water saturation. However, the long time 
taken to achieve the above neural network model topology can 
not be over emphasized. This is due to the well known problem 
of neural networks where a number of parameter has to be 
determined through trial and error. Another important 
advantage of FN over FFNN is that, FN provides insight into the 
network – gives the input-output relationship. For example, we 
can deduce from that the first three inputs have significant 
contribution to the network while (15) shows that the first four 
inputs have significant contribution for the prediction of water 
saturation. Aside these, FN has also demonstrated to be cost 
effective in implementation as it has lower network weights (N. 
weight) and execution time (Ex. Time) compare to FFNN. 

DISCUSSION AND CONCLUSION 

• In this study, we propose an alternative approach, functional 
networks, which provide a satisfactory prediction for reservoir 
porosity and water saturation from convectional well log. A 
simplified generalized functional networks model is learned 
and tested on combination of data sets from two wells. 
Different basis functions are used on the model and 
minimum description length was used to determine the best 
basis function to use for the problem. The results show that 
functional networks successfully predicted formation porosity 
and water saturation with low error and high correlation 
coefficients. 

• A clear advantage of this technique over neural networks is 
the quick and unique solution obtained from the model. 
Another important advantage is that it discovers the 
relationship that exists between the predictor variables and the 
output. This provides valuable information about the 
variables, making it easy to know their significant as well as to 
compare with existing empirical or theoretical models. 
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