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Rapid increase in industrialization and population together has 
resulted in natural and anthropogenic release of pollutants responsible 
for degradation of quality of the environment and imminent threat to 
flora and fauna. Stressful environments are now being recognized as a 
potential agricultural threat for the sustainable agriculture. It has been 
estimated that increasing salinization of arable land will result in 30% 
land loss within the next 25 years, and upto 50% by 2050 [1]. Similarly, 
contamination of water and soil over the years by heavy toxic metals 
has become a major concern to the environment. Among gaseous 
pollutants, the increase in CO2 concentration is considered a major 
threat to the environment. The concentration of CO2 is expected to rise 
to as much as 500-1000 ppm by the year 2100 [2] leading to increase 
in global mean temperature by approximately 1°C to 3°C above the 
present value by 2025 and 2100, respectively [3].  These environmental 
changes could result in about 15-37% extinction of plant and animal 
species [4]. The research efforts of agricultural scientists are to provide 
mechanisms that could help in the survival of plants under the changing 
environments. 

Plant hormones play important roles in regulation of developmental 
processes and signaling networks in plants under abiotic stresses. 
Recent researches have shown potential of phytohormones in reducing 
or eradicating the negative effects of abiotic stress [5-9]. In the list 
of known classical plant hormones, salicylic acid (SA) and jasmonic 
acid (JA) have been recently added and have shown as potential tool 
in enhancing tolerance of plants to abiotic stress. SA is a phenolic 
growth regulator, which participates in the regulation of physiological 
and molecular mechanisms to adjust plants in adverse environmental 
conditions. It is believed to play a role in plant responses to abiotic 
stresses including osmotic stress, drought, salt, heat and UV stress 
[9-11]. Recently, it has been shown that SA-induced expression of 
59 proteins in cucumber which were identified for their involvement 
in various cellular responses and metabolic processes, including 
antioxidative reactions, cell defense, photosynthesis, carbohydrate 
metabolism, respiration and energy homeostasis, protein folding and 
biosynthesis [12]. 

JA and methyl jasmonate (MeJA) are collectively known as 
jasmonates and are important cellular regulators involved in diverse 
developmental processes from seed germination to fruit ripening, and 
senescence [13]. JA is also believed to play a role in plant responses 
to abiotic stresses including drought, salt, and heat stress [5, 14-15]. 
Recently, Chen et al. [16] have suggested that plants treated with MeJA 
show change in its protein profile and differentially expressed proteins 
were identified that participated in various plant physiological processes. 
They also showed repression of photosynthesis and carbohydrate 
anabolism with up-regulation of catabolism along with some proteins 
involved in JA biosynthesis, stress defense and secondary metabolism.

By several ways the plant hormone pathways interact and regulate 
the metabolic process and development of plants. However, signaling 
by phytohormones to regulate abiotic stress depends on the intensity, 
nature and timing of exposure of plants to stress. SA and JA are 
biochemically linked that can be triggered by abiotic stresses and 
function as necessary signaling molecules responsible for defense 
responses in plants [17]. They show antagonistic interactions which 
affect the expression of pathogen-related (PR) protein genes. SA 

induces PR genes whereas JA inhibits the expression [18]. Recently, 
Khan et al. [17] reviewed the possible interaction between SA and 
JA at biosynthetic level and in signaling under stressful conditions. 
Mitogen-activated protein kinase 4 (MAPK4) has been identified as a 
key component involved in mediating the antagonism between SA and 
JA-mediated signaling in Arabidopsis. Results indicate that MAPK4 
acts as a negative regulator of SA signaling and positive regulator of 
JA signaling in Arabidopsis [19]. SA inhibits transcription of allene 
oxide synthase, which mediates the conversion of lipoxygenase-derived 
fatty acid hydroperoxides to unstable allene epoxides and then to JA 
precursors [20]. These two hormones could be used as target points in 
plant metabolism for abiotic stress tolerance.

Reports are available showing contrary effects of SA and JA to each 
other, but the research on the interplay between these two hormones in 
modulation of metabolic pathways is still in its infancy. Therefore, the 
biosynthetic pathways of the two hormones in plants facing challenged 
environment can be tailored to divert the metabolites production 
to meet the requirements for abiotic stress tolerance and sustainable 
agriculture. 
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