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Roots with ideal characteristics are important for sustaining crop 
yields, particularly when plants are grown in soils with inadequate 
water and nutrients [1-4]. Understanding the development of roots 
and their interaction with the soil environment is vital to manipulate 
the root traits, and ultimately, the food security [5]. For instance, rice 
has a significant level of genetic variation in root traits [6-9], that can 
be harnessed for improving its adaptation to abiotic stresses. However, 
genetic improvement of root systems through phenotypic selection at 
the breeding level is impractical due to complexity in phenotyping root 
traits [3,10,11].

Monoliths, soil cores and minirhizotrons have so far been the 
methods most commonly used for field root phenotyping, whereas 
methods relying on aeroponics, hydroponics, moistened paper roll 
towel, metallic net floating and petri dishes, have been used for the 
high-throughput screening of root system architecture (RSA) under 
controlled conditions. These high-throughput methods have been 
widely used to identify QTLs in several crops. The other medium-
throughput innovative methods, namely root basket, have been 
employed recently and also cloned a major deeper rooting quantitative 
trait loci (Dro1) that determines the RSA in rice [12-14]. This approach 
maintains the shallow and deep orientation of roots, enabling the 
sequential screening of ratio of deeper roots. Field validation of Dro1 
introgressed lines of IR64 demonstrated positive relationship between 
RSA and yield performance under drought stress [14]. This validation 
will be essential for testing the field application of promising root traits 
that are identified under controlled conditions. So far, limited literature 
is available for the analyses of genetic factors contributing to RSA due 
to the difficulty in observing root distributions and complexity of 
environmental effects under field conditions. This review paper will 
highlight the recent advances in root phenomics technologies and their 
possibility to apply these techniques in crop phenotyping experiments 
that are relevant for plant performance field conditions.

Although root phenotyping has been a bottleneck for trait-based 
selection in the past, innovative high-throughput methods have 
been developed recently, allowing the evaluation of many root traits 
and phenes that could be important for resistance to abiotic stress. 
Recent advances in methods to measure root traits suggest that high-
throughput simple screening techniques are also becoming available 
for field studies. Recently, Trachsel et al. [15] developed a shovelomics 
strategy of screening RSA traits in the field with a high-throughput 
phenotyping of Maize. With this strategy, ten different architectural 
traits of the root crown of field grown maize plants were visually scored 
[15]. Also, there is a great potential to apply the same strategy to rice, 
and with increased efficiency by using recent analytical methods, such 
as morphometric or fractal analysis. Taking imaging techniques from 
the medical field, phenomics offers to crop physiologists new choices 
into the inner workings of crop plants. Over the past decade or so, non-
destructive methodologies, including ultrasound, magnetic resonance 
imaging and X-rays have been used in soil systems, in an attempt to 
confine the inner space of soil and its contents in three dimensions 
[16-18]. Recent advances in Computed Tomography (CT) have led 

to improvements in scan resolution, quality, acquisition time and 
sample size. Of all possible non-destructive techniques, CT has been 
renowned as the one that is able to deal effectively with the complex 
geophysical and geochemical complexities of soil across wide range of 
environments [19]. Also, CT technology serves as a stepping stone for 
a better understanding of the role of plants in the critical zone at the 
soil-atmosphere interface.

Recently, investigation observed a high correlation between micro-
CT-observed wheat roots and roots observed by standard methodology. 
The CT technique is speedy, safe and sound to detect roots at quite high 
spatial resolutions [20]. The drawback of the CT methodology lies not 
in the scanning technique, but in the software available to digitally 
segment roots from soil and air. However, this will be improved 
significantly as automated segmentation algorithms are developed [20]. 
This can be achieved through the strong collaboration between software 
engineers and crop physiologists. The combination of very fast scans 
and programmed segmentation will allow CT methodology to perform 
its potential as a high-throughput technique for the examination of 
roots in soils. A novel 3D imaging and RootReader3D software platform 
was developed for high-throughput phenotyping of root traits in rice 
[21]. This sophisticated platform provides the capability to measure 
root traits with a high degree of spatial and temporal resolution, and 
will facilitate novel investigations into the development of entire root 
systems or selected components of root systems.

More recently, root-tracking algorithms were developed to segment 
roots from their surroundings by using features of roots, such as shape 
and continuous growth [5,22,23]. RooTrak can successfully, with 
minimal user intervention, extract a range of RSA from the surrounding 
soil and promises to facilitate future root phenotyping efforts [5]. As 
said above, new technologies can be employed to dissect the phenotypes 
for genetic mapping and in physiological studies for trait validation in 
crop breeding programmes.
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