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Abstract
Nitric Oxide (NO) exerts a variety of biological actions under both physiological and pathological conditions. 

NO is synthesized by three distinct NO synthase (NOS) isoforms, encoded by three distinct NOS genes, including 
neuronal (nNOS), inducible (iNOS), and endothelial NOS (eNOS), all of which are expressed in the human vascular 
system. Although the roles of the NOSs in arteriosclerotic vascular diseases have been described in pharmacological 
studies with selective and non-selective NOS inhibitors, the selectivity and specificity of the NOS inhibitors continue 
to be an issue of debate. To solve this issue, genetically altered animals have been established. All types of NOS 
gene-deficient animals have been developed, including singly, doubly, and triply NOS-deficient mice and various 
types of NOS Gene-Transgenic (TG) animals have also been generated, including conditional and non-conditional 
TG mice bearing site-specific overexpression of each NOS gene. The roles of individual NOS isoforms as well as the 
entire NOSs system in arteriosclerotic vascular diseases have been extensively investigated in those mice, providing 
pivotal insights into an understanding of the pathophysiological significance of the NOSs in human arteriosclerotic 
vascular diseases. The present review, which is based on studies with the murine NOS genetic models, summarizes 
the latest knowledge about the NOSs and arteriosclerotic vascular diseases.
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Introduction
Nitric oxide (NO) exerts a variety of biological actions, and plays 

an important role in maintaining vascular homeostasis [1-7]. NO is 
synthesized by three distinct NO synthase (NOS) isoforms, encoded 
by three distinct NOS genes: neuronal (nNOS; also known as NOS-1), 
inducible (iNOS; also known as NOS-2) and endothelial NOS (eNOS; 
also known as NOS-3). 

It was initially indicated that nNOS and eNOS are constitutively 
expressed mainly in the nervous system and the vascular endothelium, 
respectively, synthesizing a small amount of NO in a calcium-dependent 
manner under both basal conditions and upon stimulation, and that 
iNOS is induced only when stimulated by microbial endotoxins or 
certain proinflammatory cytokines, producing a greater amount of 
NO in a calcium-independent manner [6,7]. However, recent studies 
have revealed that both nNOS and eNOS are subject to expressional 
regulation and that iNOS is constitutively expressed even under 
physiological conditions [8-14]. All three NOS isoforms have been 
reported to be expressed in the vascular system under both physiological 
and pathological conditions [13,15].   

Genetically engineered animals are a powerful experimental 
tool to study the function of target genes in vivo. All types of NOS 
gene-knockout (KO) animals have been generated, including singly, 
doubly, and triply NOS-KO mice [16-28] (Table 1). Various types 
of NOS Gene-Transgenic (TG) animals have also been established, 
including conditional and non-conditional TG mice with site-specific 
overexpression of each NOS isoform [29-40] (Table 2). By using those 
genetically engineered mice, the roles of the NOSs in the pathogenesis 
of arteriosclerotic vascular diseases have been extensively studied, and 
the findings provide pivotal insights into the significance of the NOSs 
in human arteriosclerotic vascular diseases. In the present review, we 
summarize the current knowledge of the NOSs and arteriosclerotic 

vascular diseases, based on research outcomes obtained from the 
murine NOS genetic models.

Role of eNOS in Arteriosclerotic Vascular Disease
Endothelium-specific eNOS-TG mice with an 8-fold increase in 

vascular NOS activity showed decreased neointimal formation after 
carotid artery ligation and another strain of endothelium-specific 
eNOS-TG mice with a 10-fold increase in vascular NOS activity 
similarly exhibited a reduction in atherosclerotic vascular lesion 
formation induced by breeding with apoE-KO mice [38,41]. Consistent 
with these findings, eNOS-KO mice displayed increased neointimal 
formation, accelerated medial thickening, and abnormal vascular 
remodeling in response to carotid artery ligation and cuff placement 
around the femoral artery [42-44] (Figure 1). Furthermore, eNOS-
KO/apoE-KO mice exhibited exacerbated formation of atherosclerotic 
vascular lesion as compared with apoE-KO mice [45,46]. These lines of 
evidence indicate a vasculoprotective role of eNOS in vascular lesion 
formation. On the other hand, there are also reports of inconsistent 
opposite results that diet-induced atherosclerotic vascular lesion 
formation by crossbreeding with apoE-KO mice is accelerated in 
endothelium-specific eNOS-TG mice with an 8-fold increase in 
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vascular NOS activity and that fatty streak formation is paradoxically 
reduced in eNOS-KO mice [47,48]. eNOS-derived NO has multiple 
vasculoprotective effects, including the dilation of blood vessels and 
the inhibition of vascular smooth muscle cell proliferation, platelet 
aggregation, leukocyte-endothelial cell adhesion, and Low-Density 
Lipoprotein (LDL) oxidation, whereas, under certain conditions 
such as deficiency of a substrate (e.g., L-arginine) or a cofactor (e.g., 
tetrahydrobiopterin), NOSs produce superoxide anions rather than 
NO, with resultant production of a potent oxidant peroxynitrite (which 
phenomenon is referred to as ‘NOS uncoupling’) [49,50]. Thus, eNOS 
uncoupling may be partly involved in these discrepant results. 

When 12 eNOS-KO/apoE-KO mice were fed on a Western-type 
diet for 16 weeks, 3 mice developed abdominal aortic aneurysms, and 
2 developed aortic dissections (Stanford type B) spontaneously [46]. 
These results indicate that eNOS deficiency introduces abdominal 
aortic aneurysms and aortic dissections in the presence of severe 
hyperlipidemia, suggesting a protective role of eNOS in aortic diseases. 

Role of iNOS in Arteriosclerotic Vascular Disease
The role of iNOS in vascular lesion formation seems to be 

complicated. Deletion of the iNOS gene in mice exacerbated 
pathological vascular remodeling in a carotid artery ligation model 
and in a cardiac transplant model; however, it conversely ameliorated 
neointimal formation in a carotid cuff placement model and lipid-rich 

NOS-/- Mice Sites of gene deletion References 

nNOS-/-
Exon 2 (#1)

Exon 6
Exon 6

Cell 1993;75:1273-1286
Endocrinology 2002;143:2767-2774

PNAS 2003;100:9566-9571
Renal collecting duct-specific nNOS-/- Exon 6 Hypertension 2013;62:91-98

iNOS-/-
Proximal 585 bases of promoter plus exons 1-4 (#2)

Near exons 1-5
Exons 12 and 13 and a part of exon 11 (#3) 

Cell 1995;81:641-650
Nature 1995;375:408-411

PNAS 1995;92:10688-10692

eNOS-/-
Exons 24-26 (#4)

Exon 12 (#5)
Exons 24 and 25

Nature 1995;377:239-242
PNAS 1996;93:13176-13181

Circ Res 1998;82:186-194

n/iNOS-/- #1 and #3
#1 and #2

Mol Reprod Dev 2003;65:175-179
PNAS 2005;102:10616-10621

n/eNOS-/-
#1 and #4
#1 and #5
#1 and #4

Cell 1996;87:1015-1023
Mol Reprod Dev 2003;65:175-179

PNAS 2005;102:10616-10621
i/eNOS-/- #3 and #5

#2 and #4
Mol Reprod Dev 2003;65:175-179

PNAS 2005;102:10616-10621
n/i/eNOS-/- #1, #2 and #4 PNAS 2005;102:10616-10621

NOS, Nitric Oxide Synthase; Nnos, Neuronal NOS; Inos, Inducible NOS; Enos, Endothelial NOS; NOS-/-, NOS-Deficient
Table 1: Mice Lacking the NOS Genes That Have Thus Far Been Established.

TG Mice Overexpression site Promoter used References 
nNOS-TG Myocardium (Conditional) α-MHC      Circ Res 2007;100:e32-e44

Myocardium (Conditional) α-MHC Circulation 2008;117:3187-3198
Brain      CaMKIIα     Cell Mol Biol 2005;51:269-277

iNOS-TG Myocardium (Conditional) α-MHC J Clin Invest 2002;109:735-743
Myocardium α-MHC Circ Res 2002;90:93-99

Pancreatic β Cell
Retina

insulin
 rod opsin

J Biol Chem 1998;273:2493-2496
PLoS One 2012;7:e43089

Liver  albumin J Biol Chem 011;286:34959-34957
eNOS-TG Endothelium preproendothelin-1 J Clin Invest 1998;109:735-743

       Endothelium      eNOS J Biol Chem 002;277:48803-48807
       Myocardium          α-MHC Circulation 2001;104:3097-3102
       Myocardium          α-MHC Circ Res 2004;94:1256-1262

CaMKII: Calcium-Calmodulin Multifunctional Kinase II; MHC: Myosin Heavy Chain; TG: Transgenic
Table 2: Mice Overexpressing the NOS Gene That Have Thus Far Been Established.
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Constrictive remodeling

NO

Vascular smooth
muscle cells

Endothelial cells

Neoint imal format ion

NO

NO

NO

nNOS

 i NOS

eNOS

 i NOS

nNOS

nNOS

NO

NO

Figure 1

Figure 1: Different vasculoprotective roles of the three NOS isoforms in a 
mouse carotid artery ligation model. 
Studies with each NOS isoform-/- mice demonstrated that eNOS inhibits 
neointimal formation, that iNOS attenuates constrictive vascular remodeling, 
and that nNOS suppresses both neointimal formation and constrictive vascular 
remodeling. Thus, individual NOS isoforms have different vasculoprotective 
actions against vascular lesion formation in mice in vivo inhibition [7]. 
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atherosclerotic vascular lesion formation in apoE-KO mice [43,51-53] 
(Figure 1). Thus, iNOS appears to have two faces. This discrepancy 
may be explainable in part by the oxidant and antioxidant properties 
of iNOS in the presence and absence, respectively, of iNOS uncoupling 
[54]. 

The extent of elastase-induced abdominal aneurismal dilatation 
was comparable between male iNOS-KO and wild-type mice, whereas 
it was greater in female iNOS-KO than in female wild-type mice, which 
effect was reversed by previous ovariectomy [55]. It is thus likely that 
iNOS deficiency also leads to the occurrence of abdominal aortic 
aneurysms induced by elastase solely in the female.

Role of nNOS in Arteriosclerotic Vascular Disease
Expression of nNOS is up-regulated in the neointima, endothelial 

cells and macrophages in both early and advanced human atherosclerotic 
lesions [15]. Although the regulatory roles of eNOS and iNOS in 
vascular lesion formation have been widely studied, little was known 
about the role of nNOS. We addressed this point in nNOS-KO mice 
and demonstrated that nNOS gene deficiency caused a worsening of 
neointimal formation and constrictive vascular remodeling (a reduction 
in the vascular cross-sectional area) following carotid artery ligation 
[56] (Figure 1). In agreement with our evidence, nNOS-KO/apoE-KO 
mice showed accelerated atherosclerotic vascular lesion formation as 
compared with apoE-KO mice [57]. These results suggest that nNOS 
also plays a role in suppressing arteriosclerotic/atherosclerotic vascular 
lesion formation [12]. Up-regulation of nNOS may play a compensatory 
role in the presence of reduced eNOS activity (e.g. inflammation and 

arteriosclerosis) to maintain vascular homeostasis [12]. We revealed 
that inflammatory and proliferative stimuli (angiotensin II, interleukin-
1β, and platelet-derived growth factor) and a statin increase vascular 
nNOS expression [10,11]. Hypoxic and hypertensive situations have 
also been shown to up-regulate vascular nNOS expression [58-60].

Role of the Whole NOSs System in Arteriosclerotic 
Vascular Disease

Because all NOSs play a role in the vascular system, we conceived 
a project to investigate the roles of the whole NOSs system in vivo. The 
roles of the NOSs system in the human body have been investigated 
in pharmacological studies with non-selective NOS inhibitors and in 
studies with NOS isoform-KO mice. However, because of the non-
specificity of the agents and of compensation among NOS isoforms, the 
authentic roles of the NOSs system were still poorly understood. To 
address this important issue, we developed mice in which the entire 
NOSs system is completely disrupted (triply nNOS/iNOS/eNOS-KO 
mice) [22,61]. The triply n/i/eNOSs-KO mice, but not any singly NOS-
KO mice, spontaneously developed arteriosclerotic vascular lesions 
(neointimal formation, medial thickening, and perivascular fibrosis) 
in the coronary and renal arteries, and lipid-rich atherosclerotic 
vascular lesions in the aorta, even on a normal chow diet, suggesting 
a vasculoprotective role of the entire NOSs system in vascular lesion 
formation [62,63] (Figure 2). 

Myocardial Infarction (MI) is the leading cause of death for both 
genders all over the world [64,65]. The molecular mechanisms for the 
pathogenesis of MI, however, remain to be fully elucidated. It is well 
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Figure 2: Decreased survival, spontaneous Myocardial Infarction (MI), coronary arteriosclerosis and mast cell infiltration in male triply n/i/eNOSs-/- mice.
(A) Survival rate (n=29-57). The red line represents markedly reduced survival in the triply n/i/eNOSs-/- mice. *, †, and #: P<0.05 between wild-type (WT) C57BL/6J 
vs. singly, doubly, and triply NOS-KO, respectively. (B) Acute MI and coronary arteriosclerotic lesion formation in a triply n/i/eNOSs-/- mouse that died at 8 months 
of age (Masson-trichrome staining). Blue in the heart cross-section of the dead triply n/i/eNOSs-/- mouse indicates antero-septal acute MI. Adjacent coronary 
artery shows marked luminal narrowing, wall thickening, and perivascular fibrosis (blue). (C) Arteriosclerotic lesion formation in serial sections of the infarct-related 
coronary artery. (D) Mast cell infiltration in the coronary artery adventitia (toluidine-blue staining) (n=10-33). Red arrows indicate mast cells. *P<0.05 vs. WT [62].
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established that eNOS has powerful anti-arteriosclerotic and anti-
atherosclerotic effects [1-7]. However, neither deletion of the eNOS 
gene nor pharmacological inhibition of eNOS activity induce MI in 
animals. On the other hand, intriguingly, our triply n/i/eNOSs-KO mice 
experienced spontaneous MI and sudden cardiac death [63] (Figure 2). 
This was the first in vivo demonstration showing that the defective NOS 
system is involved in the pathogenesis of spontaneous MI.

Arteriosclerosis was seen in most of the vasculature in the triply 
NOS-KO mice, whereas atherosclerosis was observed in the aorta 
alone. MI in humans results not only from coronary atherosclerosis, but 
also from other causes, including coronary intimal hyperplasia, medial 
thickening, and coronary vasospasm [64,66]. Marked coronary intimal 
hyperplasia and medial thickening were noted in our triply n/i/eNOS-
KO mice that died of MI and, furthermore, marked infiltration of mast 
cells at the coronary artery adventitia was also observed in those mice 
[63] (Figure 2). Histamine released from adventitial mast cells is thought 
to cause coronary vasospasm with resultant MI in humans [67]. It is 
thus possible that coronary arteriosclerosis and coronary vasospasm 
are involved in the cause of death in the triply NOS-KO mice (Figure 3). 

In our triply n/i/eNOS-/- mice, endothelium-dependent relaxations to 
acetylcholine, which is a physiological eNOS activator, were completely 
lacking, and contractions to phenylephrine, which is an α1 adrenergic 
agonist, were markedly potentiated [63]. These vascular dysfunctions 
could also be involved in the pathogenesis of MI in the triply NOSs-KO 
mice (Figure 3). In our triply n/i/eNOS-/- mice, metabolic syndrome-
like phenotypes, including visceral obesity, hypertension, dyslipidemia, 
impaired glucose tolerance, and insulin resistance were noted in 
association with reduced plasma levels of adiponectin, which is an anti-
atherogenic adipocytokine, improving metabolic syndrome [63]. Thus, 
metabolic syndrome and hypoadiponectinemia could also be involved 
in the pathogenesis of MI in the triply NOSs-KO mice (Figure 3).

When wild-type, singly, doubly, and triply NOSs-KO mice were 
fed a high-cholesterol diet for 3-5 months, the serum levels of total 
cholesterol, LDL cholesterol, and small-dense LDL cholesterol were 
significantly increased in all the genotypes as compared with the 
regular diet. Importantly, when compared with the wild-type genotype, 
those levels in the high-cholesterol diet were markedly elevated only 
in the triply NOSs-/- genotype, but not in any singly or doubly NOS-/- 
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Figure 3: Mechanisms for spontaneous MI caused by the defective NOS 
system in mice in vivo. 
Genetic disruption of all NOSs caused metabolic syndrome, 
hypoadiponectinemia, hyper-low-density-lipoprotein (LDL)-emia, coronary 
adventitial mast cell infiltration, and vascular dysfunction. Those factors 
could contribute to the pathogenesis of spontaneous MI. Importantly, long-
term pharmacological blockade of the angiotensin II type 1 (AT1) receptor 
significantly reduced the incidence of MI, along with amelioration of those risk 
factors. It is therefore possible that the AT1 receptor pathway is involved in its 
molecular mechanism [62].
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cholesterol diet for 3 months (n=6-11). White and black bars indicate the 
regular and high-cholesterol diets, respectively. WT, C57BL/6. *P<0.05 vs. 
the regular diet; †P<0.05 vs. WT mice fed the high-cholesterol diet; #P<0.05 
vs. WT mice fed the regular diet [68].
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genotypes and this was associated with remarkable atherosclerosis and 
sudden cardiac death, which occurred mainly in 4-5 months after the 
high-cholesterol diet [68] (Figures 4 and 5). Out of 15 dead triply NOSs-

/- mice fed the high-cholesterol diet, myocardial infarction was detected 
in 1 mouse, giant organized thrombi in the left and right ventricles were 
seen in 2 mice, and marked neointimal formation and perivascular 
fibrosis of the coronary artery and pulmonary congestion were noted 
in all the dead mice. These results suggest the protective role of the 
whole endogenous NOSs system in the pathogenesis of dyslipidemia 
and atherosclerotic vascular disease. Hepatic LDL receptor expression 
was markedly reduced only in the triply NOS-/- genotype, accounting 
for the diet-induced dyslipidemia in the genotype.  

Bone marrow-derived vascular progenitor cells in the blood 
accumulate in injured arteries, differentiate into vascular wall cells, 
and contribute to arteriosclerotic vascular lesion formation. All NOSs 
have been reported to be expressed in bone marrow cells. However, 
whether NOSs in bone marrow cells play a role in vascular lesion 
formation remained to be clarified. We addressed this point in the 
triply NOS-/- mice and in bone marrow transplantation experiments. 
We previously reported that, in Wild-Type (WT) mice that underwent 
bone marrow transplantation from Green Fluorescent Protein (GFP)-
TG mice, GFP-positive fluorescence was detected in the ligated carotid 
arteries, confirming the involvement of bone marrow-derived vascular 
progenitor cells in vascular lesion formation after carotid artery ligation 
[69]. In a comparison of the NOSs-/- genotype that received NOSs-/- 
bone marrow transplantation and the NOSs-/- genotype that received 
WT bone marrow transplantation, the extent of neointimal formation 
and the extent of constrictive remodeling were both significantly less 
in those that received the WT bone marrow transplantation, along 
with significantly higher NOS activities in the ligated carotid arteries 
[70]. Furthermore, in a comparison of the WT genotype with WT 
bone marrow transplantation and the WT genotype with NOSs-/- bone 
marrow transplantation, the extent of neointimal formation and the 
extent of constrictive remodeling were both significantly greater in the 
WT genotype with NOSs-/- bone marrow transplantation, and this was 
associated with significantly lower NOS activities in the ligated carotid 
arteries [70]. These results indicate that NOSs in bone marrow cells 
exert an inhibitory effect on vascular lesion formation caused by blood 
flow disruption in mice in vivo, demonstrating a novel vasculoprotective 
role of NOSs in bone marrow-derived vascular progenitor cells.

Clinical Implications
Several lines of evidence suggest an association of the defective NOSs 

system with arteriosclerotic vascular disease in humans. First, it has been 
reported that plasma and/or urinary NOx levels, which are markers of 
NO production, are reduced in patients with the arteriosclerotic risk 
factors and in those with coronary arteriosclerosis [71-74]. Second, 
plasma concentrations of asymmetric dimethylarginine, which is an 
endogenous NOS inhibitor, have been shown to be elevated in patients 
with arteriosclerotic risk factors, with arteriosclerosis, and with risk 
of MI [75]. Finally, it has been revealed in humans that the gene 
polymorphisms of individual NOSs are associated with arteriosclerotic 
risk factors, arteriosclerosis, risk of MI, and low plasma NOx levels 
[76]. These results may imply a clinical significance of the findings with 
the NOSs-/- mice. 

Judging from the results of the murine genetic models, it is 
conceivable that eNOS is involved in the pathogenesis of endothelial 
dysfunction, arteriosclerosis, aortic dissection, and abdominal aortic 
aneurysm, that iNOS contributes to the pathogenesis of arteriosclerosis, 
aortic dissection, and abdominal aortic aneurysm, that nNOS serves 

functions in the pathogenesis of arteriosclerosis, and that entire NOSs 
play roles in the pathogenesis of endothelial dysfunction, coronary 
vasospasm, arteriosclerosis, and myocardial infarction. The roles 
of NOSs in human arteriosclerotic vascular diseases remain to be 
examined in future clinical studies. 

Therapeutic Potential of NOS Activators
A number of NOS activators, such as eNOS transcriptional 

enhancers (AVE9488 and AVE3085), tetrahydrobiopterin, statins, 
trans-resveratrol, vanadate, protein kinase C inhibitor midostaurin, 
and pentacyclic triteroenoids ursolic acid and betulinic acid, have 
been reported to increase NOS expression and activity or ameliorate 
NOS uncoupling [77-79]. These NOS activators may have therapeutic 
potential in the treatment of arteriosclerotic vascular diseases. 

Concluding Remarks
The mouse is the most ideal genetically modifiable mammalian 

presently available [80]. Studies with mice that are deficient in or 
overexpressing NOSs provide pivotal insights into the roles of the NOSs 
in the pathogenesis of arteriosclerotic vascular diseases. In general, 
eNOS, nNOS, and the whole NOSs system exert vasculoprotective 
roles, while iNOS seems to exert dual effects in the vascular system. 
The observations with the genetically modified animals have greatly 
advanced our understanding of the roles of the NOSs system in the 
pathogenesis of arteriosclerotic vascular diseases. Further studies are 
certainly needed to clarify whether these observations can be translated 
to human patients with arteriosclerotic vascular diseases.
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