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Abbreviations
AIF: Apoptosis Inducible Factor; AP-1: Activator Protein-1; AKT:

Protein Kinase B; Apaf-1: Apoptosis Protease Activating Factor-1;
BAD: Bcl-2-Associated Death Promoter; BCL-2: B-Cell Lymphoma 2;
BCLxL: B-Cell Lymphoma-Extra Large; BH3: Bcl-2 Homology
Domain 3; BRCA1: Breast Cancer Type 1 Susceptibility Protein;
CDK4: Cyclin-Dependent Kinase-4; CXCL12/SDF1: Stromal Cell-
Derived Factor-1; CXCR4: Chemokine Receptor Type 4; EMT:
Epithelial-Mesenchymal Transition; ERα: Estrogen Receptor α; ERβ:
Estrogen Receptor β; ERK: Extracellular Signal-Regulated Kinases;
FADD: Fas-Associated Protein with Death Domain; P: Phospho;
Ras/MEK/ERK: MAPK Signaling Pathway; JNK: c-Jun kinase; MCL1:
Myeloid Leukemia Cell Differentiation Protein-1; MMP10:
Metalloproteinase-10; MTA3: Metastasis-Associated Protein-3; Sp1:
Specificity Protein-1; STAT: Signal Transducer and Activator of
Transcription; TMA: Tissue Microarrays; TIMP2: Metallopeptidase
Inhibitor 2; TRE: Transcription Response Elements; VEGF: Vascular
Endothelial Growth Factor.

Apoptotic Regulators Have Multiple Roles
Apoptosis has a major role in cancer as it is an essential regulator of

cell mass in tumor and normal tissue and is controlled by a variety of
proteins, as depicted in Figures 1A and 1B [1] and its role in cancer is
described in excellent reviews [1-3].

Among the multitude of proteins that have critical roles in
apoptosis many have non-apoptotic functions, e.g. cytochrome C, a
key player in the intrinsic apoptosis pathway, is required for oxidative
phosphorylation-linked electron transport. Functions for caspases in
cell-cycle entry, cell maturation, immune system function [4,5]
differentiation [6], and other apoptosis-unrelated functions [7,8] have
been described in addition to their well-established roles in apoptosis.
Other pro-apoptotic molecules have pro-survival effects, e.g. apoptosis
inducible factor (AIF), Endo G and Omi [9,10], and developmental
functions, such as of Fas-associated protein with Death Domain
(FADD) in vivo [11,12]. Additionally, Apoptosis protease activating
factor-1 (Apaf-1) functions in the DNA checkpoint [7] and the
permeability transition pore complex proteins also regulate cell
metabolism and survival [7]. BCL-2 has a variety of other non-
apoptotic functions in vitro [2,13-19]. Bcl-2 is known in vitro to
inhibit cell cycling independent of apoptosis and retards transit
through G1 phase [13,18,19] and activates a programme of premature
senescence in human carcinoma cells [15]. MCL1 may inhibit cell
cycle transit as well [14]. In accordance with cell cycle regulation, BH3
proteins, BIM and BCL-2 have been localized to the nucleus [3,20,21]
as well, this data suggests that BCL-2 family proteins may have nuclear

functions. However the traditional view is that apoptotic regulators
including BCL-2 family members, are typically localized to the
intracellular membranes, cytoplasm, or mitochondria [2,3]. Recently,
BID was demonstrated to have a role in inflammation and immunity
independent of apoptosis [22].

Figure 1A: Intrinsic and extrinsic pathways in apoptosis.

The Role of BCL-2 in Clinical Breast Cancer
The role of BCL-2 in clinical breast cancer is in marked contrast to

its well-known anti apoptotic effects in vitro. Many clinical studies
suggest that BCL-2 expression, measured both by
immunohistochemistry and PCR, is a strong predictor of overall and
disease-free survival in breast cancer patients. BCL-2 is a favorable and
superior prognostic marker [23-26], independent of lymph node
status, tumor size, grade, and other biomarkers including estrogen
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receptor α (ERα) Recently [26] data was presented which showed that
the Ki67/BCL-2 ratio is a superior prognostic marker than either alone
in ERα positive breast cancer.

Figure 1B: Apoptosis of damaged intracellular oncogenes.

The Role of BAD in Breast Cancer
In this brief review we will consider the role of BCL-2 antagonist

BAD in breast cancer and cite evidence that both of these proteins
have similar roles in vivo. Recently we found that BAD was able to
regulate several proteins that may have roles in the epithelial-
mesenchymal transition (EMT) and BAD inhibited extra-cellular
matrix invasion by breast cancer cells in vitro [27]. To our knowledge,
this was the first demonstration of both anti-invasive and EMT
inhibiting effects of BAD, or any other BCL-2 family proteins in breast
cancer cells. Recent studies also demonstrate non-apoptotic roles of
BAD: blood glucose regulation, cooperation with p53 at mitochondria,
cell cycle regulation, and pro-survival functions [28-31].

BAD regulates the cell cycle through Cyclin D1
We had previously demonstrated that BCL-2 antagonist, BAD is

localized to the nucleus, in addition to the cytoplasm in normal human
breast tissue and that BAD prevents cyclin D1 transcription [32].
Decreased synthesis of cyclin D1 resulted in decreased CDK4 activity
as evidenced by decreased Rb phosphorylation and blockade of G1 to S
phase transition and cell cycle progression. Furthur, BAD is able to
inhibit both CRE- and TRE-luciferase activities through the inhibition
of c-Jun binding to these elements [27,32], resulting in inhibition of
cyclin D1 expression. Unpublished data showed that phosphorylation
of S112&S136 in BAD were required for the suppressive effects of
BAD on the cyclin D1 promoter. Since BAD interacts selectively with
un-phosphorylated c-Jun [32], we investigated whether BAD could
also regulate signal pathways that phosphorylate c-Jun. BAD inhibited
the Ras-MEKK-MEK-ERK and JNK pathways selectively, resulting in
decreased c-Jun-mediated activation of TRE and CRE in the cyclin D1
promoter [32]. c-Jun is phosphorylated and activated by JNK, ERK,
and a variety of other kinases [33,34]. The inhibitory effects of BAD on
the activation of JNK/c-Jun by E2 are broadly similar to that of serum.
Thus the mitogenic effects of estradiol exerted via induction of cyclin
D1 in addition to regulation of p27kip1 [35] were antagonized by
BAD. Other inducers of cyclin D1 were also blocked: β-catenin mRNA
and protein expression, a significant down-regulation of both
phosphorylated and total STAT1 and STAT3 in BAD over-expressing
cells resulting in a reduced activation, similarly a reduced p/T ratio
STAT5 suggested reduced activation of STAT5. STATs are well known
regulators of cyclin D1 [36,37].

The mechanisms by which BAD regulates expression of several
proteins remains to be elucidated and may relate at least in part to its
ability to bind with c-Jun and inhibit the latter’s transcriptional effects.
Furthermore, BAD may indirectly effect gene regulation through
inhibition of cyclin D1, which is known to control transcription
[38-41] and also through β-catenin. The transcription factor Sp1that
regulates SNAIL expression [42] is another activator of the cyclin D1
promoter [43]. Its inhibition by BAD could potentially be yet another
mechanism by which BAD regulates the expression of cyclin D1 in
cancer cells. These results collectively demonstrate the ability of the
cell to utilize complex mechanisms to counteract the expression of
pro-tumorigenic cyclin D1 through regulation of molecules like BAD.
In breast tumor tissues, the expression of cyclin D1 in the cytoplasm
was significantly lower compared to its normal counterpart [27], the
significance of cytoplasmic cyclin D1 is unknown even though others
have shown similar data [44,45] cytoplasmic localization may correlate
with functions of cyclin D1 in the cytoplasm, such as in cell migration
[46-48]and mitochondrial metabolism [38,49], in addition to its cell
cycle-related function. Unpublished data also suggested a positive
correlation between nuclear ERβ and BAD and the former may
decrease the tumor promoting role of nuclear ERα. [50-52].

BAD inhibits breast cancer invasion in vivo
Al-Bazz et al. also reported that BAD is localized to both the

nucleus and cytoplasm in breast cancer tissue, suggesting a nuclear
role of BAD. Significantly less staining intensities for BAD and p-BAD
were found in cancer than in normal breast tissue and in both cases
the expression of BAD in the cytoplasm exceeded that of nuclei. High
BAD expression is associated with longer disease free survival, overall
survival [53], and longer time to relapse in tamoxifen-treated breast
cancer patients [54]. Premenopausal breast carcinoma in younger
women is more aggressive with a higher potential for invasion and
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metastasis and poor prognosis compared to postmenopausal breast
carcinoma [55]. Interestingly, expression of both BCL-2 and BAD in
premenopausal breast carcinoma was significantly lower than in post-
menopausal breast carcinoma and this decrease correlated with the
progression from Grade I to III [56]. It is noteworthy that both BCL-2
and its antagonist BAD decreased with increasing severity of the
disease. Since patient survival is directly related to metastasis, it is
likely that expression of BAD protein as well as BCL-2 could be
associated with a lowered metastatic potential. In our study we found
that in Grade II cancers, decreased expression of p-BAD was found in
47% of cytoplasm and 80% of nuclei compared to normal tissue [27].

Figure 2: BAD and EMT regulation.

BAD and EMT regulation
Since cyclin D1 and c-Jun have been shown to promote breast

cancer cell invasion [38,46,47,49,57] and BAD inhibits both these
proteins [32] we investigated whether BAD may regulate invasion in
vitro; Over-expression of BAD significantly reduced MCF7 cell (a cell
line established from a pleural effusion) invasion through Matrigel.
BAD decreased MMP10 secretion coupled with increased secretion of
the MMP inhibitor TIMP-2 that correlates with the survival in breast
cancer patients [58] and the secretion of pro-angiogenic VEGF, which
has been shown to correlate with cancer metastasis was significantly
reduced by BAD [59]. Overexpression of BAD significantly decreased
activities of several EMT related proteins including CXCL2/SDF and
its receptor CXCR4 as well,this system is important in tumor cell
migration [60] (Figure 2).

A well characterized EMT inducer SNAIL [61], expression was
decreased as demonstrated by mRNA and protein expression. Further,
the expression of an upstream regulator of SNAIL, MTA3 [62], was
also blocked by BAD.A reversal or inhibition of EMT by BAD was
further evident by its stimulatory effect on E-cadherin expression.
Increased E-cadherin expression correlates with better prognosis in
many cancer types [61], and E-cadherin is inhibited by SNAIL at the
transcriptional level [61]. BAD also decreased AKT activation which
promotes migration of breast cancer cells [63], this effect was nullified
by BAD Si RNA. Further phosphorylation of β-catenin,a prognostic
marker in breast cancer [64] by GSK-3β induces its degradation [65],
and GSK-3β is inactivated by AKT/PKB mediated phosphorylation.
Therefore, we measured the effects of BAD on GSK-3β and BAD
overexpression significantly activated GSK-3β presumably due to AKT
inactivation.

The role of BAD in other cancers
A role for BAD as a good prognostic indicator has also been

reported for gastric, hepatocellular and colon carcinomas as well
[54,66-70]indicating an anti-invasive role in vivo. However,
contrasting results have been described as well, where BAD over-
expression accelerated tumor growth in prostate cancer C4-2
xenografts [71].

The mechanisms by which BAD regulates expression of several
proteins remains to be elucidated and may relate at least in part to its
ability to bind with c-Jun and inhibit the latter’s transcriptional effects.
Furthermore, BAD may indirectly effect gene regulation through
inhibition of cyclin D1, which is known to control transcription
[38-41,48]and also through β-catenin. The transcription factor Sp1that
regulates SNAIL expression is another activator of the cyclin D1
promoter [43]. Its inhibition by BAD could potentially be yet another
mechanism by which BAD regulates the expression of cyclin D1 in
cancer cells. These results collectively demonstrate the ability of the
cell to utilize complex mechanisms to counteract the expression of
pro-tumorigenic cyclin D1and c-jun through regulation of molecules
like BAD.

Conclusion
In vitro data support a pro-invasive role for BCL-2 and its pro-

survival partner BCLxL [33,72,73]. Data which suggests an anti-
invasive role for BCL-2, in vitro was also reported [74]. Most in vitro
results suggest an anti-apoptotic role for BCL-2, which would predict
an adverse prognosis, in contrast to the actual situation in patients
where BCL-2 clearly has a beneficial role (vide infra). It is also
important to note that BCL-2 and its antagonist partner BAD have
similar protective roles in patients with breast cancer. Taken together,
the above findings and our data clearly indicate that detailed studies
on the role of BCL-2 family proteins in EMT and metastasis are
urgently required. The mechanisms, by which BAD or BCL-2 decrease
the metastatic potential of breast cancer cells in vivo, are currently
unknown; perhaps their inhibitory effects on the cell cycle regulation
of EMT proteins may impede the emergence of invasive clones or their
precursor cancer stem cells. Given the data discussed above, treatment
of breast cancer with synthetic BCL-2 antagonists may have effects
contradictory to that anticipated, and actually could result in an
adverse clinical outcome.
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